16Th EAFP INTERNATIONAL CONFERENCE on DISEASES of FISH and SHELLFISH

Total Page:16

File Type:pdf, Size:1020Kb

16Th EAFP INTERNATIONAL CONFERENCE on DISEASES of FISH and SHELLFISH 16th EAFP INTERNATIONAL CONFERENCE ON DISEASES OF FISH AND SHELLFISH Tampere, September 2-6, 2013 BOOK OF ABSTRACTS DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts. The abstract book contains abstracts as provided by their authors. No editing has been done except for spelling corrections. Published for: European Association of Fish Pathologists, 2013 Printed in Nykypaino, Helsinki Copyright © European Association of Fish Pathologists All rights reserved. No parts of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, xerography, or any information storage and removal system, without permission from the compiler. Picture front cover: Reflections © Ruud Dirks BOOK OF ABSTRACTS Contents KEYNOTES Conference Keynote 7 Keynotes 2-4 8 ORAL PRESENTATIONS 11 Viruses and viral diseases I 12 Nutrition and fish health 17 Bivalve and crustacean diseases 24 Fish and shellfish immunology I 31 Diseases of sturgeon, wild and ornamental fish 36 Viruses and viral diseases II 42 Myxozoan I 48 Non-transmissible problems 55 Aquatic animal epidemiology I 60 Myxozoan II 65 Host-parasite interactions I 72 Vaccines and vaccinology I 79 Bacterial diseases I 86 Fish and shellfish immunology II 92 Aquatic animal epidemiology II 99 Parasitic diseases 105 Host-parasite interactions II 111 Vaccines and vaccinology II 118 Flavobacteria 125 Viruses and viral diseases III 132 Bacterial diseases II 139 Diagnostics 145 POSTER PRESENTATIONS 154 Viruses and viral diseases 155 Nutrition and fish health 207 Bivalve and crustacean diseases 223 Fish and shellfish immunology 239 Diseases of sturgeon, wild and ornamental fish 275 Myxozoa 289 Non-transmissible problems 304 Aquatic animal epidemiology 322 Host-parasite interactions 345 Vaccines and vaccinology 362 Bacterial diseases 367 Parasitic diseases 388 Flavobacteria 409 Diagnostics 416 Prophylaxis and treatment 427 Problems in recirculation 428 WORKSHOPS 431 ADDITIONAL ABSTRACTS 437 AUTHOR’S CONTACT 440 CKN Conference keynote HISTOPATHOLOGY: A KEY INTEGRATIVE TOOL FOR AQUATIC ANIMAL DISEASES David Bruno Marine Scotland Science, Aberdeen, Scotland Gross pathology can be frustratingly similar, and difficult for inexperienced personal to distinguish between different pathological conditions, notably where overlapping infections may be present, challenging the histopathologist to differentiate between ‘dying of’ from ‘dying with’ a given agent. The examination of stained tissue sections remains a gold standard for pathological investigations in human and veterinary medicine and no less important in wild fisheries and aquaculture. The significant technological advances particularly the advent of molecular biology has contributed to our understanding of specific proteins, viruses and enzymes in tissues. However, to make ‘biological sense’ of these data histopathology is essential and integral to all aspects of fish health whether it be for emerging diseases, diagnostic investigations or for pure research. In all cases judgment based on case-history observations, research findings, familiarity with the literature, experience, diagnostic test results help reach an accurate interpretation or result. Curiosity and an open mind combined with thorough knowledge and experience will remain an important attitude for the fish pathologist. 7 KN-2 FISH VIROLOGY: MECHANISMS AND EVOLUTION OF VIRULENCE N.J. Olesen National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark Unlikely in animal husbandry viral infections in aquaculture often tend to develop towards increased severity. Understanding virus evolution towards increased pathogenicity in the aquaculture environment is a requirement for being able to taking appropriate actions to prevent it. Some of the recent studies concerning virulence mechanism will be presented and discussed with focus on VHSV, ISAV and IPNV. For these viruses only very few nucleotide mutations, inserts or deletions suffice to completely change the pathogenicity pattern in various species. Some changes involve the adhesion and entrance into to the fish and cells while others influence the virus replication and release. A review on some of the fascinating in vitro and in vivo studies recently conducted will be given. Priority should be given to studies that a. Demonstrate pathogen mutagenesis, e.g by including historical field samples in experimental trials and genetic analyses b. Identify virulence markers and traits. c. Assess factors that trigger increases in pathogen virulence d. Assess risk of pathogen mutagenesis towards increased pathogenicity e. Assess risk of presence of low pathogenic strains for disease development in aquaculture f. Establish thresholds for pathogen discrimination g. Design management strategies for preventing virulence evolution When the understanding of virulence mechanisms have improved appropriate actions can include specific vaccination strategies, treatment strategies and operational procedures which take into consideration the risk of virulence evolution under aquaculture conditions. 8 KN-3 DEVELOPING VACCINES IN THE ERA OF GENOMICS D. Maione Biochemistry and Molecular Biology Novartis Vaccines & Diagnostics Vaccines have a significant impact on human and animal health. Vaccinology in the era of genomics is taking advantage of new technologies to tackle diseases for which vaccine development has so far been unsuccessful. The availability of complete genome sequences of a pathogen provides access to its entire antigenic repertoire. Genomics has induced a shift in vaccine development towards sequence-based 'Reverse Vaccinology' approaches, which use high-throughput in silico screening of the entire genome of a pathogen that enable rapid targeted identification of novel vaccine antigens. Furthermore, the increasing availability of genome sequences has led to the development and application of additional technologies to vaccine discovery, including comparative genomics, transcriptomics, proteomics, structural biology and immunomics. Vaccine candidates identified from a pathogen's genome or proteome can then be expressed as recombinant proteins and tested in appropriate in vitro or in vivo models to assess immunogenicity and protection. The process of reverse vaccinology has been applied to several human pathogens, including serogroup B Neisseria meningitidis, Streptococcus agalactiae, Streptococcus pyogenes, Streptococcus pneumoniae and pathogenic Escherichia coli, and has provided scores of new candidate antigens for preclinical and clinical investigation. These powerful technologies are now expected to accelerate the identification of candidates also for the development of vaccines against animal pathogens. 9 KN-4 MAKING THE CASE FOR DISEASE FREEDOM – WHAT CAN EPIDEMIOLOGY CONTRIBUTE? E.J. Peeler Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK A central tenet of EU aquatic animal health legislation and international standards is that susceptible species can only be traded live between areas of equal health status (or from a higher to lower status) for listed diseases. Thus demonstrating disease freedom is crucial to maintaining a high health status. Epidemiology provides the scientific underpinning to the design and analysis of surveillance to demonstrate freedom. Methods, implemented in free software (e.g. FreeCalc), to calculate sample sizes for structured surveys now take account of the minimum detectable prevalence and test characteristics, leading to improved design and interpretation of surveillance to demonstrate freedom. Scenario tree modelling (STM) goes further by allowing non-structured data sources to be used and for sampling to focus on high risk regions or farms, i.e. risk based surveillance. These methods enabled a move from input (e.g. 30 samples from every farm) to output based standards (e.g. demonstrate freedom with 95% confidence that the pathogen is not present above 2%). Recent decisions in Europe on disease freedom illustrate epidemiology’s wide role, over and above the technical challenges of surveillance. In the UK a decision not to attempt eradication of koi herpes virus was in part based on mathematical modelling of the spread of disease under different scenarios that quantified the likelihood of success, and time-scale, of an eradication programme. No EU Member State has made a case to demonstrate freedom from white spot syndrome virus, despite an absence of outbreaks. This is discussed alongside consideration of how import risk analysis (IRA) supports decisions about mitigation measures to maintain freedom. The EU ceased listing epizootic ulcerative necrosis as an exotic disease in part due to the likely costs of necessary trade restrictions (the decision was also informed by risk assessments of the likelihood and consequences of introduction). Epidemiology provides many of the solutions to the technical questions that arise when making the case for disease freedom. However, governments must balance the potentially competing interests of all stakeholders, including consumers. To this end socio-economic analysis, informed by epidemiological data, of the costs and benefits of disease freedom is also crucial. 10 ORAL PRESENTATIONS 11 O-001 VIRAL HEMORRHAGIC SEPTICEMIA VIRUS (VHSV) GENOTYPE IVB IS A POTENTIAL THREAT TO WILD FRESH WATER FISH IN JAPAN T. Ito*1 and N.J. Olesen2 1National Research Institute of Aquaculture, Fisheries Research Agency, Mie, Japan 2National
Recommended publications
  • A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback
    ARTICLE IN PRESS Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback Alexander Stewart*, Joseph Jacksonx, Iain Barber{, Christophe Eizaguirrejj, Rachel Paterson*, Pieter van West#, Chris Williams** and Joanne Cable*,1 *Cardiff University, Cardiff, United Kingdom x University of Salford, Salford, United Kingdom { University of Leicester, Leicester, United Kingdom jj Queen Mary University of London, London, United Kingdom #Institute of Medical Sciences, Aberdeen, United Kingdom **National Fisheries Service, Cambridgeshire, United Kingdom 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 3 2. Stickleback Husbandry 7 2.1 Ethics 7 2.2 Collection 7 2.3 Maintenance 9 2.4 Breeding sticklebacks in vivo and in vitro 10 2.5 Hatchery 15 3. Common Stickleback Parasite Cultures 16 3.1 Argulus foliaceus 17 3.1.1 Introduction 17 3.1.2 Source, culture and infection 18 3.1.3 Immunology 22 3.2 Camallanus lacustris 22 3.2.1 Introduction 22 3.2.2 Source, culture and infection 23 3.2.3 Immunology 25 3.3 Diplostomum Species 26 3.3.1 Introduction 26 3.3.2 Source, culture and infection 27 3.3.3 Immunology 28 Advances in Parasitology, Volume 98 ISSN 0065-308X © 2017 Elsevier Ltd. http://dx.doi.org/10.1016/bs.apar.2017.07.001 All rights reserved. 1 j ARTICLE IN PRESS 2 Alexander Stewart et al. 3.4 Glugea anomala 30 3.4.1 Introduction 30 3.4.2 Source, culture and infection 30 3.4.3 Immunology 31 3.5 Gyrodactylus Species 31 3.5.1 Introduction 31 3.5.2 Source, culture and infection 32 3.5.3 Immunology 34 3.6 Saprolegnia parasitica 35 3.6.1 Introduction 35 3.6.2 Source, culture and infection 36 3.6.3 Immunology 37 3.7 Schistocephalus solidus 38 3.7.1 Introduction 38 3.7.2 Source, culture and infection 39 3.7.3 Immunology 43 4.
    [Show full text]
  • Twenty Thousand Parasites Under The
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Departament de Biologia Animal, Biologia Vegetal i Ecologia Tesis Doctoral Twenty thousand parasites under the sea: a multidisciplinary approach to parasite communities of deep-dwelling fishes from the slopes of the Balearic Sea (NW Mediterranean) Tesis doctoral presentada por Sara Maria Dallarés Villar para optar al título de Doctora en Acuicultura bajo la dirección de la Dra. Maite Carrassón López de Letona, del Dr. Francesc Padrós Bover y de la Dra. Montserrat Solé Rovira. La presente tesis se ha inscrito en el programa de doctorado en Acuicultura, con mención de calidad, de la Universitat Autònoma de Barcelona. Los directores Maite Carrassón Francesc Padrós Montserrat Solé López de Letona Bover Rovira Universitat Autònoma de Universitat Autònoma de Institut de Ciències Barcelona Barcelona del Mar (CSIC) La tutora La doctoranda Maite Carrassón Sara Maria López de Letona Dallarés Villar Universitat Autònoma de Barcelona Bellaterra, diciembre de 2016 ACKNOWLEDGEMENTS Cuando miro atrás, al comienzo de esta tesis, me doy cuenta de cuán enriquecedora e importante ha sido para mí esta etapa, a todos los niveles.
    [Show full text]
  • Fish Health Assessment of Glass Eels from Canadian Maritime Rivers
    Fish Health Assessment of Glass Eels from Canadian Maritime Rivers D. Groman, R. Threader, D. Wadowska, T. Maynard and L. Blimke Aquatic Diagnostic Services, Atlantic Veterinary College Ontario Power Generation Electron Microscopy Laboratory, Atlantic Veterinary College Kleinschimidt Associates Project Background Objective - Capture glass eels in NS/NB for stocking in Great Lakes Watershed Protocol - Transfer glass eels to quarantine Health Assessment ( G. L. F. H. C.) OTC Marking of glass eels Transfer and stocking ( Ontario & Quebec ) 1 Glass Eel / Elver Glass Eel Transport Bag 2 Glass Eel Acclimation and Transfer Boat Glass Eel Transfer 3 Glass Eel Stocking Glass Eel Stocking Data Number Purchase kg Price Stocking Stocking Number of Eels Mean Length Mean Mass Year Purchased (per kg) Date Location Stocked (mm) (g) Mallorytown 2006 102.07 $ 637 Oct. 12, 2006 166,7741 0.69 (n = 25) Landing Mallorytown 2007 151 $ 1,310 – $ 1,415 June 21, 2007 436,907 59.2 (n=49; ±0.5) Landing Mallorytown 0.17 May 15, 2008 797,475 60.9 (n=40; ±0.6) Landing (n=40; ±0.0006) 2008 370 $ 630 - $ 805 Mallorytown 0.14 May 29, 2008 518,358 60.4 (n=40; ±0.5) Landing (n=40; ±0.0004) June 11, 2008 Deseronto 685,728 56.5 (n=40; ±0.5) 0.14 (n=40; ±0.006) 651,521 June 2, 2009 Deseronto 59.14 (n=246; ±4.0) 0.18 (n=246; ±4.0) (±47,269) 2009 299 $ 630 Mallorytown 651,521 June 2, 2009 59.14 (n=246; ±4.0) 0.18 (n=246; ±0.04) Landing (±47,269) Estimated Total Number of Eels Stocked from 2006 - 2009 3,908,284 4 Health Assessment Objective - To screen subsamples of glass eel
    [Show full text]
  • Viral Haemorrhagic Septicaemia Virus (VHSV): on the Search for Determinants Important for Virulence in Rainbow Trout Oncorhynchus Mykiss
    Downloaded from orbit.dtu.dk on: Nov 08, 2017 Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss Olesen, Niels Jørgen; Skall, H. F.; Kurita, J.; Mori, K.; Ito, T. Published in: 17th International Conference on Diseases of Fish And Shellfish Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Olesen, N. J., Skall, H. F., Kurita, J., Mori, K., & Ito, T. (2015). Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss. In 17th International Conference on Diseases of Fish And Shellfish: Abstract book (pp. 147-147). [O-139] Las Palmas: European Association of Fish Pathologists. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts.
    [Show full text]
  • The Koi Herpesvirus (Khv): an Alloherpesviru
    Aquacu nd ltu a r e s e J Bergmann et al., Fish Aquac J 2016, 7:2 i o r u e r h n http://dx.doi.org/10.4172/2150-3508.1000169 s a i l F Fisheries and Aquaculture Journal ISSN: 2150-3508 ResearchResearch Artilce Article OpenOpen Access Access Is There Any Species Specificity in Infections with Aquatic Animal Herpesviruses?–The Koi Herpesvirus (KHV): An Alloherpesvirus Model Sven M Bergmann1*, Michael Cieslak1, Dieter Fichtner1, Juliane Dabels2, Sean J Monaghan3, Qing Wang4, Weiwei Zeng4 and Jolanta Kempter5 1FLI Insel Riems, Südufer 10, 17493 Greifswald-Insel Riems, Germany 2University of Rostock, Aquaculture and Sea Ranching, Justus-von-Liebig-Weg 6, Rostock 18059, Germany 3Aquatic Vaccine Unit, Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK 4Pearl-River Fisheries Research Institute, Xo. 1 Xingyu Reoad, Liwan District, Guangzhou 510380, P. R. of China 5West Pomeranian Technical University, Aquaculture, K. Królewicza 4, 71-550, Szczecin, Poland Abstract Most diseases induced by herpesviruses are host-specific; however, exceptions exist within the family Alloherpesviridae. Most members of the Alloherpesviridae are detected in at least two different species, with and without clinical signs of a disease. In the current study the Koi herpesvirus (KHV) was used as a model member of the Alloherpesviridae and rainbow trout as a model salmonid host, which were infected with KHV by immersion. KHV was detected using direct methods (qPCR and semi-nested PCR) and indirect (enzyme-linked immunosorbant assay; ELISA, serum neutralization test; SNT). The non-koi herpesvirus disease (KHVD)-susceptible salmonid fish were demonstrated to transfer KHV to naïve carp at two different temperatures including a temperature most suitable for the salmonid (15°C) and cyprinid (20°C).
    [Show full text]
  • Canadian Aquaculture R&D Review 2019
    AQUACULTURE ASSOCIATION OF CANADA SPECIAL PUBLICATION 26 2019 CANADIAN AQUACULTURE R&D REVIEW INSIDE Development of optimal diet for Rainbow Trout (Oncorhynchus mykiss) Acoustic monitoring of wild fish interactions with aquaculture sites Potential species as cleaner fish for sea lice on farmed salmon Piscine reovirus (PRV): characterization, susceptibility, prevalence, and transmission in Atlantic and Pacific Salmon Novel sensors for fish health and welfare Effect of climate change on the culture Blue Mussel (Mytilus edulis) Oyster aquaculture in an acidifying ocean Presence, extent, and impacts of microplastics on shellfish aquaculture Validation of a hydrodynamic model to support aquaculture in the West coast of Vancouver Island CANADIAN AQUACULTURE R&D REVIEW 2019 AAC Special Publication #26 ISBN: 978-0-9881415-9-9 © 2019 Aquaculture Association of Canada Cover Photo (Front): Cultivated sugar kelp (Saccharina latissima) on a culture line at an aquaculture site. (Photo: Isabelle Gendron-Lemieux, Merinov) First Photo Inside Cover (Front): Mussels. (DFO, Gulf Region) Second Photo inside Cover (Front): American Lobsters (Homarus americanus) in a holding tank. (Jean-François Laplante, Merinov) Cover Photo (Back): Atlantic Salmon sea cages in southern Newfoundland. (KÖBB Media/DFO) The Canadian Aquaculture R&D Review 2019 has been published with support provided by Fisheries and Oceans Canada's Aquaculture Collaborative Research and Development Program (ACRDP), and by the Aquaculture Association of Canada (AAC). Submitted materials may have been edited for length and writing style. Projects not included in this edition should be submitted before the deadline to be set for the next edition. Editors: Tricia Gheorghe, Véronique Boucher Lalonde, Emily Ryall and G. Jay Parsons Cited as: T Gheorghe, V Boucher Lalonde, E Ryall, and GJ Parsons (eds).
    [Show full text]
  • Acquired Resistance to Kudoa Thyrsites in Atlantic Salmon Salmo Salar Following Recovery from a Primary Infection with the Parasite
    Aquaculture 451 (2016) 457–462 Contents lists available at ScienceDirect Aquaculture journal homepage: www.elsevier.com/locate/aqua-online Acquired resistance to Kudoa thyrsites in Atlantic salmon Salmo salar following recovery from a primary infection with the parasite Simon R.M. Jones ⁎, Steven Cho, Jimmy Nguyen, Amelia Mahony Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, British Columbia V9T 6N7, Canada article info abstract Article history: The influence of prior infection with Kudoa thyrsites or host size on the susceptibility of Atlantic salmon post- Received 19 August 2015 smolts to infection with the parasite was investigated. Exposure to infective K. thyrsites in raw seawater (RSW) Received in revised form 30 September 2015 was regulated by the use of ultraviolet irradiation (UVSW). Naïve smolts were exposed to RSW for either Accepted 2 October 2015 38 days (440 degree-days, DD) or 82 days (950 DD) after which they were maintained in UVSW. Control fish Available online 9 October 2015 were maintained on UVSW only. Microscopic examination at day 176 (1985 DD) revealed K. thyrsites infection in nearly 90% of exposed fish but not in controls. Prevalence and severity of the infection decreased in later sam- ples. Following a second exposure of all fish at day 415 (4275 DD), prevalence and severity were elevated in the UVSW controls compared to previously exposed fish groups, suggesting the acquisition of protective immunity. In a second experiment, naïve smolts were exposed to RSW at weights of 101 g, 180 g, 210 g or 332 g and the prevalence and severity of K. thyrsites in the smallest fish group were higher than in any other group.
    [Show full text]
  • AN ABSTRACT of the DISSERTATION of Damien E
    AN ABSTRACT OF THE DISSERTATION OF Damien E. Barrett for the degree of Doctor of Philosophy in Microbiology presented on September 17, 2020. Title: What Makes a Fish Resistant? Comparative Genomics and Transcriptomics of Oncorhynchus mykiss with Differential Resistance to the Parasite Ceratonova shasta Abstract approved: ______________________________________________________ Jerri L. Bartholomew The myxozoan Ceratonova shasta is an intestinal parasite of salmon and trout that causes ceratomyxosis, a disease characterized by severe inflammation of the intestine that can lead to hemorrhaging, necrosis, and death of the fish host. The parasite is endemic to the Pacific Northwest of the United States and Canada, where it has been linked to the decline of wild fish stocks. The parasite exerts a strong selective force on its fish host, and fish populations from C. shasta endemic watersheds become genetically fixed for resistance to ceratomyxosis. This contrasts with fish from watersheds where the parasite is not established, who are highly susceptible the disease, with a single spore capable of causing a lethal infection. Management of the disease relies on selective stocking of resistant fish, however, even these fish can succumb to the infection. Understanding the genetic and immunological basis of resistance to this disease would provide the framework for the development of therapeutics and identification of genetic markers that could be used in selective breeding. In this project, we employed a comparative transcriptomics and genomics approach to understand how resistant and susceptible strains of Oncorhynchus mykiss (rainbow trout/steelhead) respond to C. shasta infection and identify the genomic loci conferring resistance. We found that infection by C.
    [Show full text]
  • Report on the Workshop in Diagnosis of the Exotic Fish Diseases EHN and EUS and the 12Th Annual Meeting of the National Reference Laboratories for Fish Diseases
    Report on the Workshop in diagnosis of the exotic fish diseases EHN and EUS and the 12th Annual Meeting of the National Reference Laboratories for Fish Diseases Aarhus, Denmark June 17-20, 2008 Organised by the Community Reference Laboratory for Fish Diseases National Veterinary Institute, Technical University of Denmark Report from the 12th Annual Meeting of the National Reference Laboratories for fish diseases, 17-20 June 2008, Aarhus, Denmark Contents Introduction and short summary ............................................................................................................4 Programme .............................................................................................................................................5 Programme .............................................................................................................................................6 SESSION IA: Epizootic haematopoietic necrosis virus (EHNV)..........................................................9 Epizootic haematopoietic necrosis (EHN) disease – a review...........................................................9 Comparison of isolation procedures for ranavirus in fish organs. ...................................................10 How to detect EHNV and related ranaviruses using IHC and IFAT ..............................................11 Ranaviruses - Molecular detection and differentiation ....................................................................12 SESSION IB: Epizootic Ulcerative Syndrome (EUS).........................................................................13
    [Show full text]
  • Disease of Aquatic Organisms 80:241
    DISEASES OF AQUATIC ORGANISMS Vol. 80: 241–258, 2008 Published August 7 Dis Aquat Org COMBINED AUTHOR AND TITLE INDEX (Volumes 71 to 80, 2006–2008) A (2006) Persistence of Piscirickettsia salmonis and detection of serum antibodies to the bacterium in white seabass Atrac- Aarflot L, see Olsen AB et al. (2006) 72:9–17 toscion nobilis following experimental exposure. 73:131–139 Abreu PC, see Eiras JC et al. (2007) 77:255–258 Arunrut N, see Kiatpathomchai W et al. (2007) 79:183–190 Acevedo C, see Silva-Rubio A et al. (2007) 79:27–35 Arzul I, see Carrasco N et al. (2007) 79:65–73 Adams A, see McGurk C et al. (2006) 73:159–169 Arzul I, see Corbeil S et al. (2006) 71:75–80 Adkison MA, see Arkush KD et al. (2006) 73:131–139 Arzul I, see Corbeil S et al. (2006) 71:81–85 Aeby GS, see Work TM et al. (2007) 78:255–264 Ashton KJ, see Kriger KM et al. (2006) 71:149–154 Aguirre WE, see Félix F et al. (2006) 75:259–264 Ashton KJ, see Kriger KM et al. (2006) 73:257–260 Aguirre-Macedo L, see Gullian-Klanian M et al. (2007) 79: Atkinson SD, see Bartholomew JL et al. (2007) 78:137–146 237–247 Aubard G, see Quillet E et al. (2007) 76:7–16 Aiken HM, see Hayward CJ et al. (2007) 79:57–63 Audemard C, Carnegie RB, Burreson EM (2008) Shellfish tis- Aishima N, see Maeno Y et al. (2006) 71:169–173 sues evaluated for Perkinsus spp.
    [Show full text]
  • Mucosal Health in Aquaculture Page Left Intentionally Blank Mucosal Health in Aquaculture
    Mucosal Health in Aquaculture Page left intentionally blank Mucosal Health in Aquaculture Edited by Benjamin H. Beck Stuttgart National Aquaculture Research Center, Stuttgart, Arkansas, USA Eric Peatman School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Alabama, USA AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK OXFORD • PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE SYDNEY • TOKYO Academic Press is an Imprint of Elsevier Academic Press is an imprint of Elsevier 125, London Wall, EC2Y 5AS, UK 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA 225 Wyman Street, Waltham, MA 02451, USA The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Copyright © 2015 Elsevier Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively, visit the Science and Technology Books website at www.elsevierdirect.com/rights for further information. Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]