A Practical Approach to Rheology and Rheometry

Total Page:16

File Type:pdf, Size:1020Kb

A Practical Approach to Rheology and Rheometry Rheology A Practical Approach to Rheology and Rheometry by Gebhard Schramm 2nd Edition Gebrueder HAAKE GmbH, Karlsruhe, Federal Republic of Germany 2 Rheology Contact Addresses: Gebrueder HAAKE GmbH, Dieselstrasse 4, D-76227 Karlsruhe, Federal Republic of Germany Tel.: +49 (0)721 4094-0 ⋅ Fax: +49 (0)721 4094-300 USA: HAAKE Instruments Inc. 53 W. Century Road, Paramus, NJ 07652 Tel.: (201) 265-7865 ⋅ Fax: (201) 265-1977 France: Rheo S.A. 99 route de Versailles F-91160 Champlan Tel.: +33 (0)1 64 54 0101 ⋅ Fax: +33 (0)1 64 54 0187 For details of our worldwide network of General Agents, please contact HAAKE directly. Copyright 2000 by Gebrueder HAAKE GmbH, D-76227 Karlsruhe, Dieselstrasse 4 Federal Republic of Germany All rights reserved. No part of this book may be reproduced in any form by photostat, microfilm or any other means, without the written permission of the publishers. 0.0.010.2–1998 II 3 Rheology Preface . 9 1. Introduction to Rheometry . 11 2. Aspects of Rheometry . 15 2.1 The basic law. 15 2.2 Shear stress. 15 2.3 Shear rate. 16 2.4 Dynamic viscosity. 17 2.5 Kinematic viscosity. 17 2.6 Flow and viscosity curves. 18 2.7 Viscosity parameters. 20 2.8 Substances. 21 2.8.1 Newtonian liquids. 21 2.8.2 Non-Newtonian liquids. 21 2.9 Boundary conditions or measuring constraints of rheometry. 31 2.9.1 Laminar flow. 31 2.9.2 Steady state flow. 31 2.9.3 No slippage. 31 2.9.4 Samples must be homogeneous. 31 2.9.5 No chemical or physical changes during testing. 32 2.9.6 No elasticity. 32 2.10 Absolute rheometry/viscometry. 35 3. Types of Rheometers/Viscometers . 36 3.1 Rotational rheometers/viscometers. 36 3.1.1 Comparing the different design principles. 36 3.1.2 Comparison of CS- and CR-rheometers. 40 3.1.3 Equations. 54 3.1.4 Quality criteria. 59 3.1.5 Comparison of coaxial cylinder- and of cone-and-plate- sensor systems. 65 3.2 Capillary viscometers. 70 3.2.1 Indication of different models. 70 3.2.2 Variable pressure capillary viscometers. 71 3.2.3 Gravity force capillary viscometers. 77 3.2.4 Melt indexers. 79 3.2.5 Orifice viscometers. 81 3.3 The Falling Ball Viscometer. 83 4 Rheology 4. The Measurement of the Elastic Behavior of Visco-elastic Fluids . 86 4.1 Why measure elasticity?. 86 4.2 What causes a fluid to be visco-elastic?. 86 4.3 How to measure visco-elasticity. 91 4.3.1 The Weissenberg effect. 91 4.3.2 ”Die swell” and ”melt fracture” of extrudates. 99 4.3.3 Creep and recovery. 101 4.3.3.1 Description of the test method. 101 4.3.3.2 Theoretical aspects of creep/recovery tests. 106 4.3.3.3 Benefits of creep and the recovery tests. 115 4.3.3.4 Instrumentation for creep and recovery tests. 117 4.3.4 Tests with forced oscillation. 119 4.3.4.1 Description of the test method. 119 4.3.4.2 Some theoretical aspects of dynamic testing. 121 4.3.4.3 Benefits of dynamic testing. 134 5. The Relevance of Shear Rates on Rheological Data and on the Processibility of Visco-elastic Fluids . 142 5.1 Shear rates in polymer processing. 142 5.2 Applying a latex layer to a carpet in a continuous process. 146 5.3 The problem of plug flow. 148 5.4 Examples for an estimation of a relevant shear rates related to some typical processes. 149 5.4.1 Paint industry. 149 5.4.2 Paper coating. 154 5.4.3 Engine oil performance. 155 5.4.4 Screen printing. 158 5.4.5 Lipstick application. 160 5.4.6 Some other shear rates. 160 5 Rheology 6. Optimization of Rheometer Test Results . 161 6.1 How accurate are capillary and falling ball viscometers?. 161 6.2 How accurate are rotational viscometers and rheometers?. 162 6.2.1 The accuracy of the assigned shear stress in CS-rheometers and of the measured torque values in CR-rheometers. 163 6.2.2 The significance of the rotor speed. 166 6.2.3 The significance of the geometry factors which define the influence of the given geometry of sensor systems. 167 6.2.4 The significance of the assigned temperature. 167 6.2.5 The tolerance level in rotational rheometry. 167 6.2.6 How accurate are rotational viscometers?. 171 6.3 Possible causes of misinterpretation of test results. 177 6.3.1 Maladjustment of “zero” on the shear stress scale. 177 6.3.2 The effect of excess sample volumes. 178 6.3.3 The effect of damping on flow- and viscosity curves. 179 6.3.4 The effect of frictional shear heat on viscosity data. 182 6.3.5 The effect of insufficient time to reach any assigned temperature level. 183 6.3.6 Effect of chemical or physical changes. 184 6.3.7 The effect of non-laminar flow. 185 6.3.8 The influence of gap size on accuracy of viscosity data. 187 6.3.9 The influence of gap size on phase separation in dispersions. 188 6.3.10 Disturbances caused by testing visco-elastic samples in coaxial cylinder- or cone-and-plate sensor systems. 190 6.3.11 Decreasing the effect of solvent loss and particle sedimentation in dispersions. 191 6.3.12 The effect of sedimentation of particles or corpuscles in dispersions. 192 7. The Problem of Shear Heating . 195 6 Rheology 8. Testing Two Important Rheological Phenomena: Thixotropy and Yield Value . 197 8.1 Measuring thixotropy. 197 8.1.1 Measuring the breakdown of thixotropic structures. 197 8.1.2 Measuring the rate of recovery of gel structure. 201 8.2 The measurement of yield stresses. 203 8.2.1 CS-rheometer for the measurement of yield stresses. 203 8.2.2 CR-rheometer for the determination of yield stresses. 205 8.2.3 The importance of t01 and t02. 206 8.2.4 Making use of double logarithmic scaling for flow curves to extrapolate to the yield value. 207 8.2.5 Plotting deformation versus assigned shear stresses. 208 8.2.6 Creep and recovery curves to determine a sample’s below-the-yield behavior. 209 8.2.7 Vane rotors for the measurement of yield values. 210 9. Mathematical Treatment of Test Results for Non-Newtonian Liquids . 215 9.1 Transformation of flow to viscosity curves. 215 9.2 Considerations with respect to the evaluation of relative and absolute viscosity data. 216 9.3 Curve-fitting with rheological equations. 219 9.4 The possible pitfalls of extrapolated regression curves. 221 9.5 Corrections on measured “raw” data required as in the case of capillary rheometer results. 224 9.5.1 The Bagley correction. 224 9.5.2 The Weissenberg-Rabinowitsch correction. 229 9.5.3 A short summary of the principles behind corrections on raw data. 234 9.6 The ”WLF”–time-temperature superposition. 235 9.7 Evaluation of the long-term viscous and elastic response of a polyethylene melt in a CS-rheometer creep/recovery test. 240 9.8 Mathematical treatment of test results in retrospect. 243 7 Rheology 10. Relative Polymer Rheometry: Torque Rheometers with Mixer Sensors . 244 10.1 Preliminary remarks. 244 10.2 Assessing shear rates in mixer sensors. 245 10.3 The relevance of relative torque rheometer data. 248 10.4 Rheograms. 249 10.5 Testing processibility with mixer sensors. 251 10.6 Examples of processibility tests with mixer sensors. 252 10.6.1 Dry-blend powder flow. 252 10.6.2 Melting of a PVC dry-blend. 252 10.6.3 Testing the heat-/shear stability of polymers. 254 10.6.4 Shear sensitivity of raw rubber polymers. 255 10.6.5 Testing the oil absorption of carbon blacks. 257 10.6.6 Evaluation of molecular structure of polymers by mixer tests. 259 10.6.7 Determining the temperature dependence of viscosity 260 11. How to Select the Most Suitable Rheometer for a Given Sample? . 263 11.1 Knowing the basic behavior of the sample to be tested. 263 11.2 Knowing the relevant shear rates for the processing or the application of the samples concerned. 264 11.3 Absolute rheological data.
Recommended publications
  • Frictional Peeling and Adhesive Shells Suomi Ponce Heredia
    Adhesion of thin structures : frictional peeling and adhesive shells Suomi Ponce Heredia To cite this version: Suomi Ponce Heredia. Adhesion of thin structures : frictional peeling and adhesive shells. Physics [physics]. Université Pierre et Marie Curie - Paris VI, 2015. English. NNT : 2015PA066550. tel- 01327267 HAL Id: tel-01327267 https://tel.archives-ouvertes.fr/tel-01327267 Submitted on 6 Jun 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité : Physique École doctorale : «Physique en Île-de-France » réalisée Au Laboratoire de Physique et Mécanique des Milieux Hétérogènes présentée par Suomi PONCE HEREDIA pour obtenir le grade de : DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Sujet de la thèse : Adhesion of thin structures Frictional peeling and adhesive shells soutenue le 30 Novembre, 2015 devant le jury composé de : M. Etienne Barthel Examinateur M. José Bico Directeur de thèse M. Axel Buguin Examinateur Mme. Liliane Léger Rapporteure M. Benoît Roman Invité M. Loïc Vanel Rapporteur 1 Suomi PONCE HEREDIA 30 Novembre, 2015 Sujet : Adhesion of thin structures Frictional peeling and adhesive shells Résumé : Dans cette thèse, nous nous intéressons à l’adhésion d’élastomères sur des substrats rigides (interactions de van der Waals).
    [Show full text]
  • Lecture 18 Ocean General Circulation Modeling
    Lecture 18 Ocean General Circulation Modeling 9.1 The equations of motion: Navier-Stokes The governing equations for a real fluid are the Navier-Stokes equations (con­ servation of linear momentum and mass mass) along with conservation of salt, conservation of heat (the first law of thermodynamics) and an equation of state. However, these equations support fast acoustic modes and involve nonlinearities in many terms that makes solving them both difficult and ex­ pensive and particularly ill suited for long time scale calculations. Instead we make a series of approximations to simplify the Navier-Stokes equations to yield the “primitive equations” which are the basis of most general circu­ lations models. In a rotating frame of reference and in the absence of sources and sinks of mass or salt the Navier-Stokes equations are @ �~v + �~v~v + 2�~ �~v + g�kˆ + p = ~ρ (9.1) t r · ^ r r · @ � + �~v = 0 (9.2) t r · @ �S + �S~v = 0 (9.3) t r · 1 @t �ζ + �ζ~v = ω (9.4) r · cpS r · F � = �(ζ; S; p) (9.5) Where � is the fluid density, ~v is the velocity, p is the pressure, S is the salinity and ζ is the potential temperature which add up to seven dependent variables. 115 12.950 Atmospheric and Oceanic Modeling, Spring '04 116 The constants are �~ the rotation vector of the sphere, g the gravitational acceleration and cp the specific heat capacity at constant pressure. ~ρ is the stress tensor and ω are non-advective heat fluxes (such as heat exchange across the sea-surface).F 9.2 Acoustic modes Notice that there is no prognostic equation for pressure, p, but there are two equations for density, �; one prognostic and one diagnostic.
    [Show full text]
  • Monday, July 26
    USNCCM16 Technical Program (as of July 27, 2021) To find specific authors, use the search function in the pdf file. All times listed are in Central Daylight Saving Time. Monday, July 26 1 TS 1: MONDAY MORNING, JULY 26 10:00 AM 10:20 AM 10:40 AM 11:00 AM 11:20 AM Symposium Honoring J. Tinsley Oden's Monumental Contributions to Computational #M103 Mechanics, Chair(s): Romesh Batra Keynote presentation: On the Equivalence On the Coupling of Fiber-Reinforced Analysis and Between the Multiplicative Hyper-Elasto-Plasticity Classical and Non- Composites: Interface Application of and the Additive Hypo-Elasto-Plasticity Based on Local Models for Failures, Convergence Peridynamics to the Modified Kinetic Logarithmic Stress Rate Applications in Issues, and Sensitivity Fracture in Solids and Computational Analysis Granular Media Mechanics Jacob Fish*, Yang Jiao Serge Prudhomme*, Maryam Shakiba*, Prashant K Jha*, Patrick Diehl Reza Sepasdar Robert Lipton #M201 Imaging-Based Methods in Computational Medicine, Chair(s): Jessica Zhang Keynote presentation: Image-Based A PDE-Constrained Image-Based Polygonal Cardiac Motion Computational Modeling of Prostate Cancer Optimization Model for Lattices for Mechanical Estimation from Cine Growth to Assist Clinical Decision-Making the Material Transport Modeling of Biological Cardiac MR Images Control in Neurons Materials: 2D Based on Deformable Demonstrations Image Registration and Mesh Warping Guillermo Lorenzo*, Thomas J. R. Hughes, Angran Li*, Yongjie Di Liu, Chao Chen, Brian Wentz, Roshan Alessandro Reali,
    [Show full text]
  • Shear Thickening in Concentrated Suspensions: Phenomenology
    Shear thickening in concentrated suspensions: phenomenology, mechanisms, and relations to jamming Eric Brown School of Natural Sciences, University of California, Merced, CA 95343 Heinrich M. Jaeger James Franck Institute, The University of Chicago, Chicago, IL 60637 (Dated: July 22, 2013) Shear thickening is a type of non-Newtonian behavior in which the stress required to shear a fluid increases faster than linearly with shear rate. Many concentrated suspensions of particles exhibit an especially dramatic version, known as Discontinuous Shear Thickening (DST), in which the stress suddenly jumps with increasing shear rate and produces solid-like behavior. The best known example of such counter-intuitive response to applied stresses occurs in mixtures of cornstarch in water. Over the last several years, this shear-induced solid-like behavior together with a variety of other unusual fluid phenomena has generated considerable interest in the physics of densely packed suspensions. In this review, we discuss the common physical properties of systems exhibiting shear thickening, and different mechanisms and models proposed to describe it. We then suggest how these mechanisms may be related and generalized, and propose a general phase diagram for shear thickening systems. We also discuss how recent work has related the physics of shear thickening to that of granular materials and jammed systems. Since DST is described by models that require only simple generic interactions between particles, we outline the broader context of other concentrated many-particle systems such as foams and emulsions, and explain why DST is restricted to the parameter regime of hard-particle suspensions. Finally, we discuss some of the outstanding problems and emerging opportunities.
    [Show full text]
  • Fluid Inertia and End Effects in Rheometer Flows
    FLUID INERTIA AND END EFFECTS IN RHEOMETER FLOWS by JASON PETER HUGHES B.Sc. (Hons) A thesis submitted to the University of Plymouth in partial fulfilment for the degree of DOCTOR OF PHILOSOPHY School of Mathematics and Statistics Faculty of Technology University of Plymouth April 1998 REFERENCE ONLY ItorriNe. 9oo365d39i Data 2 h SEP 1998 Class No.- Corrtl.No. 90 0365439 1 ACKNOWLEDGEMENTS I would like to thank my supervisors Dr. J.M. Davies, Prof. T.E.R. Jones and Dr. K. Golden for their continued support and guidance throughout the course of my studies. I also gratefully acknowledge the receipt of a H.E.F.C.E research studentship during the period of my research. AUTHORS DECLARATION At no time during the registration for the degree of Doctor of Philosophy has the author been registered for any other University award. This study was financed with the aid of a H.E.F.C.E studentship and carried out in collaboration with T.A. Instruments Ltd. Publications: 1. J.P. Hughes, T.E.R Jones, J.M. Davies, *End effects in concentric cylinder rheometry', Proc. 12"^ Int. Congress on Rheology, (1996) 391. 2. J.P. Hughes, J.M. Davies, T.E.R. Jones, ^Concentric cylinder end effects and fluid inertia effects in controlled stress rheometry, Part I: Numerical simulation', accepted for publication in J.N.N.F.M. Signed ...^.^Ms>3.\^^. Date Ik.lp.^.m FLUH) INERTIA AND END EFFECTS IN RHEOMETER FLOWS Jason Peter Hughes Abstract This thesis is concerned with the characterisation of the flow behaviour of inelastic and viscoelastic fluids in steady shear and oscillatory shear flows on commercially available rheometers.
    [Show full text]
  • On Exact Solution of Unsteady MHD Flow of a Viscous Fluid in An
    Rana et al. Boundary Value Problems 2014, 2014:146 http://www.boundaryvalueproblems.com/content/2014/1/146 R E S E A R C H Open Access On exact solution of unsteady MHD flow of a viscous fluid in an orthogonal rheometer Muhammad Afzal Rana1, Sadia Siddiqa2* and Saima Noor3 *Correspondence: [email protected] Abstract 2Department of Mathematics, COMSATS Institute of Information This paper studies the unsteady MHD flow of a viscous fluid in which each point of Technology, Attock, Pakistan the parallel planes are subject to the non-torsional oscillations in their own planes. Full list of author information is The streamlines at any given time are concentric circles. Exact solutions are obtained available at the end of the article and the loci of the centres of these concentric circles are discussed. It is shown that the motion so obtained gives three infinite sets of exact solutions in the geometry of an orthogonal rheometer in which the above non-torsional oscillations are superposed on the disks. These solutions reduce to a single unique solution when symmetric solutions are looked for. Some interesting special cases are also obtained from these solutions. Keywords: viscous fluid; MHD flow; orthogonal rheometer; eccentric rotation; exact solutions 1 Introduction Berker [] has defined the ‘pseudo plane motions’ of the first kind that: if the streamlines in a plane flow are contained in parallel planes but the velocity components are dependent on the coordinate normal to the planes. Berker [] has obtained a class of exact solutions to the Navier-Stokes equations belonging to the above type of flows.
    [Show full text]
  • Rheology of Frictional Grains
    Rheology of frictional grains Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium” der Georg-August-Universität Göttingen im Promotionsprogramm ProPhys der Georg-August University School of Science (GAUSS) vorgelegt von Matthias Grob aus Mühlhausen Göttingen, 2016 Betreuungsausschuss: • Prof. Dr. Annette Zippelius, Institut für Theoretische Physik, Georg-August-Universität Göttingen • Dr. Claus Heussinger, Institut für Theoretische Physik, Georg-August-Universität Göttingen Mitglieder der Prüfungskommission: • Referentin: Prof. Dr. Annette Zippelius, Institut für Theoretische Physik, Georg-August-Universität Göttingen • Korreferent: Prof. Dr. Reiner Kree, Institut für Theoretische Physik, Georg-August-Universität Göttingen Weitere Mitglieder der Prüfungskommission: • PD Dr. Timo Aspelmeier, Institut für Mathematische Stochastik, Georg-August-Universität Göttingen • Prof. Dr. Stephan Herminghaus, Dynamik Komplexer Fluide, Max-Planck-Institut für Dynamik und Selbstorganisation • Dr. Claus Heussinger, Institut für Theoretische Physik, Georg-August-Universität Göttingen • Prof. Cynthia A. Volkert, PhD, Institut für Materialphysik, Georg-August-Universität Göttingen Tag der mündlichen Prüfung: 09.08.2016 Zusammenfassung Diese Arbeit behandelt die Beschreibung des Fließens und des Blockierens von granularer Materie. Granulare Materie kann einen Verfestigungsübergang durch- laufen. Dieser wird Jamming genannt und ist maßgeblich durch vorliegende Spannungen sowie die Packungsdichte der Körner,
    [Show full text]
  • Lecture 1: Introduction
    Lecture 1: Introduction E. J. Hinch Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste, saliva, oils, mud and lava, exhibit a number of behaviors that are different from Newtonian fluids and have a number of additional material properties. In general, these differences arise because the fluid has a microstructure that influences the flow. In section 2, we will present a collection of some of the interesting phenomena arising from flow nonlinearities, the inhibition of stretching, elastic effects and normal stresses. In section 3 we will discuss a variety of devices for measuring material properties, a process known as rheometry. 1 Fluid Mechanical Preliminaries The equations of motion for an incompressible fluid of unit density are (for details and derivation see any text on fluid mechanics, e.g. [1]) @u + (u · r) u = r · S + F (1) @t r · u = 0 (2) where u is the velocity, S is the total stress tensor and F are the body forces. It is customary to divide the total stress into an isotropic part and a deviatoric part as in S = −pI + σ (3) where tr σ = 0. These equations are closed only if we can relate the deviatoric stress to the velocity field (the pressure field satisfies the incompressibility condition). It is common to look for local models where the stress depends only on the local gradients of the flow: σ = σ (E) where E is the rate of strain tensor 1 E = ru + ruT ; (4) 2 the symmetric part of the the velocity gradient tensor. The trace-free requirement on σ and the physical requirement of symmetry σ = σT means that there are only 5 independent components of the deviatoric stress: 3 shear stresses (the off-diagonal elements) and 2 normal stress differences (the diagonal elements constrained to sum to 0).
    [Show full text]
  • Rheometry SLIT RHEOMETER
    Rheometry SLIT RHEOMETER Figure 1: The Slit Rheometer. L > W h. ∆P Shear Stress σ(y) = y (8-30) L −∆P h Wall Shear Stress σ = −σ(y = h/2) = (8-31) w L 2 NEWTONIAN CASE 6Q Wall Shear Rateγ ˙ = −γ˙ (y = h/2) = (8-32) w h2w σ −∆P h3w Viscosity η = w = (8-33) γ˙ w L 12Q 1 Rheometry SLIT RHEOMETER NON-NEWTONIAN CASE Correction for the real wall shear rate is analogous to the Rabinowitch correction. 6Q 2 + β Wall Shear Rateγ ˙ = (8-34a) w h2w 3 d [log(6Q/h2w)] β = (8-34b) d [log(σw)] σ −∆P h3w Apparent Viscosity η = w = γ˙ w L 4Q(2 + β) NORMAL STRESS DIFFERENCE The normal stress difference N1 can be determined from the exit pressure Pe. dPe N1(γ ˙ w) = Pe + σw (8-45) dσw d(log Pe) N1(γ ˙ w) = Pe 1 + (8-46) d(log σw) These relations were calculated assuming straight parallel streamlines right up to the exit of the die. This assumption is not found to be valid in either experiment or computer simulation. 2 Rheometry SLIT RHEOMETER NORMAL STRESS DIFFERENCE dPe N1(γ ˙ w) = Pe + σw (8-45) dσw d(log Pe) N1(γ ˙ w) = Pe 1 + (8-46) d(log σw) Figure 2: Determination of the Exit Pressure. 3 Rheometry SLIT RHEOMETER NORMAL STRESS DIFFERENCE Figure 3: Comparison of First Normal Stress Difference Values for LDPE from Slit Rheometer Exit Pressure (filled symbols) and Cone&Plate (open symbols). The poor agreement indicates that the more work is needed in order to use exit pressures to measure normal stress differences.
    [Show full text]
  • Rheology of PIM Feedstocks SPECIAL FEATURE
    Metal Powder Report Volume 72, Number 1 January/February 2017 metal-powder.net Rheology of PIM feedstocks SPECIAL FEATURE Christian Kukla, Ivica Duretek, Joamin Gonzalez-Gutierrez and Clemens Holzer Introduction constant viscosity is called zero-viscosity h0 (Fig. 1). After a certain > g Powder injection molding (PIM) is a cost effective technique for shear rate ( ˙1), viscosity starts to decrease rapidly as a function of producing complex and precise metal or ceramic components in shear rate, this is known as shear thinning or pseudoplastic behav- mass production [1]. The used raw material, referred as feedstock, ior. For highly filled compounds like PIM feedstocks a yield stress consists of metal or ceramic powder and a polymeric binder can be observed. Thus the viscosity increases dramatically when mainly composed of thermoplastics. The thermoplastic binder decreasing the shear stress and the zero shear viscosity is hard to composition gives plasticity to the feedstock during the molding measure and thus shear thinning is observed even at very low shear g process and holds together the powder grains before sintering. rates. Around a certain higher shear rate ˙2 a second Newtonian > g Most binder systems are made of multi-component systems plateau can be observed and at very high shear rates ( ˙3) the with a range of modifiers which fulfill the above mentioned plateau can change to an increasing viscosity curve due to formation requirements. The flow behavior of the feedstock is the result of of particle agglomerates that can restrict the flow of the binder complex interactions between its constituents. The viscosity of the system.
    [Show full text]
  • Vortex Stretching in Incompressible and Compressible Fluids
    Vortex stretching in incompressible and compressible fluids Esteban G. Tabak, Fluid Dynamics II, Spring 2002 1 Introduction The primitive form of the incompressible Euler equations is given by du P = ut + u · ∇u = −∇ + gz (1) dt ρ ∇ · u = 0 (2) representing conservation of momentum and mass respectively. Here u is the velocity vector, P the pressure, ρ the constant density, g the acceleration of gravity and z the vertical coordinate. In this form, the physical meaning of the equations is very clear and intuitive. An alternative formulation may be written in terms of the vorticity vector ω = ∇× u , (3) namely dω = ω + u · ∇ω = (ω · ∇)u (4) dt t where u is determined from ω nonlocally, through the solution of the elliptic system given by (2) and (3). A similar formulation applies to smooth isentropic compressible flows, if one replaces the vorticity ω in (4) by ω/ρ. This formulation is very convenient for many theoretical purposes, as well as for better understanding a variety of fluid phenomena. At an intuitive level, it reflects the fact that rotation is a fundamental element of fluid flow, as exem- plified by hurricanes, tornados and the swirling of water near a bathtub sink. Its derivation from the primitive form of the equations, however, often relies on complex vector identities, which render obscure the intuitive meaning of (4). My purpose here is to present a more intuitive derivation, which follows the tra- ditional physical wisdom of looking for integral principles first, and only then deriving their corresponding differential form. The integral principles associ- ated to (4) are conservation of mass, circulation–angular momentum (Kelvin’s theorem) and vortex filaments (Helmholtz’ theorem).
    [Show full text]
  • Studies on Blood Viscosity During Extracorporeal Circulation
    Nagoya ]. med. Sci. 31: 25-50, 1967. STUDIES ON BLOOD VISCOSITY DURING EXTRACORPOREAL CIRCULATION HrsASHI NAGASHIMA 1st Department of Surgery, Nagoya University School of Medicine (Director: Prof Yoshio Hashimoto) ABSTRACT Blood viscosity was studied during extracorporeal circulation by means of a cone in cone viscometer. This rotational viscometer provides sixteen kinds of shear rate, ranging from 0.05 to 250.2 sec-1 • Merits and demerits of the equipment were described comparing with the capillary viscometer. In experimental study it was well demonstrated that the whole blood viscosity showed the shear rate dependency at all hematocrit levels. The influence of the temperature change on the whole blood viscosity was clearly seen when hemato· crit was high and shear rate low. The plasma viscosity was 1.8 cp. at 37°C and Newtonianlike behavior was observed at the same temperature. ·In the hypothermic condition plasma showed shear rate dependency. Viscosity of 10% LMWD was over 2.2 fold as high as that of plasma. The increase of COz content resulted in a constant increase in whole blood viscosity and the increased whole blood viscosity after C02 insufflation, rapidly decreased returning to a little higher level than that in untreated group within 3 minutes. Clinical data were obtained from 27 patients who underwent hypothermic hemodilution perfusion. In the cyanotic group, w hole blood was much more viscous than in the non­ cyanotic. During bypass, hemodilution had greater influence upon whole blood viscosity than hypothermia, but it went inversely upon the plasma viscosity. The whole blood viscosity was more dependent on dilution rate than amount of diluent in mljkg.
    [Show full text]