Lorena Novoa-Aponte

Total Page:16

File Type:pdf, Size:1020Kb

Lorena Novoa-Aponte A Strain: fl/fl ∆hep Strain: fl/fl ∆hep AnalysisAAV: ofLuc the ironLuc chaperonePCBP1-WT PCBP1PCBP1-∆Fe interactome:PCBP1-∆RNA PCBP1 variant intersection of DNA repair and iron traffickingAAV: Luc Luc WT ∆Fe ∆RNA PCBP1 −40 Lorena Novoa-Aponte a*, Sarju J. Patel a, Olga Protchenko a, James Wohlschlegel b, Caroline C. Philpott a −40 PCBP1, IHC PCBP1, GAPDH - a Genetics and Metabolism Section,a NIDDK, NIH, Bethesda, MD, USA. b Department of Biological Chemistry, UCLA, Los Angeles, CA, USA C.C. Philpott, et al. *[email protected] 80 B P = 0.0262 60 40 1. Iron is essential but toxic 2. Increased DNA damage in cells lacking PCBP1 ns H&E ? + 20 C.C. Philpott, et al. Iron is used as an essential cofactor by several enzymes involved in DNA ⦿ Increased TUNEL in cells and tissue livers from mice lacking PCBP1. ? replication and repair. However, unchaperoned iron promotes redox ⦿ PCBP1 binds both, iron and single-stranded nucleicTG, nmol/mg protein 0 acids. stress that may affect DNA stability. Strain: Δhep Δhep Δhep ? ⦿ The iron binding activity of PCBP1 controls suppressionAAV: of DNA damage C WT ∆Fe ∆RNA PCBP1 variant ? Iron storage HEK293 cells Mouse Liver ? A 8 siNT+P1var 100 ? A 8 var siPCBP1 2 ? Mammals use the iron siNT+P1 ns var Fe-S cluster assembly 6 siPCBP1+P1siPCBP1 80 ADI1 TUNEL chaperone PCBP1 to var ? 6 siPCBP1+P1 metalate several iron- 60 = 0.0468 = 0.0354 = 0.0465 cell / mm population P P P population + dependent enzymes + 4 + 4 ? 40 Degradation of HIF1α Fig. 3. Iron chaperone-mediated handling of cytosolic labile iron pool. Divalent metal transporter 1 (DMT1) and Zip14, located on plasma membrane or endocytic vesicles, imports non-transferrin-bound or transferrin-bound iron, 20 respectively. Iron enters the cytosolic labile iron pool (LIP) as Fe(II) and is largely coordinated by reduced GSH and bound to iron chaperones, PCBPs. PCBP1 and 2 2 TUNEL TUNEL PCBP2 efficiently distribute iron for storage, non-heme iron cofactor assembly, or efflux through ferroportin (Fpn1). a, PCBP1 (and to a lesser extent, PCBP2) TUNEL % facilitates iron sequestration into ferritin,? which can be delivered to mitochondria by unknown mechanism for heme or FeeS cluster synthesis. b, PCBP1 form a TUNEL % 0 complex with cytosolic BolA2 via a bridging Fe-GS ligand. Iron provided by PCBP1-BolA2 complex can be combinedTUNEL with sulfur (S) compound, with the help of other Translation/ of polyproline motifs 0 cytosolic FeeS cluster assembly proteins and facilitateADI1 the [2Fee2S] cluster formation on BolA2-Glrx3 distribution system. c, PCBP1 delivers iron to mononuclear Strain: fl/fl Δhep Δhep Δhep Δhep P1var: WT - WT ∆RNA - ∆RNA ∆Fe - ∆Fe iron enzyme prolyl hydroxylase (PHD2), which regulates the degradation of hypoxia inducible factor 1-α (HIF1α). d, PCBP1 also metallates the dinuclear iron 0 AAV: Luc Luc WT ∆Fe ∆RNA enzyme deoxyhypusine hydroxylase (DOHH), which catalyzes the hydroxylation of hypusine (Hpu) on eukaryotic translation initiation factor 5A (elF5A) to promote P1var: WT - WT ∆RNA - ∆RNA ∆Fe - ∆Fe translation of polyproline motifs. DAPI Philpott, CC, et al. BBA - Molecular Cell Research (2020) Sarju, P. et al. PNAS (2021) PCBP1 variant state [31]. For this reason, PCBP1 cannot be delivering iron directly to PCBP1. Again, PCBP1 demonstrated iron-dependent binding to DOHH B siNT siPCBP1 Fig.the 3. Iron enzymatic chaperone-mediated active site handling but instead of cytosolic is likely labile releasing iron pool. iron to the in cells by coimmunoprecipitation. Because ferritin and the non-heme siNT + P1var siPCBP1 + P1var Divalentcarboxylate metal transporter residues that 1 (DMT1) line the and pore Zip14, of 3-fold located symmetry on plasma that membrane leads to or endocyticiron enzymes vesicles, targeted imports non-transferrin-bound by PCBP1 are structurally or transferrin-bound dissimilar, we iron, have B 150 siNT siPCBP1 respectively.the interior. Iron entersThis mechanism the cytosolic of labile associative iron pool transfer (LIP) as makes Fe(II) and the is role largely of a coordinatedproposed by reduced that the GSH interactions and bound are to iron largely chaperones, mediated PCBPs. through PCBP1 bridging and D 400 ns PCBP2bridging efficiently iron distribute ligand more iron likely.for storage, non-heme iron cofactor assembly, or effluxiron through ligands ferroportin that may (Fpn1). include a, PCBP1 GSH. (and Additional to a lesser electrostatic extent, PCBP2) interac- var var facilitates iron sequestration into ferritin, which can be delivered to mitochondria by unknown mechanism for heme or FeeS cluster synthesis. b, PCBP1 form a siNT + P1 PCBP1 can deliver iron to non-heme enzymes with mono- and di- tions, for example, cannot be ruled out, but may not be primarily re- 150 siPCBP1 + P1 complexnuclear with iron cytosolic centers BolA2 (Fig.via a 3 bridgingc, d) [32 Fe-GS]. This ligand. activity Iron provided was initially by PCBP1-BolA2 ob- sponsible complex can for be complex combined formation. with sulfur (S) compound, with the help of other cytosolic FeeS cluster assembly proteins and facilitate the [2Fee2S] cluster formation on BolA2-Glrx3 distribution system. c, PCBP1 delivers iron to mononuclear 300 served in the prolyl hydroxylases (PHDs) that regulate the degradation 100 iron enzyme prolyl hydroxylase (PHD2), which regulates the degradation of hypoxia inducible factor 1-α (HIF1α). d, PCBP1 also metallates the dinuclear iron of hypoxia inducible factor 1-α in cells [33]. Cells from which PCBP1 is e enzyme deoxyhypusine hydroxylase (DOHH), which catalyzes the hydroxylation of hypusine5. Interaction (Hpu) on eukaryotic of PCBP1 translation with cytosolic initiation factor Fe S 5A assembly (elF5A) to machinery promote translationdepleted of polyprolineexhibit loss motifs. of the iron cofactors from PHD2 and concomitant through BolA2 = 0.0159 = 0.0255 loss of prolyl hydroxylase activity, reduction of hydroxylated HIF1-α, 200 = 0.0079 P P P and accumulation of active HIF1-α. Similarly, PCBP1-depleted cells A proteomics analysis of the PCBP1 interactome indicated that 100 state [31]. For this reason, PCBP1 cannot be delivering iron directly to PCBP1. Again, PCBP1 demonstrated iron-dependent binding to DOHH 50 ALT, U/L ALT, exhibit loss of activity of the related asparagyl hydroxylase and PCBP1 PCBP1 was capable of binding many different protein components in % Cell Viability the enzymatic active site but instead is likely releasing iron to the in cells by coimmunoprecipitation. Because ferritin and the non-heme was found to directly interact with both of these mononuclear iron the cell, including ferritins, other PCBPs, and some non-heme iron en- 100 carboxylate residues that line the pore of 3-fold symmetry that leads to iron enzymes targeted by PCBP1 are structurally dissimilar, we have enzymes. A recent publication also indicates that acireductone dioxy- zymes. Inspection of the interactome for possible co-chaperone, rather the interior. This mechanism of associative transfer makes the role of a proposed that the interactions are largely mediated through bridging genase 1, a mono-nuclear iron enzyme involved in the methionine than client, proteins revealed BolA2 as a candidate (Fig. 3b) [26]. bridging iron ligand more likely. iron ligands that may include GSH. Additional electrostatic interac- salvage pathway, is also metallated by PCBP1 in cells [34]. BolA2 homologues have been characterized in budding and fission 0 0 PCBP1 can deliver iron to non-heme enzymes with mono- and di- tions, for example, cannot be ruled out, but may not be primarily re- 50 Deoxyhypusine hydroxylase (DOHH) is a di-nuclear iron enzyme yeast as components of a cytosolic/nuclear [2Fee2S] carrier complex EV P1-WT P1-∆RNA P1-∆Fe nuclear iron centers (Fig. 3c, d) [32]. This activity was initially ob- sponsible for complex formation. Strain: % Cell Viability that is structurally unrelated to PHDs or ferritins, but also depends on that includes the cytosolic monothiol glutaredoxin, Grx3 [36–40]. In fl/fl Δhep Δhep Δhep Δhep served in the prolyl hydroxylases (PHDs) that regulate the degradation PCBP1 for efficient metalation of its peroxo-bridged, di-nuclear iron yeast this complex is proposed to transfer [2Fee2S] clusters to iron- PCBP1-Flag Variants of hypoxia inducible factor 1-α in cells [33]. Cells from which PCBP1 is e AAV: Luc Luc WT ∆Fe ∆RNA center [35]. Cells lacking PCBP1 or PCBP2, but not wild type HEK cells, 5. Interactionregulatory transcription of PCBP1 with factors, cytosolic which Fe directlyS assembly affect machinery their activity depleted exhibit loss of the iron cofactors from PHD2 and concomitant lost DOHH activity when exposed to low levels of iron chelators. Iron through[41–44 BolA2]. In mammalian cells, BolA2-Glrx3 complexes also function as loss of prolyl hydroxylase activity, reduction of hydroxylated HIF1-α, cofactors were selectively lost from DOHH under these conditions and [2Fe-2S] chaperones; the only known recipient of these clusters in Fig. 5 | RNA or Iron binding activityPCBP1 of PCBP1 variant are associated with different phenotypes in PCBP1 and accumulation of active HIF1-α. Similarly, PCBP1-depleted cells 0 could be restored in vitro with iron or with cell lysates containing Amammalian proteomics cells analysis is Ciapin of 1, the an PCBP1early-acting interactome component indicated of the cytosolic that depleted cells. (A) Iron binding activity of PCBP1 is required to suppress DNA damage in PCBP1- exhibit loss of activity of the related asparagyl hydroxylase and PCBP1 PCBP1 was capable of binding many different protein components in EV P1-WT P1-∆RNA P1-∆Fe was found to directly interact with both of these mononuclear iron depleted cells. Tetracycline-inducible stable cell lines expressing PCBP1-Flag variants of wild type (WT), the cell, including ferritins, other PCBPs, and some non-heme iron en- enzymes. A recent publication also indicates that acireductone dioxy- zymes. Inspection of the interactome for possible co-chaperone, rather RNA-binding mutant (∆RNA) or iron-binding mutant (∆Fe)PCBP1-Flag were transfected Variants with nontargeting (NT) or genase 1, a mono-nuclear iron enzyme involved in the methionine than client, proteins revealed BolA2Fig.
Recommended publications
  • Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
    Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10.
    [Show full text]
  • Mutations in DCPS and EDC3 in Autosomal Recessive Intellectual
    Human Molecular Genetics, 2015, Vol. 24, No. 11 3172–3180 doi: 10.1093/hmg/ddv069 Advance Access Publication Date: 20 February 2015 Original Article Downloaded from ORIGINAL ARTICLE Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA http://hmg.oxfordjournals.org/ decapping in neurodevelopment Iltaf Ahmed1,2,†, Rebecca Buchert3,†, Mi Zhou5,†, Xinfu Jiao5,†, Kirti Mittal1, Taimoor I. Sheikh1, Ute Scheller3, Nasim Vasli1, Muhammad Arshad Rafiq1, 6 1 7 2 M. Qasim Brohi , Anna Mikhailov , Muhammad Ayaz , Attya Bhatti , at Universitaet Erlangen-Nuernberg, Wirtschafts- und Sozialwissenschaftliche Z on August 15, 2016 Heinrich Sticht4, Tanveer Nasr8,9, Melissa T. Carter10, Steffen Uebe3, André Reis3, Muhammad Ayub7,11, Peter John2, Megerditch Kiledjian5,*, John B. Vincent1,12,13,* and Rami Abou Jamra3,* 1Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8, 2Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan, 3Institute of Human Genetics and 4Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany, 5Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA, 6Sir Cowasji Jehangir Institute of Psychiatry, Hyderabad, Sindh 71000, Pakistan, 7Lahore Institute of Research and Development,
    [Show full text]
  • Effects of Stressors on Differential Gene Expression And
    EFFECTS OF STRESSORS ON DIFFERENTIAL GENE EXPRESSION AND SECONDARY METABOLITES BY AXINELLA CORRUGATA by Jennifer Grima A Thesis Submitted to the Faculty of Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida May 2013 ACKNOWLEDGEMENTS This thesis was made possible by the help and support of my mentors and friends. Without their guidance and expertise, I would not have been able to accomplish all that I have. Their belief and encouragement in my efforts have motivated and inspired me along through this journey and into a new era in my life. First and foremost, I am grateful to Dr. Shirley Pomponi for taking on the role as my advisor and giving me the opportunity to experience life as a researcher. Not only has she guided me in my scientific studies, she has become a wonderful, lifelong friend. Dr. Pomponi and Dr. Amy Wright have also provided financial support that enabled me to conduct the research and complete this thesis. I would also like to acknowledge Dr. Amy Wright for her willingness to tender advice on all things chemistry related as well as providing me with the space, equipment, and supplies to conduct the chemical analyses. I am grateful to Dr. Esther Guzman who not only served as a committee member, but has also been readily available to help me in any endeavor, whether it be research or personal related. She is truly one of kind with her breadth of knowledge in research and her loyal and caring character.
    [Show full text]
  • Localization of Condensin Subunit XCAP-E in Interphase Nucleus, Nucleoid and Nuclear
    1 Localization of condensin subunit XCAP-E in interphase nucleus, nucleoid and nuclear matrix of XL2 cells. Elmira Timirbulatova, Igor Kireev, Vladimir Ju. Polyakov, and Rustem Uzbekov* Division of Electron Microscopy, A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia. *Author for correspondence: telephone. 007-095-939-55-28; FAX 007-095-939-31-81 e-mail: [email protected] Key words: XCAP-E; nucleolus; condensin; nuclear matrix; Xenopus. Abbreviations: DAPI , 4’, 6 diamidino-2-phenylindole; DNP, deoxyribonucleoprotein; DRB, 5,6-dichloro-1b-d-ribofuranosylbenzimidazole; SMC, structural maintenance of chromosomes; XCAP-E, Xenopus chromosome associated protein E. 2 Abstract The Xenopus XCAP-E protein is a component of condensin complex In the present work we investigate its localization in interphase XL2 cells and nucleoids. We shown, that XCAP-E is localizes in granular and in dense fibrillar component of nucleolus and also in small karyoplasmic structures (termed “SMC bodies”). Extraction by 2M NaCl does not influence XCAP-E distribution in nucleolus and “SMC bodies”. DNAse I treatment of interphase cells permeabilized by Triton X-100 or nucleoids resulted in partial decrease of labeling intensity in the nucleus, whereas RNAse A treatment resulted in practically complete loss of labeling of nucleolus and “SMC bodies” labeling. In mitotic cells, however, 2M NaCl extraction results in an intense staining of the chromosome region although the labeling was visible along the whole length of sister chromatids, with a stronger staining in centromore region. The data are discussed in view of a hypothesis about participation of XCAP-E in processing of ribosomal RNA.
    [Show full text]
  • DNA·RNA Triple Helix Formation Can Function As a Cis-Acting Regulatory
    DNA·RNA triple helix formation can function as a cis-acting regulatory mechanism at the human β-globin locus Zhuo Zhoua, Keith E. Gilesa,b,c, and Gary Felsenfelda,1 aLaboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; bUniversity of Alabama at Birmingham Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294; and cDepartment of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294 Contributed by Gary Felsenfeld, February 4, 2019 (sent for review January 4, 2019; reviewed by James Douglas Engel and Sergei M. Mirkin) We have identified regulatory mechanisms in which an RNA tran- of the criteria necessary to establish the presence of a triplex script forms a DNA duplex·RNA triple helix with a gene or one of its structure, we first describe and characterize triplex formation at regulatory elements, suggesting potential auto-regulatory mecha- the FAU gene in human erythroid K562 cells. FAU encodes a nisms in vivo. We describe an interaction at the human β-globin protein that is a fusion containing fubi, a ubiquitin-like protein, locus, in which an RNA segment embedded in the second intron of and ribosomal protein S30. Although fubi function is unknown, the β-globin gene forms a DNA·RNA triplex with the HS2 sequence posttranslational processing produces S30, a component of the within the β-globin locus control region, a major regulator of glo- 40S ribosome. We used this system to refine methods necessary bin expression. We show in human K562 cells that the triplex is to detect triplex formation and to distinguish it from R-loop stable in vivo.
    [Show full text]
  • Zhou Et Al POLQ Inhibitor.Docx
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.23.111658; this version posted May 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Polymerase Theta Inhibition Kills Homologous Recombination Deficient Tumors Jia Zhou1, Camille Gelot2, Constantia Pantelidou3, Adam Li1, Hatice Yücel2, Rachel E. Davis4, Anniina Farkkila1, Bose Kochupurakkal1, Aleem Syed5, Geoffrey I. Shapiro3,6, John A. Tainer5, Brian S. J. Blagg4, Raphael Ceccaldi2,7* and Alan D. D’Andrea1,6,7* 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. 2Inserm U830, PSL Research University, Institut Curie, 75005, Paris, France. 3Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA. 4Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA. 5Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. 6Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA. 7Co-senior authors. * Co-corresponding authors. * Corresponding authors: Alan D. D’Andrea, M.D. Director, Susan F. Smith Center for Women’s Cancers (SFSCWC) Director, Center for DNA Damage and Repair Dana-Farber Cancer Institute The Fuller-American Cancer Society Professor Harvard Medical School Phone: 617-632-2080 Email: [email protected] Raphael Ceccaldi Institut Curie, 75005, Paris, France Phone: +33 (0)1 56 24 69 49 Email: [email protected] Key Words: Novobiocin, Polymerase theta (POLθ), Homologous Recombination, PARP inhibitor resistance.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Genes with 5' Terminal Oligopyrimidine Tracts Preferentially Escape Global Suppression of Translation by the SARS-Cov-2 NSP1 Protein
    Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Genes with 5′ terminal oligopyrimidine tracts preferentially escape global suppression of translation by the SARS-CoV-2 Nsp1 protein Shilpa Raoa, Ian Hoskinsa, Tori Tonna, P. Daniela Garciaa, Hakan Ozadama, Elif Sarinay Cenika, Can Cenika,1 a Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA 1Corresponding author: [email protected] Key words: SARS-CoV-2, Nsp1, MeTAFlow, translation, ribosome profiling, RNA-Seq, 5′ TOP, Ribo-Seq, gene expression 1 Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a non-structural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-Seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation level. We discover that a functionally-coherent subset of human genes are preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5′ terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes.
    [Show full text]
  • 1 AGING Supplementary Table 2
    SUPPLEMENTARY TABLES Supplementary Table 1. Details of the eight domain chains of KIAA0101. Serial IDENTITY MAX IN COMP- INTERFACE ID POSITION RESOLUTION EXPERIMENT TYPE number START STOP SCORE IDENTITY LEX WITH CAVITY A 4D2G_D 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ B 4D2G_E 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ C 6EHT_D 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ D 6EHT_E 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ E 6GWS_D 41-72 41 72 100 100 3.2Å PCNA X-RAY DIFFRACTION √ F 6GWS_E 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ G 6GWS_F 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ H 6IIW_B 2-11 2 11 100 100 1.699Å UHRF1 X-RAY DIFFRACTION √ www.aging-us.com 1 AGING Supplementary Table 2. Significantly enriched gene ontology (GO) annotations (cellular components) of KIAA0101 in lung adenocarcinoma (LinkedOmics). Leading Description FDR Leading Edge Gene EdgeNum RAD51, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, CENPW, HJURP, NDC80, CDCA5, NCAPH, BUB1, ZWILCH, CENPK, KIF2C, AURKA, CENPN, TOP2A, CENPM, PLK1, ERCC6L, CDT1, CHEK1, SPAG5, CENPH, condensed 66 0 SPC24, NUP37, BLM, CENPE, BUB3, CDK2, FANCD2, CENPO, CENPF, BRCA1, DSN1, chromosome MKI67, NCAPG2, H2AFX, HMGB2, SUV39H1, CBX3, TUBG1, KNTC1, PPP1CC, SMC2, BANF1, NCAPD2, SKA2, NUP107, BRCA2, NUP85, ITGB3BP, SYCE2, TOPBP1, DMC1, SMC4, INCENP. RAD51, OIP5, CDK1, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, ESCO2, CENPW, HJURP, TTK, NDC80, CDCA5, BUB1, ZWILCH, CENPK, KIF2C, AURKA, DSCC1, CENPN, CDCA8, CENPM, PLK1, MCM6, ERCC6L, CDT1, HELLS, CHEK1, SPAG5, CENPH, PCNA, SPC24, CENPI, NUP37, FEN1, chromosomal 94 0 CENPL, BLM, KIF18A, CENPE, MCM4, BUB3, SUV39H2, MCM2, CDK2, PIF1, DNA2, region CENPO, CENPF, CHEK2, DSN1, H2AFX, MCM7, SUV39H1, MTBP, CBX3, RECQL4, KNTC1, PPP1CC, CENPP, CENPQ, PTGES3, NCAPD2, DYNLL1, SKA2, HAT1, NUP107, MCM5, MCM3, MSH2, BRCA2, NUP85, SSB, ITGB3BP, DMC1, INCENP, THOC3, XPO1, APEX1, XRCC5, KIF22, DCLRE1A, SEH1L, XRCC3, NSMCE2, RAD21.
    [Show full text]
  • DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy
    cells Review DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy Lu Zhang 1,2 and Xiaogang Li 2,3,* 1 Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; [email protected] 2 Department of Internal Medicine, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55905, USA 3 Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55905, USA * Correspondence: [email protected]; Tel.: +1-507-266-0110 Abstract: Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regula- tion has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis.
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • Monoclonal Antibody to SMC2 / CAPE - Purified
    OriGene Technologies, Inc. OriGene Technologies GmbH 9620 Medical Center Drive, Ste 200 Schillerstr. 5 Rockville, MD 20850 32052 Herford UNITED STATES GERMANY Phone: +1-888-267-4436 Phone: +49-5221-34606-0 Fax: +1-301-340-8606 Fax: +49-5221-34606-11 [email protected] [email protected] AM05324PU-N Monoclonal Antibody to SMC2 / CAPE - Purified Alternate names: CAP-E, Chromosome-associated protein E, SMC protein 2, SMC-2, SMC2L1, Structural maintenance of chromosomes protein 2, XCAP-E homolog Quantity: 0.1 mg Concentration: 1.0 mg/ml Background: CAP-E and CAP-C (Chromosome Associated Protein-E & C) are also SMC (Structural Maintenance of Chromosome) family members that form a heterodimeric complex required for mitotic chromosome condensation to achieve proper segregation of genetic information during subsequent cell division. hCAP-C/hCAP-E is a component of a multiprotein complex called condensin that interacts with phosphorylation of Histone H3 resulting in the mitotic chromosome condensation. The distribution patterns of the two heterodimeric complexes in interphase nucleus indicate independent behaviour of the two complexes during cell cycle. These results suggest that the two distinct complexes are involved in different aspects of mitotic chromosome organization in human cells. Uniprot ID: O95347 NCBI: NP_001036015.1 GeneID: 10592 Host / Isotype: Mouse / IgG Clone: E1M Immunogen: Hybridoma produced by the fusion of splenocytes from mice immunized with recombinant protein corresponding to amino acids 523-768 of Human CAP-E and Mouse myeloma cells. Genename: SMC2 Format: State: Liquid purified IgG fraction. Buffer System: PBS containing 0.08% Sodium Azide as preservative. Applications: Western Blot: 1-5 µg/ml.
    [Show full text]