Technische Universität München

Total Page:16

File Type:pdf, Size:1020Kb

Technische Universität München TECHNISCHE UNIVERSITÄT MÜNCHEN Department Chemie Lehrstuhl für Biotechnologie Analysis of small heat shock proteins and their interaction with substrate proteins Marina Angelika Kreuzeder Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Bernd Reif Prüfer der Dissertation 1. Prof. Dr. Johannes Buchner 2. Prof. Dr. Michael Sattler Die Dissertation wurde am 18.09.2017 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 02.11.2017 angenommen. Für meine Eltern Contents Contents 1. INTRODUCTION.............................................................................................. 1 1.1 Protein folding .................................................................................................................................. 1 1.2 Cell stress and heat shock proteins ........................................................................................... 3 1.3 Molecular chaperones .................................................................................................................... 5 1.4 ATP- dependent chaperones ........................................................................................................ 6 1.5 Small heat shock proteins ............................................................................................................. 9 1.5.1 Structure of Hsps ...................................................................................................................................... 9 1.5.2 Function of sHsps................................................................................................................................... 13 1.6 sHsps in different organisms ..................................................................................................... 15 1.6.1 sHsps in S. cerevisiae ............................................................................................................................. 16 1.6.2 human sHsps............................................................................................................................................ 18 1.6.3 sHsps in C. elegans ................................................................................................................................. 21 1.6.3.1 The Hsp16 core family ................................................................................................................ 23 1.7 Objectives .......................................................................................................................................... 26 2. MATERIAL ...................................................................................................... 27 2.1. Chemicals and media components .......................................................................................... 27 2.2 Consumables .................................................................................................................................... 29 2.3 Oligonucleotides ............................................................................................................................. 30 2.4 Substrate proteins ......................................................................................................................... 30 2.5 Antibodies ......................................................................................................................................... 31 2.6 Enzymes, standards and kits ...................................................................................................... 31 2.7 Strains ................................................................................................................................................ 32 2.8 Chromatography materials and columns .............................................................................. 33 2.9 Devices ............................................................................................................................................... 33 2.10 Software .......................................................................................................................................... 35 2.11 Databases ....................................................................................................................................... 36 I 2.12 Web-based tools ........................................................................................................................... 36 3. METHODS ...................................................................................................... 37 3.1 Molecular biology ........................................................................................................................... 37 3.1.1 Polymerase chain reaction ................................................................................................................ 37 3.1.2 Agarose gel electrophoresis ............................................................................................................... 38 3.1.3 Isolation of DNA fragments from Agarose gels .......................................................................... 39 3.1.4 Restriction digest and ligation .......................................................................................................... 39 3.1.5 Transformation of E.coli ...................................................................................................................... 40 3.1.6 Preparation of plasmid DNA from E. coli ...................................................................................... 40 3.1.7 DNA-sequence analysis ........................................................................................................................ 40 3.2 Protein analytics ............................................................................................................................. 41 3.2.1 Determination of protein concentration ....................................................................................... 41 3.2.1.1 Bradford-Assay ............................................................................................................................... 41 3.2.1.2 BCA-Assay ......................................................................................................................................... 41 3.2.2 SDS-Polyacrylamid-Gelelectrophoresis (SDS-PAGE) ............................................................... 42 3.2.3 Staining of SDS-PAGE gels according to Fairbanks ................................................................... 43 3.2.4 Western-blotting ..................................................................................................................................... 43 3.3 Preparative methods .................................................................................................................... 45 3.3.1 Cell disruption .......................................................................................................................................... 45 3.3.2 Concentration of proteins ................................................................................................................... 45 3.3.3 Dialysis of proteins ................................................................................................................................ 45 3.4 Chromatography ............................................................................................................................. 46 3.4.1 Ion exchange chromatography ......................................................................................................... 46 3.4.2 Size exclusion chromatography ........................................................................................................ 46 3.5 Expression and Purification of Proteins ................................................................................ 47 3.5.1 Expression and purification of CeHsp16 proteins .................................................................... 47 3.5.2 Expression and purification of human αB- crystallin .............................................................. 49 3.5.3 Expression and purification of ScHsp26wt and truncation mutants ................................ 50 3.6 Spectroscopical methods ............................................................................................................. 53 3.6.1 UV/VIS-Spectroscopy ............................................................................................................................ 53 3.6.2 Chaperone activity assays ................................................................................................................... 54 3.6.3 CD-Spectroscopy ..................................................................................................................................... 55 3.6.4 Analytical Size Exclusion Chromatography ................................................................................. 56 3.6.5 Analytical Ultracentrifugation ........................................................................................................... 57 3.6.6 Electron Microscopy ............................................................................................................................. 58 3.7 Mass spectrometry ........................................................................................................................
Recommended publications
  • Review Article Functional Subunits of Eukaryotic Chaperonin CCT/Tric in Protein Folding
    SAGE-Hindawi Access to Research Journal of Amino Acids Volume 2011, Article ID 843206, 16 pages doi:10.4061/2011/843206 Review Article Functional Subunits of Eukaryotic Chaperonin CCT/TRiC in Protein Folding M. Anaul Kabir,1 Wasim Uddin,1 Aswathy Narayanan,1 Praveen Kumar Reddy,1 M. Aman Jairajpuri,2 Fred Sherman,3 and Zulfiqar Ahmad4 1 Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Kerala 673601, India 2 Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India 3 Department of Biochemistry and Biophysics, University of Rochester Medical Center, NY 14642, USA 4 Department of Biology, Alabama A&M University, Normal, AL 35762, USA Correspondence should be addressed to M. Anaul Kabir, [email protected] Received 15 February 2011; Accepted 5 April 2011 Academic Editor: Shandar Ahmad Copyright © 2011 M. Anaul Kabir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Molecular chaperones are a class of proteins responsible for proper folding of a large number of polypeptides in both prokaryotic and eukaryotic cells. Newly synthesized polypeptides are prone to nonspecific interactions, and many of them make toxic aggregates in absence of chaperones. The eukaryotic chaperonin CCT is a large, multisubunit, cylindrical structure having two identical rings stacked back to back. Each ring is composed of eight different but similar subunits and each subunit has three distinct domains. CCT assists folding of actin, tubulin, and numerous other cellular proteins in an ATP-dependent manner.
    [Show full text]
  • DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy
    cells Review DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy Lu Zhang 1,2 and Xiaogang Li 2,3,* 1 Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; [email protected] 2 Department of Internal Medicine, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55905, USA 3 Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55905, USA * Correspondence: [email protected]; Tel.: +1-507-266-0110 Abstract: Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regula- tion has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis.
    [Show full text]
  • Supplementary Table S1. Correlation Between the Mutant P53-Interacting Partners and PTTG3P, PTTG1 and PTTG2, Based on Data from Starbase V3.0 Database
    Supplementary Table S1. Correlation between the mutant p53-interacting partners and PTTG3P, PTTG1 and PTTG2, based on data from StarBase v3.0 database. PTTG3P PTTG1 PTTG2 Gene ID Coefficient-R p-value Coefficient-R p-value Coefficient-R p-value NF-YA ENSG00000001167 −0.077 8.59e-2 −0.210 2.09e-6 −0.122 6.23e-3 NF-YB ENSG00000120837 0.176 7.12e-5 0.227 2.82e-7 0.094 3.59e-2 NF-YC ENSG00000066136 0.124 5.45e-3 0.124 5.40e-3 0.051 2.51e-1 Sp1 ENSG00000185591 −0.014 7.50e-1 −0.201 5.82e-6 −0.072 1.07e-1 Ets-1 ENSG00000134954 −0.096 3.14e-2 −0.257 4.83e-9 0.034 4.46e-1 VDR ENSG00000111424 −0.091 4.10e-2 −0.216 1.03e-6 0.014 7.48e-1 SREBP-2 ENSG00000198911 −0.064 1.53e-1 −0.147 9.27e-4 −0.073 1.01e-1 TopBP1 ENSG00000163781 0.067 1.36e-1 0.051 2.57e-1 −0.020 6.57e-1 Pin1 ENSG00000127445 0.250 1.40e-8 0.571 9.56e-45 0.187 2.52e-5 MRE11 ENSG00000020922 0.063 1.56e-1 −0.007 8.81e-1 −0.024 5.93e-1 PML ENSG00000140464 0.072 1.05e-1 0.217 9.36e-7 0.166 1.85e-4 p63 ENSG00000073282 −0.120 7.04e-3 −0.283 1.08e-10 −0.198 7.71e-6 p73 ENSG00000078900 0.104 2.03e-2 0.258 4.67e-9 0.097 3.02e-2 Supplementary Table S2.
    [Show full text]
  • Lorena Novoa-Aponte
    A Strain: fl/fl ∆hep Strain: fl/fl ∆hep AnalysisAAV: ofLuc the ironLuc chaperonePCBP1-WT PCBP1PCBP1-∆Fe interactome:PCBP1-∆RNA PCBP1 variant intersection of DNA repair and iron traffickingAAV: Luc Luc WT ∆Fe ∆RNA PCBP1 −40 Lorena Novoa-Aponte a*, Sarju J. Patel a, Olga Protchenko a, James Wohlschlegel b, Caroline C. Philpott a −40 PCBP1, IHC PCBP1, GAPDH - a Genetics and Metabolism Section,a NIDDK, NIH, Bethesda, MD, USA. b Department of Biological Chemistry, UCLA, Los Angeles, CA, USA C.C. Philpott, et al. *[email protected] 80 B P = 0.0262 60 40 1. Iron is essential but toxic 2. Increased DNA damage in cells lacking PCBP1 ns H&E ? + 20 C.C. Philpott, et al. Iron is used as an essential cofactor by several enzymes involved in DNA ⦿ Increased TUNEL in cells and tissue livers from mice lacking PCBP1. ? replication and repair. However, unchaperoned iron promotes redox ⦿ PCBP1 binds both, iron and single-stranded nucleicTG, nmol/mg protein 0 acids. stress that may affect DNA stability. Strain: Δhep Δhep Δhep ? ⦿ The iron binding activity of PCBP1 controls suppressionAAV: of DNA damage C WT ∆Fe ∆RNA PCBP1 variant ? Iron storage HEK293 cells Mouse Liver ? A 8 siNT+P1var 100 ? A 8 var siPCBP1 2 ? Mammals use the iron siNT+P1 ns var Fe-S cluster assembly 6 siPCBP1+P1siPCBP1 80 ADI1 TUNEL chaperone PCBP1 to var ? 6 siPCBP1+P1 metalate several iron- 60 = 0.0468 = 0.0354 = 0.0465 cell / mm population P P P population + dependent enzymes + 4 + 4 ? 40 Degradation of HIF1α Fig. 3. Iron chaperone-mediated handling of cytosolic labile iron pool.
    [Show full text]
  • Newfound Coding Potential of Transcripts Unveils Missing Members Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.02.406710; this version posted December 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Newfound coding potential of transcripts unveils missing members of 2 human protein communities 3 4 Sebastien Leblanc1,2, Marie A Brunet1,2, Jean-François Jacques1,2, Amina M Lekehal1,2, Andréa 5 Duclos1, Alexia Tremblay1, Alexis Bruggeman-Gascon1, Sondos Samandi1,2, Mylène Brunelle1,2, 6 Alan A Cohen3, Michelle S Scott1, Xavier Roucou1,2,* 7 1Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, 8 Quebec, Canada. 9 2 PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering. 10 3Department of Family Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada. 11 12 *Corresponding author: Tel. (819) 821-8000x72240; E-Mail: [email protected] 13 14 15 Running title: Alternative proteins in communities 16 17 Keywords: alternative proteins, protein network, protein-protein interactions, pseudogenes, 18 affinity purification-mass spectrometry 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.02.406710; this version posted December 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 21 Abstract 22 23 Recent proteogenomic approaches have led to the discovery that regions of the transcriptome 24 previously annotated as non-coding regions (i.e.
    [Show full text]
  • Gemin4 Is an Essential Gene in Mice, and Its Overexpression in Human Cells Causes Relocalization of the SMN Complex to the Nucleoplasm Ingo D
    © 2018. Published by The Company of Biologists Ltd | Biology Open (2018) 7, bio032409. doi:10.1242/bio.032409 RESEARCH ARTICLE Gemin4 is an essential gene in mice, and its overexpression in human cells causes relocalization of the SMN complex to the nucleoplasm Ingo D. Meier1,*,§, Michael P. Walker1,2,‡,§ and A. Gregory Matera¶ ABSTRACT nuclear ribonucleoproteins (snRNPs). Each of these snRNPs Gemin4 is a member of the Survival Motor Neuron (SMN) protein contains a common set of seven RNA binding factors, called Sm complex, which is responsible for the assembly and maturation of Sm- proteins, that forms a heptameric ring around the snRNA, known as class small nuclear ribonucleoproteins (snRNPs). In metazoa, Sm the Sm core. Biogenesis of the Sm core is carried out by another snRNPs are assembled in the cytoplasm and subsequently imported macromolecular assemblage called the Survival Motor Neuron into the nucleus. We previously showed that the SMN complex is (SMN) complex, consisting of at least nine proteins (Gemins 2-8, required for snRNP import in vitro, although it remains unclear which unrip and SMN) (reviewed in Battle et al., 2006a; Matera et al., specific components direct this process. Here, we report that Gemin4 2007; Matera and Wang, 2014). overexpression drives SMN and the other Gemin proteins from the Following RNA polymerase II-mediated transcription in the cytoplasm into the nucleus. Moreover, it disrupts the subnuclear nucleus, pre-snRNAs are exported to the cytoplasm for assembly localization of the Cajal body marker protein, coilin, in a dose- into stable RNP particles (Jarmolowski et al., 1994; Ohno et al., dependent manner.
    [Show full text]
  • Structure, Hormonal Regulation and Chromosomal Location of Genes Encoding Barley (1-+A)-B-Xylan Endohydrolases
    l;),, (!. s,9 47 STRUCTURE, HORMONAL RB,GULA CHROMOSOMAL LOCATION OF GENES ENCODING BARLEY (1+4)- p-XYLAI\ ENDOHYDROLASES by MITALI BANIK, B.Sc. (Hons.), M.Sc. A thesis submitted in fulfillment of the requirement for the degree of Doctor of Philosophy Department of Plant Science, Division of Agricultural and Natural Resource Sciences, TheUniversity of Adelaide, Waite Campus, Glen Osmond,5064 Australia October, 1996 1l STATEMENT OF AUTHORSHIP Except where reference is made in the text of the thesis, this thesis contains no material published elsewhere or extracted in whole or in part from a thesis presented by me for another degree or diploma. No other person's work has been used without due acknowledgment in the main text of the thesis. This thesis has not been submitted for the award of any other degree or diploma in any other tertiary institution. MITALI BANIK October, 1996 o lll ACKNOWLBDGMENTS I would like to express my deepest sense of gratitude and indebtedness to my supervisor, Professor Geoffrey B. Fincher, Head of Department, Plant Science, University of Adelaide for his constant guidance, infinite patience, encouragement and invaluable suggestions throughout my studies. I wish to express my immense gratitude to Professor Derek Bewley, Department of Botany, University of Guelph, Canada for his constructive criticism during the preparation of this thesis. I am also grateful to Drs. Frank Gubler and John V. Jacobsen, CSIRO Division of Plant Industry, Canberra for providing a cDNA library. I wish to thank Dr. Simon Robinson, Senior Scientist, CSIRO for his constructive suggestions throughout the duration of my research project.
    [Show full text]
  • Inhibition of the MID1 Protein Complex
    Matthes et al. Cell Death Discovery (2018) 4:4 DOI 10.1038/s41420-017-0003-8 Cell Death Discovery ARTICLE Open Access Inhibition of the MID1 protein complex: a novel approach targeting APP protein synthesis Frank Matthes1,MoritzM.Hettich1, Judith Schilling1, Diana Flores-Dominguez1, Nelli Blank1, Thomas Wiglenda2, Alexander Buntru2,HannaWolf1, Stephanie Weber1,InaVorberg 1, Alina Dagane2, Gunnar Dittmar2,3,ErichWanker2, Dan Ehninger1 and Sybille Krauss1 Abstract Alzheimer’s disease (AD) is characterized by two neuropathological hallmarks: senile plaques, which are composed of amyloid-β (Aβ) peptides, and neurofibrillary tangles, which are composed of hyperphosphorylated tau protein. Aβ peptides are derived from sequential proteolytic cleavage of the amyloid precursor protein (APP). In this study, we identified a so far unknown mode of regulation of APP protein synthesis involving the MID1 protein complex: MID1 binds to and regulates the translation of APP mRNA. The underlying mode of action of MID1 involves the mTOR pathway. Thus, inhibition of the MID1 complex reduces the APP protein level in cultures of primary neurons. Based on this, we used one compound that we discovered previously to interfere with the MID1 complex, metformin, for in vivo experiments. Indeed, long-term treatment with metformin decreased APP protein expression levels and consequently Aβ in an AD mouse model. Importantly, we have initiated the metformin treatment late in life, at a time-point where mice were in an already progressed state of the disease, and could observe an improved behavioral phenotype. These 1234567890 1234567890 findings together with our previous observation, showing that inhibition of the MID1 complex by metformin also decreases tau phosphorylation, make the MID1 complex a particularly interesting drug target for treating AD.
    [Show full text]
  • The Chaperonin Folding Machine
    Review TRENDS in Biochemical Sciences Vol.27 No.12 December 2002 627 32 He, B. et al. (1998) Glycogen synthase kinase 3β DNA damage-induced phosphorylation. Science regulates transcriptional activity. Mol. Cell 6, and extracellular signal-regulated kinase 292, 1910–1915 539–550 inactivate heat shock transcription factor 1 by 43 Waterman, M.J. et al. (1998) ATM-dependent 53 Beals, C.R. et al. (1997) Nuclear localization of facilitating the disappearance of transcriptionally activation of p53 involves dephosphorylation and NF-ATc by a calcineurin-dependent, active granules after heat shock. Mol. Cell. Biol. association with 14-3-3 proteins. Nat. Genet. 19, cyclosporin-sensitive intramolecular interaction. 18, 6624–6633 175–178 Genes Dev. 11, 824–834 33 Xia, W. et al. (1998) Transcriptional activation of 44 Stavridi, E.S. et al. (2001) Substitutions that 54 Porter, C.M. et al. (2000) Identification of amino heat shock factor HSF1 probed by phosphopeptide compromise the ionizing radiation-induced acid residues and protein kinases involved in the analysis of factor 32P-labeled in vivo. J. Biol. association of p53 with 14-3-3 proteins also regulation of NFATc subcellular localization. Chem. 273, 8749–8755 compromise the ability of p53 to induce cell cycle J. Biol. Chem. 275, 3543–3551 34 Dai, R. et al. (2000) c-Jun NH2-terminal kinase arrest. Cancer Res. 61, 7030–7033 55 Yang, T.T. et al. (2002) Phosphorylation of NFATc4 targeting and phosphorylation of heat shock 45 Kaeser, M.D. and Iggo, R.D. (2002) Chromatin by p38 mitogen-activated protein kinases. factor-1 suppress its transcriptional activity.
    [Show full text]
  • The Genetic Program of Pancreatic Beta-Cell Replication in Vivo
    Page 1 of 65 Diabetes The genetic program of pancreatic beta-cell replication in vivo Agnes Klochendler1, Inbal Caspi2, Noa Corem1, Maya Moran3, Oriel Friedlich1, Sharona Elgavish4, Yuval Nevo4, Aharon Helman1, Benjamin Glaser5, Amir Eden3, Shalev Itzkovitz2, Yuval Dor1,* 1Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. 3Department of Cell and Developmental Biology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 4Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah, The Institute for Medical Research Israel- Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 5Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel *Correspondence: [email protected] Running title: The genetic program of pancreatic β-cell replication 1 Diabetes Publish Ahead of Print, published online March 18, 2016 Diabetes Page 2 of 65 Abstract The molecular program underlying infrequent replication of pancreatic beta- cells remains largely inaccessible. Using transgenic mice expressing GFP in cycling cells we sorted live, replicating beta-cells and determined their transcriptome. Replicating beta-cells upregulate hundreds of proliferation- related genes, along with many novel putative cell cycle components. Strikingly, genes involved in beta-cell functions, namely glucose sensing and insulin secretion were repressed. Further studies using single molecule RNA in situ hybridization revealed that in fact, replicating beta-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in beta-cell function.
    [Show full text]
  • DDX20 Antibody Purified Mouse Monoclonal Antibody Catalog # Ao2157a
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 DDX20 Antibody Purified Mouse Monoclonal Antibody Catalog # AO2157a Specification DDX20 Antibody - Product Information Application E, WB, IF, FC Primary Accession Q9UHI6 Reactivity Human, Rat Host Mouse Clonality Monoclonal Isotype IgG1 Calculated MW 92.2kDa KDa Description DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Based on their distribution patterns, some members of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. This gene encodes a DEAD box protein, which has an ATPase activity and is a component of the survival of motor neurons (SMN) complex. This protein interacts directly with SMN, the spinal muscular atrophy gene product, and may play a catalytic role in the function of the SMN complex on RNPs. Immunogen Purified recombinant fragment of human DDX20 (AA: 725-824) expressed in E. Coli. Formulation Purified antibody in PBS with 0.05% sodium azide DDX20 Antibody - Additional Information Gene ID 11218 Other Names Probable ATP-dependent RNA helicase DDX20, 3.6.4.13, Component of gems 3, Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 DEAD box protein 20, DEAD box protein DP 103, Gemin-3, DDX20, DP103, GEMIN3 Dilution E~~1/10000 WB~~1/500 - 1/2000 IF~~1/200 - 1/1000 FC~~1/200 - 1/400 Storage Maintain refrigerated at 2-8°C for up to 6 months.
    [Show full text]
  • The Combined Detection of Amphiregulin, Cyclin A1 and DDX20/Gemin3 Expression Predicts Aggressive Forms of Oral Squamous Cell Carcinoma
    British Journal of Cancer www.nature.com/bjc ARTICLE OPEN Molecular Diagnostics The combined detection of Amphiregulin, Cyclin A1 and DDX20/Gemin3 expression predicts aggressive forms of oral squamous cell carcinoma 1 2 3 1 1 1 1 Ekaterina Bourova-Flin✉, Samira Derakhshan , Afsaneh✉ Goudarzi , Tao Wang , Anne-Laure Vitte , Florent Chuffart , Saadi Khochbin , Sophie Rousseaux 1 and Pouyan Aminishakib 2,4 © The Author(s) 2021 BACKGROUND: Large-scale genetic and epigenetic deregulations enable cancer cells to ectopically activate tissue-specific expression programmes. A specifically designed strategy was applied to oral squamous cell carcinomas (OSCC) in order to detect ectopic gene activations and develop a prognostic stratification test. METHODS: A dedicated original prognosis biomarker discovery approach was implemented using genome-wide transcriptomic data of OSCC, including training and validation cohorts. Abnormal expressions of silent genes were systematically detected, correlated with survival probabilities and evaluated as predictive biomarkers. The resulting stratification test was confirmed in an independent cohort using immunohistochemistry. RESULTS: A specific gene expression signature, including a combination of three genes, AREG, CCNA1 and DDX20, was found associated with high-risk OSCC in univariate and multivariate analyses. It was translated into an immunohistochemistry-based test, which successfully stratified patients of our own independent cohort. DISCUSSION: The exploration of the whole gene expression profile characterising
    [Show full text]