Shallow-Water Equations and Related Topics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Well-Balanced Schemes for the Shallow Water Equations with Coriolis Forces
Well-balanced schemes for the shallow water equations with Coriolis forces Alina Chertock, Michael Dudzinski, Alexander Kurganov & Mária Lukáčová- Medvid’ová Numerische Mathematik ISSN 0029-599X Volume 138 Number 4 Numer. Math. (2018) 138:939-973 DOI 10.1007/s00211-017-0928-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag GmbH Germany, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Numer. Math. (2018) 138:939–973 Numerische https://doi.org/10.1007/s00211-017-0928-0 Mathematik Well-balanced schemes for the shallow water equations with Coriolis forces Alina Chertock1 · Michael Dudzinski2 · Alexander Kurganov3,4 · Mária Lukáˇcová-Medvid’ová5 Received: 28 April 2014 / Revised: 19 September 2017 / Published online: 2 December 2017 © Springer-Verlag GmbH Germany, part of Springer Nature 2017 Abstract In the present paper we study shallow water equations with bottom topog- raphy and Coriolis forces. The latter yield non-local potential operators that need to be taken into account in order to derive a well-balanced numerical scheme. -
Aerodynamics Material - Taylor & Francis
CopyrightAerodynamics material - Taylor & Francis ______________________________________________________________________ 257 Aerodynamics Symbol List Symbol Definition Units a speed of sound ⁄ a speed of sound at sea level ⁄ A area aspect ratio ‐‐‐‐‐‐‐‐ b wing span c chord length c Copyrightmean aerodynamic material chord- Taylor & Francis specific heat at constant pressure of air · root chord tip chord specific heat at constant volume of air · / quarter chord total drag coefficient ‐‐‐‐‐‐‐‐ , induced drag coefficient ‐‐‐‐‐‐‐‐ , parasite drag coefficient ‐‐‐‐‐‐‐‐ , wave drag coefficient ‐‐‐‐‐‐‐‐ local skin friction coefficient ‐‐‐‐‐‐‐‐ lift coefficient ‐‐‐‐‐‐‐‐ , compressible lift coefficient ‐‐‐‐‐‐‐‐ compressible moment ‐‐‐‐‐‐‐‐ , coefficient , pitching moment coefficient ‐‐‐‐‐‐‐‐ , rolling moment coefficient ‐‐‐‐‐‐‐‐ , yawing moment coefficient ‐‐‐‐‐‐‐‐ ______________________________________________________________________ 258 Aerodynamics Aerodynamics Symbol List (cont.) Symbol Definition Units pressure coefficient ‐‐‐‐‐‐‐‐ compressible pressure ‐‐‐‐‐‐‐‐ , coefficient , critical pressure coefficient ‐‐‐‐‐‐‐‐ , supersonic pressure coefficient ‐‐‐‐‐‐‐‐ D total drag induced drag Copyright material - Taylor & Francis parasite drag e span efficiency factor ‐‐‐‐‐‐‐‐ L lift pitching moment · rolling moment · yawing moment · M mach number ‐‐‐‐‐‐‐‐ critical mach number ‐‐‐‐‐‐‐‐ free stream mach number ‐‐‐‐‐‐‐‐ P static pressure ⁄ total pressure ⁄ free stream pressure ⁄ q dynamic pressure ⁄ R -
Arxiv:1902.03186V3 [Math.AP]
PRIMITIVE EQUATIONS WITH HORIZONTAL VISCOSITY: THE INITIAL VALUE AND THE TIME-PERIODIC PROBLEM FOR PHYSICAL BOUNDARY CONDITIONS AMRU HUSSEIN, MARTIN SAAL, AND MARC WRONA Abstract. The 3D-primitive equations with only horizontal viscosity are con- sidered on a cylindrical domain Ω = (−h,h) × G, G ⊂ R2 smooth, with the physical Dirichlet boundary conditions on the sides. Instead of considering a vanishing vertical viscosity limit, we apply a direct approach which in particu- lar avoids unnecessary boundary conditions on top and bottom. For the initial value problem, we obtain existence and uniqueness of local z-weak solutions for initial data in H1((−h,h),L2(G)) and local strong solutions for initial data 1 1 2 q in H (Ω). If v0 ∈ H ((−h,h),L (G)), ∂zv0 ∈ L (Ω) for q > 2, then the z- weak solution regularizes instantaneously and thus extends to a global strong solution. This goes beyond the global well-posedness result by Cao, Li and Titi (J. Func. Anal. 272(11): 4606-4641, 2017) for initial data near H1 in the periodic setting. For the time-periodic problem, existence and uniqueness of z-weak and strong time periodic solutions is proven for small forces. Since this is a model with hyperbolic and parabolic features for which classical results are not directly applicable, such results for the time-periodic problem even for small forces are not self-evident. 1. Introduction and main results The 3D-primitive equations are one of the fundamental models for geophysical flows, and they are used for describing oceanic and atmospheric dynamics. They are derived from the Navier-Stokes equations assuming a hydrostatic balance. -
Part II-1 Water Wave Mechanics
Chapter 1 EM 1110-2-1100 WATER WAVE MECHANICS (Part II) 1 August 2008 (Change 2) Table of Contents Page II-1-1. Introduction ............................................................II-1-1 II-1-2. Regular Waves .........................................................II-1-3 a. Introduction ...........................................................II-1-3 b. Definition of wave parameters .............................................II-1-4 c. Linear wave theory ......................................................II-1-5 (1) Introduction .......................................................II-1-5 (2) Wave celerity, length, and period.......................................II-1-6 (3) The sinusoidal wave profile...........................................II-1-9 (4) Some useful functions ...............................................II-1-9 (5) Local fluid velocities and accelerations .................................II-1-12 (6) Water particle displacements .........................................II-1-13 (7) Subsurface pressure ................................................II-1-21 (8) Group velocity ....................................................II-1-22 (9) Wave energy and power.............................................II-1-26 (10)Summary of linear wave theory.......................................II-1-29 d. Nonlinear wave theories .................................................II-1-30 (1) Introduction ......................................................II-1-30 (2) Stokes finite-amplitude wave theory ...................................II-1-32 -
Lecture 18 Ocean General Circulation Modeling
Lecture 18 Ocean General Circulation Modeling 9.1 The equations of motion: Navier-Stokes The governing equations for a real fluid are the Navier-Stokes equations (con servation of linear momentum and mass mass) along with conservation of salt, conservation of heat (the first law of thermodynamics) and an equation of state. However, these equations support fast acoustic modes and involve nonlinearities in many terms that makes solving them both difficult and ex pensive and particularly ill suited for long time scale calculations. Instead we make a series of approximations to simplify the Navier-Stokes equations to yield the “primitive equations” which are the basis of most general circu lations models. In a rotating frame of reference and in the absence of sources and sinks of mass or salt the Navier-Stokes equations are @ �~v + �~v~v + 2�~ �~v + g�kˆ + p = ~ρ (9.1) t r · ^ r r · @ � + �~v = 0 (9.2) t r · @ �S + �S~v = 0 (9.3) t r · 1 @t �ζ + �ζ~v = ω (9.4) r · cpS r · F � = �(ζ; S; p) (9.5) Where � is the fluid density, ~v is the velocity, p is the pressure, S is the salinity and ζ is the potential temperature which add up to seven dependent variables. 115 12.950 Atmospheric and Oceanic Modeling, Spring '04 116 The constants are �~ the rotation vector of the sphere, g the gravitational acceleration and cp the specific heat capacity at constant pressure. ~ρ is the stress tensor and ω are non-advective heat fluxes (such as heat exchange across the sea-surface).F 9.2 Acoustic modes Notice that there is no prognostic equation for pressure, p, but there are two equations for density, �; one prognostic and one diagnostic. -
Potential Flow Theory
2.016 Hydrodynamics Reading #4 2.016 Hydrodynamics Prof. A.H. Techet Potential Flow Theory “When a flow is both frictionless and irrotational, pleasant things happen.” –F.M. White, Fluid Mechanics 4th ed. We can treat external flows around bodies as invicid (i.e. frictionless) and irrotational (i.e. the fluid particles are not rotating). This is because the viscous effects are limited to a thin layer next to the body called the boundary layer. In graduate classes like 2.25, you’ll learn how to solve for the invicid flow and then correct this within the boundary layer by considering viscosity. For now, let’s just learn how to solve for the invicid flow. We can define a potential function,!(x, z,t) , as a continuous function that satisfies the basic laws of fluid mechanics: conservation of mass and momentum, assuming incompressible, inviscid and irrotational flow. There is a vector identity (prove it for yourself!) that states for any scalar, ", " # "$ = 0 By definition, for irrotational flow, r ! " #V = 0 Therefore ! r V = "# ! where ! = !(x, y, z,t) is the velocity potential function. Such that the components of velocity in Cartesian coordinates, as functions of space and time, are ! "! "! "! u = , v = and w = (4.1) dx dy dz version 1.0 updated 9/22/2005 -1- ©2005 A. Techet 2.016 Hydrodynamics Reading #4 Laplace Equation The velocity must still satisfy the conservation of mass equation. We can substitute in the relationship between potential and velocity and arrive at the Laplace Equation, which we will revisit in our discussion on linear waves. -
Fluid Simulation Using Shallow Water Equation
Fluid Simulation using Shallow Water Equation Dhruv Kore Itika Gupta Undergraduate Student Graduate Student University of Illinois at Chicago University of Illinois at Chicago [email protected] [email protected] 847-345-9745 312-478-0764 ABSTRACT rivers and channel. As the name suggest, the main In this paper, we present a technique, which shows how characteristic of shallow Water flows is that the vertical waves once generated from a small drop continue to ripple. dimension is much smaller as compared to the horizontal Waves interact with each other and on collision change the dimension. Naïve Stroke Equation defines the motion of form and direction. Once the waves strike the boundary, fluids and from these equations we derive SWE. they return with the same speed and in sometime, depending on the delay, you can see continuous ripples in In Next section we talk about the related works under the the surface. We use shallow water equation to achieve the heading Literature Review. Then we will explain the desired output. framework and other concepts necessary to understand the SWE and wave equation. In the section followed by it, we Author Keywords show the results achieved using our implementation. Then Naïve Stroke Equation; Shallow Water Equation; Fluid finally we talk about conclusion and future work. Simulation; WebGL; Quadratic function. LITERATURE REVIEW INTRODUCTION In [2] author in detail explains the Shallow water equation In early years of fluid simulation, procedural surface with its derivation. Since then a lot of authors has used generation was used to represent waves as presented by SWE to present the formation of waves in water. -
Introduction to Compressible Computational Fluid Dynamics James S
Introduction to Compressible Computational Fluid Dynamics James S. Sochacki Department of Mathematics James Madison University [email protected] Abstract This document is intended as an introduction to computational fluid dynamics at the upper undergraduate level. It is assumed that the student has had courses through three dimensional calculus and some computer programming experience with numer- ical algorithms. A course in differential equations is recommended. This document is intended to be used by undergraduate instructors and students to gain an under- standing of computational fluid dynamics. The document can be used in a classroom or research environment at the undergraduate level. The idea of this work is to have the students use the modules to discover properties of the equations and then relate this to the physics of fluid dynamics. Many issues, such as rarefactions and shocks are left out of the discussion because the intent is to have the students discover these concepts and then study them with the instructor. The document is used in part of the undergraduate MATH 365 - Computation Fluid Dynamics course at James Madi- son University (JMU) and is part of the joint NSF Grant between JMU and North Carolina Central University (NCCU): A Collaborative Computational Sciences Pro- gram. This document introduces the full three-dimensional Navier Stokes equations. As- sumptions to these equations are made to derive equations that are accessible to un- dergraduates with the above prerequisites. These equations are approximated using finite difference methods. The development of the equations and finite difference methods are contained in this document. Software modules and their corresponding documentation in Fortran 90, Maple and Matlab can be downloaded from the web- site: http://www.math.jmu.edu/~jim/compressible.html. -
Shallow Water Waves and Solitary Waves Article Outline Glossary
Shallow Water Waves and Solitary Waves Willy Hereman Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado, USA Article Outline Glossary I. Definition of the Subject II. Introduction{Historical Perspective III. Completely Integrable Shallow Water Wave Equations IV. Shallow Water Wave Equations of Geophysical Fluid Dynamics V. Computation of Solitary Wave Solutions VI. Water Wave Experiments and Observations VII. Future Directions VIII. Bibliography Glossary Deep water A surface wave is said to be in deep water if its wavelength is much shorter than the local water depth. Internal wave A internal wave travels within the interior of a fluid. The maximum velocity and maximum amplitude occur within the fluid or at an internal boundary (interface). Internal waves depend on the density-stratification of the fluid. Shallow water A surface wave is said to be in shallow water if its wavelength is much larger than the local water depth. Shallow water waves Shallow water waves correspond to the flow at the free surface of a body of shallow water under the force of gravity, or to the flow below a horizontal pressure surface in a fluid. Shallow water wave equations Shallow water wave equations are a set of partial differential equations that describe shallow water waves. 1 Solitary wave A solitary wave is a localized gravity wave that maintains its coherence and, hence, its visi- bility through properties of nonlinear hydrodynamics. Solitary waves have finite amplitude and propagate with constant speed and constant shape. Soliton Solitons are solitary waves that have an elastic scattering property: they retain their shape and speed after colliding with each other. -
INCOMPRESSIBLE FLOW AERODYNAMICS 3 0 0 3 Course Category: Programme Core A
COURSE CODE COURSE TITLE L T P C 1151AE107 INCOMPRESSIBLE FLOW AERODYNAMICS 3 0 0 3 Course Category: Programme core a. Preamble : The primary objective of this course is to teach students how to determine aerodynamic lift and drag over an airfoil and wing at incompressible flow regime by analytical methods. b. Prerequisite Courses: Fluid Mechanics c. Related Courses: Airplane Performance Compressible flow Aerodynamics Aero elasticity Flapping wing dynamics Industrial aerodynamics Transonic Aerodynamics d. Course Educational Objectives: To introduce the concepts of mass, momentum and energy conservation relating to aerodynamics. To make the student understand the concept of vorticity, irrotationality, theory of air foils and wing sections. To introduce the basics of viscous flow. e. Course Outcomes: Upon the successful completion of the course, students will be able to: Knowledge Level CO Course Outcomes (Based on revised Nos. Bloom’s Taxonomy) Apply the physical principles to formulate the governing CO1 K3 aerodynamics equations Find the solution for two dimensional incompressible inviscid CO2 K3 flows Apply conformal transformation to find the solution for flow over CO3 airfoils and also find the solutions using classical thin airfoil K3 theory Apply Prandtl’s lifting-line theory to find the aerodynamic CO4 K3 characteristics of finite wing Find the solution for incompressible flow over a flat plate using CO5 K3 viscous flow concepts f. Correlation of COs with POs: COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H L H L M H H CO2 H L H L M H H CO3 H L H L M H H CO4 H L H L M H H CO5 H L H L M H H H- High; M-Medium; L-Low g. -
Uniqueness of Solution for the 2D Primitive Equations with Friction Condition on the Bottom∗ 1 Introduction and Motivation
Monograf´ıas del Semin. Matem. Garc´ıa de Galdeano. 27: 135{143, (2003). Uniqueness of solution for the 2D Primitive Equations with friction condition on the bottom∗ D. Breschy, F. Guill´en-Gonz´alezz, N. Masmoudix, M. A. Rodr´ıguez-Bellido{ Abstract Uniqueness of solution for the Primitive Equations with Dirichlet conditions on the bottom is an open problem even in 2D domains. In this work we prove a result of additional regularity for a weak solution v for the Primitive Equations when we replace Dirichlet boundary conditions by friction conditions. This allows to obtain uniqueness of weak solution global in time, for such a system [3]. Indeed, we show weak regularity for the vertical derivative of the solution, @zv for all time. This is because this derivative verifies a linear pde of convection-diffusion type with convection velocity v, and the pressure belongs to a L2-space in time with values in a weighted space. Keywords: Boundary conditions of type Navier, 2D Primitive Equations, uniqueness AMS Classification: 35Q30, 35B40, 76D05 1 Introduction and motivation. Primitive Equations are one of the models used to forecast the fluid velocity and pressure in the ocean. Such equations are obtained from the dimensionless Navier-Stokes equations, letting the aspect ratio (quotient between vertical dimension and horizontal dimensions) go to zero. The first results about existence of solution (weak, in the sense of the Navier- Stokes equations) are proved for boundary conditions of Dirichlet type on the bottom of the domain and with wind traction on the surface, in the works by Lions-Temam-Wang, ∗The second and fourth authors have been financed by the C.I.C.Y.T project MAR98-0486. -
Waves in Water from Ripples to Tsunamis and to Rogue Waves
Waves in Water from ripples to tsunamis and to rogue waves Vera Mikyoung Hur (Mathematics) (Image from Flickr) The motion of a fluid can be very complicated as we know whenever we see waves break on a beach, (Image from the Internet) The motion of a fluid can be very complicated as we know whenever we fly in an airplane, (Image from the Internet) The motion of a fluid can be very complicated as we know whenever we look at a lake on a windy day. (Image from the Internet) Euler in the 1750s proposed a mathematical model of an incompressible fluid. @u + (u · r)u + rP = F, @t r · u = 0. Here, u(x; t) is the velocity of the fluid at the point x and time t, P(x; t) is the pressure, and F(x; t) is an outside force. The Navier-Stokes equations (adding ν∆u) allow the fluid to be viscous. It is concise and captures the essence of fluid behavior. The theory of fluids has provided source and inspiration to many branches of mathematics, e.g. Cauchy's complex function theory. Difficulties of understanding fluids are profound. e.g. the global-in-time solution of the Navier-Stokes equations in 3 dimensions is a Clay Millennium Problem! Waves, jets, drops come to mind when thinking of fluids. They involve one or more fluids separated by an unknown surface. In the mathematical community, they go by free boundary problems. (Image from the Internet) Free boundaries are mathematically challenging in their own right. They occur in many other situations, such as melting of ice stretching a membrane over an obstacle.