AN ABSTRACT of the DISSERTATION of Damien E

Total Page:16

File Type:pdf, Size:1020Kb

AN ABSTRACT of the DISSERTATION of Damien E AN ABSTRACT OF THE DISSERTATION OF Damien E. Barrett for the degree of Doctor of Philosophy in Microbiology presented on September 17, 2020. Title: What Makes a Fish Resistant? Comparative Genomics and Transcriptomics of Oncorhynchus mykiss with Differential Resistance to the Parasite Ceratonova shasta Abstract approved: ______________________________________________________ Jerri L. Bartholomew The myxozoan Ceratonova shasta is an intestinal parasite of salmon and trout that causes ceratomyxosis, a disease characterized by severe inflammation of the intestine that can lead to hemorrhaging, necrosis, and death of the fish host. The parasite is endemic to the Pacific Northwest of the United States and Canada, where it has been linked to the decline of wild fish stocks. The parasite exerts a strong selective force on its fish host, and fish populations from C. shasta endemic watersheds become genetically fixed for resistance to ceratomyxosis. This contrasts with fish from watersheds where the parasite is not established, who are highly susceptible the disease, with a single spore capable of causing a lethal infection. Management of the disease relies on selective stocking of resistant fish, however, even these fish can succumb to the infection. Understanding the genetic and immunological basis of resistance to this disease would provide the framework for the development of therapeutics and identification of genetic markers that could be used in selective breeding. In this project, we employed a comparative transcriptomics and genomics approach to understand how resistant and susceptible strains of Oncorhynchus mykiss (rainbow trout/steelhead) respond to C. shasta infection and identify the genomic loci conferring resistance. We found that infection by C. shasta has an immunosuppressive effect in both resistant and susceptible fish, with IFNγ and interferon stimulated genes being downregulated in the gills, which is the portal of entry for the parasite. Once the parasite reaches the intestine, resistant fish quickly respond with an IFNγ driven TH1 response, and upregulation of MHC class I genes and genes involved in antigen processing and presentation. This response suggests that C. shasta has an intracellular phase during its migration to the intestine, which may represent a form of immune evasion that causes the host to initiate a cytotoxic T- cell response that is ineffective against the extracellular stages in the intestine. Susceptible fish, on the other hand, had no detectable immune response to the parasite reaching the intestine, highlighting the importance of parasite recognition in the different infection outcomes of these fish. In addition to a more rapid immune response, resistant fish have a tissue level response that limits the spread of the parasite within the intestine and allows them to regenerate their intestinal lining. Additionally, we have identified a region on chromosome Omy9 that significantly affects the odds of surviving C. shasta infection, and a region on Omy11 with a lesser contribution to survival. Taken together, this research represents a major step forward in our understanding of both the genetic and immunological basis of resistance to this important parasite. ©Copyright by Damien E. Barrett September 17, 2020 All Rights Reserved What Makes a Fish Resistant? Comparative Genomics and Transcriptomics of Oncorhynchus mykiss with Differential Resistance to the Parasite Ceratonova shasta by Damien E. Barrett A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented September 17, 2020 Commencement June 2021 Doctor of Philosophy dissertation of Damien E. Barrett presented on September 17, 2020. APPROVED: Major Professor, representing Microbiology Head of the Department of Microbiology Dean of the Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. Damien E. Barrett, Author ACKNOWLEDGEMENTS It takes a village to raise a PhD, and for that I would like to sincerely thank everyone who has supported me through this process: My fellow graduate students; Laura Taggart-Murphy, Claire Howell, Kalyn Hubbard, and Benjamin Americus for assistance with fieldwork and for making the lab a warm and friendly place. Rich Holt for assistance with sampling and being a general wellspring of knowledge. Julie Alexander for maintaining the worm cultures that made these experiments possible. The staff at the Aquatic Animal Health Lab, in particular Ruth Milston-Clements and Ryan Craig for assisting with fish husbandry and for putting up with my many tank requests. Stephen Atkinson and Sascha Hallett for always being available to help and answer questions. The staff at the Center for Genome Research and Biocomputing, specifically Chris Sullivan, Shawn O’Neil, Matthew Peterson, and Andrew Black for their excellent instruction and Mark Desenko and Katie Carter for taking such good care of my samples. The Oregon Department of Fish and Wildlife, in particular William Tinniswood, and the staff at the Round Butte, Roaring River, and Alsea hatcheries for supplying the fish used in these studies. My graduate committee members; Dr. Michael Kent, Dr. Kelly Vining, Dr. Mike Blouin, and Dr. Kenneth Johnson for staying with me through a steep learning curve and providing valuable insights into my project. My advisor Dr. Jerri Bartholomew, for giving me the latitude to pursue such an ambitious project and for providing thoughtful critiques on my project and writing. And last but not least, my wonderful wife for supporting me through all of this and understanding the odd hours involved in this undertaking. CONTRIBUTION OF AUTHORS For the second manuscript, Dr. Itziar Estensoro processed tissue samples and interpreted the histology and Dr. Ariadna Sitjà-Bobadilla helped interpret the histology and provided valuable feedback on the manuscript. TABLE OF CONTENTS Page CHAPTER 1: INTRODUCTION ................................................................................................... 1 Introduction to myxozoa .......................................................................................................... 1 The myxozoan parasite Ceratonova shasta ............................................................................. 2 Factors affecting the outcome of infection ............................................................................... 2 Progression of the infection in the fish host ............................................................................. 4 Investigations into the mechanism of resistance ...................................................................... 5 Overview of the teleost immune system .................................................................................. 5 Studies on the antibody response to C. shasta ......................................................................... 6 Studies on the cytokine response during C. shasta infections ................................................. 7 The immune response in other fish-myxozoan systems........................................................... 9 Research objective.................................................................................................................. 13 REFERENCES .......................................................................................................................... 14 CHAPTER 2: A TALE OF TWO FISH: COMPARATIVE TRANSCRIPTOMICS OF RESISTANT AND SUSCEPTIBLE STEELHEAD FOLLOWING EXPOSURE TO CERATONOVA SHASTA HIGHLIGHTS DIFFERENCES IN PARASITE RECOGNITION .... 24 ABSTRACT .............................................................................................................................. 25 INTRODUCTION ..................................................................................................................... 25 TABLE OF CONTENTS (Continued) Page MATERIAL AND METHODS................................................................................................. 29 Fish ......................................................................................................................................... 29 Parasite challenge ................................................................................................................... 29 Sample collection ................................................................................................................... 30 Sample processing .................................................................................................................. 31 Sequencing ............................................................................................................................. 31 Data analysis .......................................................................................................................... 32 RNA-seq validation by quantitative reverse transcription PCR (RT-qPCR) ......................... 33 RESULTS .................................................................................................................................. 33 Infection of resistant and susceptible fish stocks ................................................................... 33 qPCR quantification of parasite burden ................................................................................. 36 Sequencing ............................................................................................................................
Recommended publications
  • Viral Haemorrhagic Septicaemia Virus (VHSV): on the Search for Determinants Important for Virulence in Rainbow Trout Oncorhynchus Mykiss
    Downloaded from orbit.dtu.dk on: Nov 08, 2017 Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss Olesen, Niels Jørgen; Skall, H. F.; Kurita, J.; Mori, K.; Ito, T. Published in: 17th International Conference on Diseases of Fish And Shellfish Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Olesen, N. J., Skall, H. F., Kurita, J., Mori, K., & Ito, T. (2015). Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss. In 17th International Conference on Diseases of Fish And Shellfish: Abstract book (pp. 147-147). [O-139] Las Palmas: European Association of Fish Pathologists. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts.
    [Show full text]
  • Acquired Protective Immune Response in a Fish-Myxozoan Model
    Fish and Shellfish Immunology 90 (2019) 349–362 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Acquired protective immune response in a fish-myxozoan model T encompasses specific antibodies and inflammation resolution Amparo Picard-Sánchez1, Itziar Estensoro1, Raquel del Pozo, M. Carla Piazzon, ∗ Oswaldo Palenzuela, Ariadna Sitjà-Bobadilla Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain ARTICLE INFO ABSTRACT Keywords: The myxozoan parasite Enteromyxum leei causes chronic enteritis in gilthead sea bream (GSB, Sparus aurata) Acquired immune response leading to intestinal dysfunction. Two trials were performed in which GSB that had survived a previous infection Fish IgM with E. leei (SUR), and naïve GSB (NAI), were exposed to water effluent containing parasite stages. Humoral Sparus aurata factors (total IgM and IgT, specific anti-E. leei IgM, total serum peroxidases), histopathology and gene expression Enteromyxum leei were analysed. Results showed that SUR maintained high levels of specific anti-E. leei IgM (up to 16 months), Parasite resistance expressed high levels of immunoglobulins at the intestinal mucosa, particularly the soluble forms, and were Gene expression resistant to re-infection. Their acquired-type response was complemented by other immune effectors locally and systemically, like cell cytotoxicity (high granzyme A expression), complement activity (high c3 and fucolectin expression), and serum peroxidases. In contrast to NAI, SUR displayed a post-inflammatory phenotype in the intestine and head kidney, characteristic of inflammation resolution (low il1β, high il10 and low hsp90α ex- pression). 1. Introduction causing different degrees of anorexia, delayed growth with weight loss, cachexia, reduced marketability and increased mortality [6].
    [Show full text]
  • Distribution and Coinfection of Microparasites and Macroparasites in Juvenile Salmonids in Three Upper Willamette River Tributaries
    AN ABSTRACT OF THE THESIS OF Sean Robert Roon for the degree of Master of Science in Microbiology presented on December 9, 2014. Title: Distribution and Coinfection of Microparasites and Macroparasites in Juvenile Salmonids in Three Upper Willamette River Tributaries. Abstract approved: ______________________________________________________ Jerri L. Bartholomew Wild fish populations are typically infected with a variety of micro- and macroparasites that may affect fitness and survival, however, there is little published information on parasite distribution in wild juvenile salmonids in three upper tributaries of the Willamette River, OR. The objectives of this survey were to document (1) the distribution of select microparasites in wild salmonids and (2) the prevalence, geographical distribution, and community composition of metazoan parasites infecting these fish. From 2011-2013, I surveyed 279 Chinook salmon Oncorhynchus tshawytscha and 149 rainbow trout O. mykiss for one viral (IHNV) and four bacterial (Aeromonas salmonicida, Flavobacterium columnare, Flavobacterium psychrophilum, and Renibacterium salmoninarum) microparasites known to cause mortality of fish in Willamette River hatcheries. The only microparasite detected was Renibacterium salmoninarum, causative agent of bacterial kidney disease, which was detected at all three sites. I identified 23 metazoan parasite taxa in these fish. Nonmetric multidimensional scaling of metazoan parasite communities reflected a nested structure with trematode metacercariae being the basal parasite taxa at all three sites. The freshwater trematode Nanophyetus salmincola was the most common macroparasite observed at three sites. Metacercariae of N. salmincola have been shown to impair immune function and disease resistance in saltwater. To investigate if N. salmincola affects disease susceptibility in freshwater, I conducted a series of disease challenges to evaluate whether encysted N.
    [Show full text]
  • Histopathological Changes Caused by Enteromyxum Leei Infection in Farmed Sea Bream Sparus Aurata
    Vol. 79: 219–228, 2008 DISEASES OF AQUATIC ORGANISMS Published May 8 doi: 10.3354/dao01832 Dis Aquat Org Histopathological changes caused by Enteromyxum leei infection in farmed sea bream Sparus aurata R. Fleurance1, C. Sauvegrain2, A. Marques3, A. Le Breton4, C. Guereaud1, Y. Cherel1, M. Wyers1,* 1Department of Veterinary Pathology, UMR 703 INRA/ENVN, Nantes Veterinary School, BP 40706, 44307 Nantes cedex 03, France 2Aquanord, Terre des marins, 59820 Gravelines, France 3DRIM Dept BEE, UM2, case 080 Université Montpellier, 34095 Montpellier cedex 5, France 4Fish Health Consultant, 31330 Grenade sur Garonne, France ABSTRACT: Histological examinations were carried out on the stomach, pyloric caeca and 4 differ- ent parts of the intestine, as well as the rectum, hepatopancreas, gall bladder and spleen of 52 sea bream Sparus aurata spontaneously infected by Enteromyxum leei. Fifteen fish from a non-infected farm were included as a control. Clinical signs appeared only in extensively and severely infected fish. We observed Enteromyxum leei almost exclusively in the intestinal tract, and very rarely in the intrahepatic biliary ducts or gall bladder. We observed heavily infected intestinal villi adjacent to par- asite-free villi. Histological changes indicated a parasite infection gradually extending from villus to villus, originating from an initial limited infected area probably located in the rectum. The parasite forms were exclusively pansporoblasts located along the epithelial basement membrane. Periodic acid-Schiff (PAS)–Alcian blue was the most useful histological stain for identifying the parasite and characterising the degree of intestinal infection. We observed severe enteritis in infected fish, with inflammatory cell infiltration and sclerosis of the lamina propria.
    [Show full text]
  • Diagnosis and Treatment of Multi-Species Fish Mortality Attributed to Enteromyxum Leei While in Quarantine at a US Aquarium
    Vol. 132: 37–48, 2018 DISEASES OF AQUATIC ORGANISMS Published December 11 https://doi.org/10.3354/dao03303 Dis Aquat Org Diagnosis and treatment of multi-species fish mortality attributed to Enteromyxum leei while in quarantine at a US aquarium Michael W. Hyatt1,5,*, Thomas B. Waltzek2, Elizabeth A. Kieran3,6, Salvatore Frasca Jr.3, Jan Lovy4 1Adventure Aquarium, Camden, New Jersey 08103, USA 2Wildlife & Aquatic Veterinary Disease Laboratory, University of Florida College of Veterinary Medicine, Gainesville, Florida 32611, USA 3Aquatic, Amphibian and Reptile Pathology Service, Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610, USA 4Office of Fish & Wildlife Health & Forensics, New Jersey Division of Fish & Wildlife, Oxford, New Jersey 07863, USA 5Present address: Wildlife Conservation Society, New York Aquarium, Brooklyn, NY 11224, USA 6Present address: Arizona Veterinary Diagnostic Laboratory, University of Arizona, Tucson, Arizona 85705, USA ABSTRACT: Enteromyxum leei is an enteric myxozoan parasite of fish. This myxozoan has low host specificity and is the causative agent of myxozoan emaciation disease, known for heavy mor- talities and significant financial losses within Mediterranean, Red Sea, and Asian aquaculture industries. The disease has rarely been documented within public aquaria and, to our knowledge, has never been confirmed within the USA. This case report describes an outbreak of E. leei in a population of mixed-species east African/Indo-Pacific marine fish undergoing quarantine at a public aquarium within the USA. Four of 16 different species of fish in the population, each of a different taxonomic family, were confirmed infected by the myxozoan through cloacal flush or intestinal wet mount cytology at necropsy.
    [Show full text]
  • A New Species of Myxidium (Myxosporea: Myxidiidae)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln John Janovy Publications Papers in the Biological Sciences 6-2006 A New Species of Myxidium (Myxosporea: Myxidiidae), from the Western Chorus Frog, Pseudacris triseriata triseriata, and Blanchard's Cricket Frog, Acris crepitans blanchardi (Hylidae), from Eastern Nebraska: Morphology, Phylogeny, and Critical Comments on Amphibian Myxidium Taxonomy Miloslav Jirků University of Veterinary and Pharmaceutical Sciences, Palackého, [email protected] Matthew G. Bolek Oklahoma State University, [email protected] Christopher M. Whipps Oregon State University John J. Janovy Jr. University of Nebraska - Lincoln, [email protected] Mike L. Kent OrFollowegon this State and Univ additionalersity works at: https://digitalcommons.unl.edu/bioscijanovy Part of the Parasitology Commons See next page for additional authors Jirků, Miloslav; Bolek, Matthew G.; Whipps, Christopher M.; Janovy, John J. Jr.; Kent, Mike L.; and Modrý, David, "A New Species of Myxidium (Myxosporea: Myxidiidae), from the Western Chorus Frog, Pseudacris triseriata triseriata, and Blanchard's Cricket Frog, Acris crepitans blanchardi (Hylidae), from Eastern Nebraska: Morphology, Phylogeny, and Critical Comments on Amphibian Myxidium Taxonomy" (2006). John Janovy Publications. 60. https://digitalcommons.unl.edu/bioscijanovy/60 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in John Janovy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Miloslav Jirků, Matthew G. Bolek, Christopher M. Whipps, John J. Janovy Jr., Mike L. Kent, and David Modrý This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ bioscijanovy/60 J.
    [Show full text]
  • Canadian Aquaculture R&D Review 2019
    AQUACULTURE ASSOCIATION OF CANADA SPECIAL PUBLICATION 26 2019 CANADIAN AQUACULTURE R&D REVIEW INSIDE Development of optimal diet for Rainbow Trout (Oncorhynchus mykiss) Acoustic monitoring of wild fish interactions with aquaculture sites Potential species as cleaner fish for sea lice on farmed salmon Piscine reovirus (PRV): characterization, susceptibility, prevalence, and transmission in Atlantic and Pacific Salmon Novel sensors for fish health and welfare Effect of climate change on the culture Blue Mussel (Mytilus edulis) Oyster aquaculture in an acidifying ocean Presence, extent, and impacts of microplastics on shellfish aquaculture Validation of a hydrodynamic model to support aquaculture in the West coast of Vancouver Island CANADIAN AQUACULTURE R&D REVIEW 2019 AAC Special Publication #26 ISBN: 978-0-9881415-9-9 © 2019 Aquaculture Association of Canada Cover Photo (Front): Cultivated sugar kelp (Saccharina latissima) on a culture line at an aquaculture site. (Photo: Isabelle Gendron-Lemieux, Merinov) First Photo Inside Cover (Front): Mussels. (DFO, Gulf Region) Second Photo inside Cover (Front): American Lobsters (Homarus americanus) in a holding tank. (Jean-François Laplante, Merinov) Cover Photo (Back): Atlantic Salmon sea cages in southern Newfoundland. (KÖBB Media/DFO) The Canadian Aquaculture R&D Review 2019 has been published with support provided by Fisheries and Oceans Canada's Aquaculture Collaborative Research and Development Program (ACRDP), and by the Aquaculture Association of Canada (AAC). Submitted materials may have been edited for length and writing style. Projects not included in this edition should be submitted before the deadline to be set for the next edition. Editors: Tricia Gheorghe, Véronique Boucher Lalonde, Emily Ryall and G. Jay Parsons Cited as: T Gheorghe, V Boucher Lalonde, E Ryall, and GJ Parsons (eds).
    [Show full text]
  • In Vitro Studies on Viability and Proliferation of Enteromyxum Scophthalmi (Myxozoa), an Enteric Parasite of Cultured Turbot Scophthalmus Maximus
    DISEASES OF AQUATIC ORGANISMS Vol. 55: 133–144, 2003 Published July 8 Dis Aquat Org In vitro studies on viability and proliferation of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of cultured turbot Scophthalmus maximus María J. Redondo, Oswaldo Palenzuela*, Pilar Alvarez-Pellitero Consejo Superior de Investigaciones Científicas, Instituto de Acuicultura Torre la Sal, 12595 Ribera de Cabanes, Castellón, Spain ABSTRACT: In vitro cultivation of the myxozoan Enteromyxum scophthalmi was attempted using dif- ferent culture media and conditions. The progress of the cultures was monitored using dye-exclusion viability counts, tetrazolium-based cell-proliferation assays, measuring the incorporation of BrdU during DNA synthesis, and by morphological studies using light and electron microscopes. In pre- liminary experiments, the persistence of viable stages for a few days was ascertained in both medium 199 (M199) and in seawater. An apparent initial proliferation was noticed in the culture media, with many young stages observed by Day 7 post-inoculation (p.i.). In contrast, fast degeneration occurred in seawater, with but a few living stages persisting to Day 1 p.i and none to Day 5 p.i. Both tetrazolium-based cell-proliferation assays and dye-exclusion viability counts demonstrated a pro- gressive degeneration of the cultures. Although M199 medium and neutral pH with the addition of sera appeared to provide the most favourable conditions during the first few hours, all cultures degenerated with time and no parasite proliferation or maintenance could be achieved in the long term in any of the conditions assayed, including attempts of co-cultivation with a turbot cell line. The ultrastructure of stages cultured for 15 d demonstrated complete degeneration of organelles and mitochondria, although the plasma membrane remained intact in many stages.
    [Show full text]
  • Yurok Final Brief
    Case 3:16-cv-06863-WHO Document 107 Filed 03/23/18 Page 1 of 22 JEFFREY H. WOOD, Acting Assistant Attorney General 1 Environment & Natural Resources Division 2 SETH M. BARSKY, Chief S. JAY GOVINDAN, Assistant Chief 3 ROBERT P. WILLIAMS, Sr. Trial Attorney KAITLYN POIRIER, Trial Attorney 4 U.S. Department of Justice 5 Environment & Natural Resources Division Wildlife & Marine Resources Section 6 Ben Franklin Station, P.O. Box 7611 7 Washington, D.C. 20044-7611 Tel: 202-307-6623; Fax: 202-305-0275 8 Email: [email protected] Email: [email protected] 9 10 Attorneys for Federal Defendants 11 UNITED STATES DISTRICT COURT 12 FOR THE NORTHERN DISTRICT OF CALIFORNIA 13 SAN FRANCISCO DIVISION 14 YUROK TRIBE, et al., ) 15 Case No. 3:16-cv-06863-WHO ) 16 Plaintiff, ) ) 17 FEDERAL DEFENDANTS’ RESPONSE v. ) TO DEFENDANT-INTERVENORS’ 18 ) MOTION FOR RELIEF FROM U.S. BUREAU OF RECLAMATION, et al., ) JUDGMENT AND/OR STAY OF 19 ) ENFORCEMENT (ECF No. 101) Defendants, ) 20 ) 21 and ) ) 22 KLAMATH WATER USERS ) ASSOCIATION, et al., ) 23 ) 24 Defendant-Intervenors. ) 25 26 27 28 1 Federal Defendants’ Response to Intervenors’ Motion for Relief 3:16-cv-6863-WHO Case 3:16-cv-06863-WHO Document 107 Filed 03/23/18 Page 2 of 22 1 TABLE OF CONTENTS 2 I. INTRODUCTION 3 3 II. FACTUAL BACKGROUND 5 4 A. Hydrologic Conditions In Water Year 2018 5 5 B. 2013 Biological Opinion Requirements for Suckers 5 6 III. DISCUSSION 7 7 A. Given Hydrologic Conditions, Guidance Measures 1 8 and 4 Cannot Both Be Implemented As They Were Designed Without Impermissibly Interfering With 9 Conditions Necessary to Protect Endangered Suckers 7 10 1.
    [Show full text]
  • Downloaded March 2015 from Using NCBI BLAST+ (Version 2.2.27) with E- 561 Values More Than 10-3 Considered Non-Significant
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.28.312801; this version posted September 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Comparative transcriptomics and host-specific parasite gene expression profiles 2 inform on drivers of proliferative kidney disease 3 4 Marc Faber1, Sohye Yoon1,2, Sophie Shaw3, Eduardo de Paiva Alves3,4, Bei Wang1,5, Zhitao 5 Qi1,6, Beth Okamura7, Hanna Hartikainen8, Christopher J. Secombes1, Jason W. Holland1 * 6 7 1 Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen AB24 2TZ, UK. 8 2 Present address: Genome Innovation Hub, Institute for Molecular Bioscience, The University of 9 Queensland, Brisbane, QLD 4072, Australia. 10 3 Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 2TZ, 11 UK. 12 4 Aigenpulse.com, 115J Olympic Avenue, Milton Park, Abingdon, Oxfordshire, OX14 4SA, UK. 13 5 Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic 14 Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education 15 Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, P.R. China. 16 6 Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng 17 Institute of Technology, Jiangsu, Yancheng, 224051, China. 18 7 Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK. 19 8 School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
    [Show full text]
  • First Report of Enteromyxum Leei (Myxozoa)
    魚病研究 Fish Pathology, 49 (2), 57–60, 2014. 6 © 2014 The Japanese Society of Fish Pathology Short communication Typical mature spores in the intestine and gall blad- der of infected fish were in an arcuate, almost semicircu- First Report of Enteromyxum leei lar shape (Fig. 1B–D). Polar capsules were elongated, (Myxozoa) in the Black Sea in a tapering to their distal ends, open at one side of the spore, diverging at an angle of about 90°. Polar Potential Reservoir Host filaments coiled 7 times on average (range 6–8). Chromis chromis Spore and polar capsule dimensions are provided in Table 1. Based on the overall morphology and spore dimentions, the parasite was identified as a myxozoan, Ahmet Özer*, Türkay Öztürk, Hakan Özkan Enteromyxum leei. and Arzu Çam The phylum Myxozoa is composed entirely of endo- parasites, including some that cause diseases which Sinop University, Faculty of Fisheries and Aquatic substantial impact on aquaculture and fisheries around Sciences, 57000 Sinop, Turkey the world (Kent et al., 2001). Myxosporean infection occurs in a wide range of both marine and freshwater (Received January 25, 2014) fish species. Some reviews have stressed the impor- tance of those species that are associated with pathol- ogy in mariculture (Alvarez-Pellitero and Sitjà-Bobadilla, ABSTRACT—Damselfish Chromis chromis collected from 1993; Alvarez-Pellitero et al., 1995) and in freshwater the Black Sea coasts of Sinop, Turkey, were examined for farming (El-Matbouli et al., 1992). Enteromyxum leei is myxosporeans in June and July 2013. One of 25 healthy certainly one species of such concern. To our knowl- fish and 2 dead fish had infections with Enteromyxum leei.
    [Show full text]
  • Acquired Resistance to Kudoa Thyrsites in Atlantic Salmon Salmo Salar Following Recovery from a Primary Infection with the Parasite
    Aquaculture 451 (2016) 457–462 Contents lists available at ScienceDirect Aquaculture journal homepage: www.elsevier.com/locate/aqua-online Acquired resistance to Kudoa thyrsites in Atlantic salmon Salmo salar following recovery from a primary infection with the parasite Simon R.M. Jones ⁎, Steven Cho, Jimmy Nguyen, Amelia Mahony Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, British Columbia V9T 6N7, Canada article info abstract Article history: The influence of prior infection with Kudoa thyrsites or host size on the susceptibility of Atlantic salmon post- Received 19 August 2015 smolts to infection with the parasite was investigated. Exposure to infective K. thyrsites in raw seawater (RSW) Received in revised form 30 September 2015 was regulated by the use of ultraviolet irradiation (UVSW). Naïve smolts were exposed to RSW for either Accepted 2 October 2015 38 days (440 degree-days, DD) or 82 days (950 DD) after which they were maintained in UVSW. Control fish Available online 9 October 2015 were maintained on UVSW only. Microscopic examination at day 176 (1985 DD) revealed K. thyrsites infection in nearly 90% of exposed fish but not in controls. Prevalence and severity of the infection decreased in later sam- ples. Following a second exposure of all fish at day 415 (4275 DD), prevalence and severity were elevated in the UVSW controls compared to previously exposed fish groups, suggesting the acquisition of protective immunity. In a second experiment, naïve smolts were exposed to RSW at weights of 101 g, 180 g, 210 g or 332 g and the prevalence and severity of K. thyrsites in the smallest fish group were higher than in any other group.
    [Show full text]