Lecture 18 Ocean General Circulation Modeling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fluid Mechanics
FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 1. INTRODUCTION Mechanics is the oldest physical science that deals with both stationary and moving bodies under the influence of forces. Mechanics is divided into three groups: a) Mechanics of rigid bodies, b) Mechanics of deformable bodies, c) Fluid mechanics Fluid mechanics deals with the behavior of fluids at rest (fluid statics) or in motion (fluid dynamics), and the interaction of fluids with solids or other fluids at the boundaries (Fig.1.1.). Fluid mechanics is the branch of physics which involves the study of fluids (liquids, gases, and plasmas) and the forces on them. Fluid mechanics can be divided into two. a)Fluid Statics b)Fluid Dynamics Fluid statics or hydrostatics is the branch of fluid mechanics that studies fluids at rest. It embraces the study of the conditions under which fluids are at rest in stable equilibrium Hydrostatics is fundamental to hydraulics, the engineering of equipment for storing, transporting and using fluids. Hydrostatics offers physical explanations for many phenomena of everyday life, such as why atmospheric pressure changes with altitude, why wood and oil float on water, and why the surface of water is always flat and horizontal whatever the shape of its container. Fluid dynamics is a subdiscipline of fluid mechanics that deals with fluid flow— the natural science of fluids (liquids and gases) in motion. It has several subdisciplines itself, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion). -
Fluid Viscosity and the Attenuation of Surface Waves: a Derivation Based on Conservation of Energy
INSTITUTE OF PHYSICS PUBLISHING EUROPEAN JOURNAL OF PHYSICS Eur. J. Phys. 25 (2004) 115–122 PII: S0143-0807(04)64480-1 Fluid viscosity and the attenuation of surface waves: a derivation based on conservation of energy FBehroozi Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA Received 9 June 2003 Published 25 November 2003 Online at stacks.iop.org/EJP/25/115 (DOI: 10.1088/0143-0807/25/1/014) Abstract More than a century ago, Stokes (1819–1903)pointed out that the attenuation of surface waves could be exploited to measure viscosity. This paper provides the link between fluid viscosity and the attenuation of surface waves by invoking the conservation of energy. First we calculate the power loss per unit area due to viscous dissipation. Next we calculate the power loss per unit area as manifested in the decay of the wave amplitude. By equating these two quantities, we derive the relationship between the fluid viscosity and the decay coefficient of the surface waves in a transparent way. 1. Introduction Surface tension and gravity govern the propagation of surface waves on fluids while viscosity determines the wave attenuation. In this paper we focus on the relation between viscosity and attenuation of surface waves. More than a century ago, Stokes (1819–1903) pointed out that the attenuation of surface waves could be exploited to measure viscosity [1]. Since then, the determination of viscosity from the damping of surface waves has receivedmuch attention [2–10], particularly because the method presents the possibility of measuring viscosity noninvasively. In his attempt to obtain the functionalrelationship between viscosity and wave attenuation, Stokes observed that the harmonic solutions obtained by solving the Laplace equation for the velocity potential in the absence of viscosity also satisfy the linearized Navier–Stokes equation [11]. -
Arxiv:1902.03186V3 [Math.AP]
PRIMITIVE EQUATIONS WITH HORIZONTAL VISCOSITY: THE INITIAL VALUE AND THE TIME-PERIODIC PROBLEM FOR PHYSICAL BOUNDARY CONDITIONS AMRU HUSSEIN, MARTIN SAAL, AND MARC WRONA Abstract. The 3D-primitive equations with only horizontal viscosity are con- sidered on a cylindrical domain Ω = (−h,h) × G, G ⊂ R2 smooth, with the physical Dirichlet boundary conditions on the sides. Instead of considering a vanishing vertical viscosity limit, we apply a direct approach which in particu- lar avoids unnecessary boundary conditions on top and bottom. For the initial value problem, we obtain existence and uniqueness of local z-weak solutions for initial data in H1((−h,h),L2(G)) and local strong solutions for initial data 1 1 2 q in H (Ω). If v0 ∈ H ((−h,h),L (G)), ∂zv0 ∈ L (Ω) for q > 2, then the z- weak solution regularizes instantaneously and thus extends to a global strong solution. This goes beyond the global well-posedness result by Cao, Li and Titi (J. Func. Anal. 272(11): 4606-4641, 2017) for initial data near H1 in the periodic setting. For the time-periodic problem, existence and uniqueness of z-weak and strong time periodic solutions is proven for small forces. Since this is a model with hyperbolic and parabolic features for which classical results are not directly applicable, such results for the time-periodic problem even for small forces are not self-evident. 1. Introduction and main results The 3D-primitive equations are one of the fundamental models for geophysical flows, and they are used for describing oceanic and atmospheric dynamics. They are derived from the Navier-Stokes equations assuming a hydrostatic balance. -
Modelling Viscous Free Surface Flow
Chapter 8 Modelling Viscous Free Surface Flow Free surface flows, where a boundary of a fluid body is free to move constrained only by forces across the surface, are possibly the most commonly observed flow phenomenon, with the motion of the free surface readily allowing the observation of flow of the fluid. Flows that are commonly encountered by the layperson include the motion of the surface of a river, the waves on the surface of the ocean, and the more personal flow of that in a cup of tea. From an engineering perspective, flows of interest include the open channel flow of rivers and canals, the erosive forces of waves on the shoreline, and the wakes generated by ships when under way. When modelling these flows, the problems associated with the solution of the Navier–Stokes equations are compounded by the free motion of the surface of the fluid, with the boundaries of the flow domain being a function of the flow structure, and thus an unknown which must be calculated along with the flow field. The movement of the free surface therefore both aids the observation of the flow, and hinders it’s modelling. In this chapter an attempt is made to model the steady flow around a ships hull. The modelling of such a flow is of great interest to Naval Architects, with the ability to predict the resistance of ships allowing the design of more efficient hull forms, whilst the accurate modelling of the ships wake allows the design of hulls that create a smaller disturbance in confined waterways. -
A Simple and Unified Linear Solver for Free-Surface and Pressurized
water Technical Note A Simple and Unified Linear Solver for Free-Surface and Pressurized Mixed Flows in Hydraulic Systems Dechao Hu 1 , Songping Li 1, Shiming Yao 2 and Zhongwu Jin 2,* 1 School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; [email protected] (D.H.); [email protected] (S.L.) 2 Yangtze River Scientific Research Institute, Wuhan 430010, China; [email protected] * Correspondence: [email protected]; Tel.: +86-027-8282-9873 Received: 19 August 2019; Accepted: 19 September 2019; Published: 23 September 2019 Abstract: A semi–implicit numerical model with a linear solver is proposed for the free-surface and pressurized mixed flows in hydraulic systems. It solves the two flow regimes within a unified formulation, and is much simpler than existing similar models for mixed flows. Using a local linearization and an Eulerian–Lagrangian method, the new model only needs to solve a tridiagonal linear system (arising from velocity-pressure coupling) and is free of iterations. The model is tested using various types of mixed flows, where the simulation results agree with analytical solutions, experiment data and the results reported by former researchers. Sensitivity studies of grid scales and time steps are both performed, where a common grid scale provides grid-independent results and a common time step provides time-step-independent results. Moreover, the model is revealed to achieve stable and accurate simulations at large time steps for which the CFL is greater than 1. In simulations of a challenging case (mixed flows characterized by frequent flow-regime conversions and a closed pipe with wide-top cross-sections), an artificial slot (A-slot) technique is proposed to cope with possible instabilities related to the discontinuous main-diagonal coefficients of the linear system. -
Uniqueness of Solution for the 2D Primitive Equations with Friction Condition on the Bottom∗ 1 Introduction and Motivation
Monograf´ıas del Semin. Matem. Garc´ıa de Galdeano. 27: 135{143, (2003). Uniqueness of solution for the 2D Primitive Equations with friction condition on the bottom∗ D. Breschy, F. Guill´en-Gonz´alezz, N. Masmoudix, M. A. Rodr´ıguez-Bellido{ Abstract Uniqueness of solution for the Primitive Equations with Dirichlet conditions on the bottom is an open problem even in 2D domains. In this work we prove a result of additional regularity for a weak solution v for the Primitive Equations when we replace Dirichlet boundary conditions by friction conditions. This allows to obtain uniqueness of weak solution global in time, for such a system [3]. Indeed, we show weak regularity for the vertical derivative of the solution, @zv for all time. This is because this derivative verifies a linear pde of convection-diffusion type with convection velocity v, and the pressure belongs to a L2-space in time with values in a weighted space. Keywords: Boundary conditions of type Navier, 2D Primitive Equations, uniqueness AMS Classification: 35Q30, 35B40, 76D05 1 Introduction and motivation. Primitive Equations are one of the models used to forecast the fluid velocity and pressure in the ocean. Such equations are obtained from the dimensionless Navier-Stokes equations, letting the aspect ratio (quotient between vertical dimension and horizontal dimensions) go to zero. The first results about existence of solution (weak, in the sense of the Navier- Stokes equations) are proved for boundary conditions of Dirichlet type on the bottom of the domain and with wind traction on the surface, in the works by Lions-Temam-Wang, ∗The second and fourth authors have been financed by the C.I.C.Y.T project MAR98-0486. -
Shallow-Water Equations and Related Topics
CHAPTER 1 Shallow-Water Equations and Related Topics Didier Bresch UMR 5127 CNRS, LAMA, Universite´ de Savoie, 73376 Le Bourget-du-Lac, France Contents 1. Preface .................................................... 3 2. Introduction ................................................. 4 3. A friction shallow-water system ...................................... 5 3.1. Conservation of potential vorticity .................................. 5 3.2. The inviscid shallow-water equations ................................. 7 3.3. LERAY solutions ........................................... 11 3.3.1. A new mathematical entropy: The BD entropy ........................ 12 3.3.2. Weak solutions with drag terms ................................ 16 3.3.3. Forgetting drag terms – Stability ............................... 19 3.3.4. Bounded domains ....................................... 21 3.4. Strong solutions ............................................ 23 3.5. Other viscous terms in the literature ................................. 23 3.6. Low Froude number limits ...................................... 25 3.6.1. The quasi-geostrophic model ................................. 25 3.6.2. The lake equations ...................................... 34 3.7. An interesting open problem: Open sea boundary conditions .................... 41 3.8. Multi-level and multi-layers models ................................. 43 3.9. Friction shallow-water equations derivation ............................. 44 3.9.1. Formal derivation ....................................... 44 3.10. -
Vortex Stretching in Incompressible and Compressible Fluids
Vortex stretching in incompressible and compressible fluids Esteban G. Tabak, Fluid Dynamics II, Spring 2002 1 Introduction The primitive form of the incompressible Euler equations is given by du P = ut + u · ∇u = −∇ + gz (1) dt ρ ∇ · u = 0 (2) representing conservation of momentum and mass respectively. Here u is the velocity vector, P the pressure, ρ the constant density, g the acceleration of gravity and z the vertical coordinate. In this form, the physical meaning of the equations is very clear and intuitive. An alternative formulation may be written in terms of the vorticity vector ω = ∇× u , (3) namely dω = ω + u · ∇ω = (ω · ∇)u (4) dt t where u is determined from ω nonlocally, through the solution of the elliptic system given by (2) and (3). A similar formulation applies to smooth isentropic compressible flows, if one replaces the vorticity ω in (4) by ω/ρ. This formulation is very convenient for many theoretical purposes, as well as for better understanding a variety of fluid phenomena. At an intuitive level, it reflects the fact that rotation is a fundamental element of fluid flow, as exem- plified by hurricanes, tornados and the swirling of water near a bathtub sink. Its derivation from the primitive form of the equations, however, often relies on complex vector identities, which render obscure the intuitive meaning of (4). My purpose here is to present a more intuitive derivation, which follows the tra- ditional physical wisdom of looking for integral principles first, and only then deriving their corresponding differential form. The integral principles associ- ated to (4) are conservation of mass, circulation–angular momentum (Kelvin’s theorem) and vortex filaments (Helmholtz’ theorem). -
Studies on Blood Viscosity During Extracorporeal Circulation
Nagoya ]. med. Sci. 31: 25-50, 1967. STUDIES ON BLOOD VISCOSITY DURING EXTRACORPOREAL CIRCULATION HrsASHI NAGASHIMA 1st Department of Surgery, Nagoya University School of Medicine (Director: Prof Yoshio Hashimoto) ABSTRACT Blood viscosity was studied during extracorporeal circulation by means of a cone in cone viscometer. This rotational viscometer provides sixteen kinds of shear rate, ranging from 0.05 to 250.2 sec-1 • Merits and demerits of the equipment were described comparing with the capillary viscometer. In experimental study it was well demonstrated that the whole blood viscosity showed the shear rate dependency at all hematocrit levels. The influence of the temperature change on the whole blood viscosity was clearly seen when hemato· crit was high and shear rate low. The plasma viscosity was 1.8 cp. at 37°C and Newtonianlike behavior was observed at the same temperature. ·In the hypothermic condition plasma showed shear rate dependency. Viscosity of 10% LMWD was over 2.2 fold as high as that of plasma. The increase of COz content resulted in a constant increase in whole blood viscosity and the increased whole blood viscosity after C02 insufflation, rapidly decreased returning to a little higher level than that in untreated group within 3 minutes. Clinical data were obtained from 27 patients who underwent hypothermic hemodilution perfusion. In the cyanotic group, w hole blood was much more viscous than in the non cyanotic. During bypass, hemodilution had greater influence upon whole blood viscosity than hypothermia, but it went inversely upon the plasma viscosity. The whole blood viscosity was more dependent on dilution rate than amount of diluent in mljkg. -
2.016 Hydrodynamics Free Surface Water Waves
2.016 Hydrodynamics Reading #7 2.016 Hydrodynamics Prof. A.H. Techet Fall 2005 Free Surface Water Waves I. Problem setup 1. Free surface water wave problem. In order to determine an exact equation for the problem of free surface gravity waves we will assume potential theory (ideal flow) and ignore the effects of viscosity. Waves in the ocean are not typically uni-directional, but often approach structures from many directions. This complicates the problem of free surface wave analysis, but can be overcome through a series of assumptions. To setup the exact solution to the free surface gravity wave problem we first specify our unknowns: • Velocity Field: V (x, y, z,t ) = ∇φ(x, y, z,t ) • Free surface elevation: η(x, yt, ) • Pressure field: p(xy,,z , t ) version 3.0 updated 8/30/2005 -1- ©2005 A. Techet 2.016 Hydrodynamics Reading #7 Next we need to set up the equations and conditions that govern the problem: • Continuity (Conservation of Mass): ∇=2φ 0 for z <η (Laplace’s Equation) (7.1) • Bernoulli’s Equation (given some φ ): 2 ∂φ 1 pp− a ∂t +∇2 φ + ρ + gz = 0 for z <η (7.2) • No disturbance far away: ∂φ ∂t , ∇→φ 0 and p = pa − ρ gz (7.3) Finally we need to dictate the boundary conditions at the free surface, seafloor and on any body in the water: (1) Pressure is constant across the free surface interface: p = patm on z =η . ⎧∂φ 1 2 ⎫ p =−ρ ⎨ − V − gz⎬ + c ()t= patm . (7.4) ⎩ ∂t 2 ⎭ Choosing a suitable integration constant, ct( ) = patm , the boundary condition on z =η becomes ∂φ 1 ρ{ + V 2 + gη} = 0. -
Global Well-Posedness of the Three-Dimensional Viscous Primitive Equations of Large Scale Ocean and Atmosphere Dynamics
Annals of Mathematics, 166 (2007), 245–267 Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics By Chongsheng Cao and Edriss S. Titi Abstract In this paper we prove the global existence and uniqueness (regularity) of strong solutions to the three-dimensional viscous primitive equations, which model large scale ocean and atmosphere dynamics. 1. Introduction Large scale dynamics of oceans and atmosphere is governed by the primi- tive equations which are derived from the Navier-Stokes equations, with rota- tion, coupled to thermodynamics and salinity diffusion-transport equations, which account for the buoyancy forces and stratification effects under the Boussinesq approximation. Moreover, and due to the shallowness of the oceans and the atmosphere, i.e., the depth of the fluid layer is very small in compar- ison to the radius of the earth, the vertical large scale motion in the oceans and the atmosphere is much smaller than the horizontal one, which in turn leads to modeling the vertical motion by the hydrostatic balance. As a result one obtains the system (1)–(4), which is known as the primitive equations for ocean and atmosphere dynamics (see, e.g., [20], [21], [22], [23], [24], [33] and references therein). We observe that in the case of ocean dynamics one has to add the diffusion-transport equation of the salinity to the system (1)–(4). We omitted it here in order to simplify our mathematical presentation. However, we emphasize that our results are equally valid when the salinity effects are taking into account. Note that the horizontal motion can be further approximated by the geostrophic balance when the Rossby number (the ratio of the horizontal ac- celeration to the Coriolis force) is very small. -
The Influence of Negative Viscosity on Wind-Driven, Barotropic Ocean
916 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 30 The In¯uence of Negative Viscosity on Wind-Driven, Barotropic Ocean Circulation in a Subtropical Basin DEHAI LUO AND YAN LU Department of Atmospheric and Oceanic Sciences, Ocean University of Qingdao, Key Laboratory of Marine Science and Numerical Modeling, State Oceanic Administration, Qingdao, China (Manuscript received 3 April 1998, in ®nal form 12 May 1999) ABSTRACT In this paper, a new barotropic wind-driven circulation model is proposed to explain the enhanced transport of the western boundary current and the establishment of the recirculation gyre. In this model the harmonic Laplacian viscosity including the second-order term (the negative viscosity term) in the Prandtl mixing length theory is regarded as a tentative subgrid-scale parameterization of the boundary layer near the wall. First, for the linear Munk model with weak negative viscosity its analytical solution can be obtained with the help of a perturbation expansion method. It can be shown that the negative viscosity can result in the intensi®cation of the western boundary current. Second, the fully nonlinear model is solved numerically in some parameter space. It is found that for the ®nite Reynolds numbers the negative viscosity can strengthen both the western boundary current and the recirculation gyre in the northwest corner of the basin. The drastic increase of the mean and eddy kinetic energies can be observed in this case. In addition, the analysis of the time-mean potential vorticity indicates that the negative relative vorticity advection, the negative planetary vorticity advection, and the negative viscosity term become rather important in the western boundary layer in the presence of the negative viscosity.