A New Species of Myxidium (Myxosporea: Myxidiidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acquired Protective Immune Response in a Fish-Myxozoan Model
Fish and Shellfish Immunology 90 (2019) 349–362 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Acquired protective immune response in a fish-myxozoan model T encompasses specific antibodies and inflammation resolution Amparo Picard-Sánchez1, Itziar Estensoro1, Raquel del Pozo, M. Carla Piazzon, ∗ Oswaldo Palenzuela, Ariadna Sitjà-Bobadilla Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain ARTICLE INFO ABSTRACT Keywords: The myxozoan parasite Enteromyxum leei causes chronic enteritis in gilthead sea bream (GSB, Sparus aurata) Acquired immune response leading to intestinal dysfunction. Two trials were performed in which GSB that had survived a previous infection Fish IgM with E. leei (SUR), and naïve GSB (NAI), were exposed to water effluent containing parasite stages. Humoral Sparus aurata factors (total IgM and IgT, specific anti-E. leei IgM, total serum peroxidases), histopathology and gene expression Enteromyxum leei were analysed. Results showed that SUR maintained high levels of specific anti-E. leei IgM (up to 16 months), Parasite resistance expressed high levels of immunoglobulins at the intestinal mucosa, particularly the soluble forms, and were Gene expression resistant to re-infection. Their acquired-type response was complemented by other immune effectors locally and systemically, like cell cytotoxicity (high granzyme A expression), complement activity (high c3 and fucolectin expression), and serum peroxidases. In contrast to NAI, SUR displayed a post-inflammatory phenotype in the intestine and head kidney, characteristic of inflammation resolution (low il1β, high il10 and low hsp90α ex- pression). 1. Introduction causing different degrees of anorexia, delayed growth with weight loss, cachexia, reduced marketability and increased mortality [6]. -
History of Myxozoan Character Evolution on the Basis of Rdna and EF-2 Data Ivan Fiala1,2*, Pavla Bartošová1,2
Fiala and Bartošová BMC Evolutionary Biology 2010, 10:228 http://www.biomedcentral.com/1471-2148/10/228 RESEARCH ARTICLE Open Access History of myxozoan character evolution on the basis of rDNA and EF-2 data Ivan Fiala1,2*, Pavla Bartošová1,2 Abstract Background: Phylogenetic relationships among myxosporeans based on ribosomal DNA data disagree with traditional taxonomic classification: a number of myxosporeans with very similar spore morphology are assigned to the same genera even though they are phylogenetically distantly related. The credibility of rDNA as a suitable marker for Myxozoa is uncertain and needs to be proved. Furthermore, we need to know the history of myxospore evolution to understand the great diversity of modern species. Results: Phylogenetic analysis of elongation factor 2 supports the ribosomal DNA-based reconstruction of myxozoan evolution. We propose that SSU rDNA is a reliable marker for inferring myxozoan relationships, even though SSU rDNA analysis markedly disagrees with the current taxonomy. The analyses of character evolution of 15 morphological and 5 bionomical characters show the evolution of individual characters and uncover the main evolutionary changes in the myxosporean spore morphology and bionomy. Most bionomical and several morphological characters were found to be congruent with the phylogeny. The summary of character analyses leads to the simulation of myxozoan ancestral morphotypes and their evolution to the current species. As such, the ancestor of all myxozoans appears to have infected the renal tubules of freshwater fish, was sphaerosporid in shape, and had a spore with polar capsules that discharged slightly sideways. After the separation of Malacosporea, the spore of the common myxosporean ancestor then changed to the typical sphaerosporid morphotype. -
Histopathological Changes Caused by Enteromyxum Leei Infection in Farmed Sea Bream Sparus Aurata
Vol. 79: 219–228, 2008 DISEASES OF AQUATIC ORGANISMS Published May 8 doi: 10.3354/dao01832 Dis Aquat Org Histopathological changes caused by Enteromyxum leei infection in farmed sea bream Sparus aurata R. Fleurance1, C. Sauvegrain2, A. Marques3, A. Le Breton4, C. Guereaud1, Y. Cherel1, M. Wyers1,* 1Department of Veterinary Pathology, UMR 703 INRA/ENVN, Nantes Veterinary School, BP 40706, 44307 Nantes cedex 03, France 2Aquanord, Terre des marins, 59820 Gravelines, France 3DRIM Dept BEE, UM2, case 080 Université Montpellier, 34095 Montpellier cedex 5, France 4Fish Health Consultant, 31330 Grenade sur Garonne, France ABSTRACT: Histological examinations were carried out on the stomach, pyloric caeca and 4 differ- ent parts of the intestine, as well as the rectum, hepatopancreas, gall bladder and spleen of 52 sea bream Sparus aurata spontaneously infected by Enteromyxum leei. Fifteen fish from a non-infected farm were included as a control. Clinical signs appeared only in extensively and severely infected fish. We observed Enteromyxum leei almost exclusively in the intestinal tract, and very rarely in the intrahepatic biliary ducts or gall bladder. We observed heavily infected intestinal villi adjacent to par- asite-free villi. Histological changes indicated a parasite infection gradually extending from villus to villus, originating from an initial limited infected area probably located in the rectum. The parasite forms were exclusively pansporoblasts located along the epithelial basement membrane. Periodic acid-Schiff (PAS)–Alcian blue was the most useful histological stain for identifying the parasite and characterising the degree of intestinal infection. We observed severe enteritis in infected fish, with inflammatory cell infiltration and sclerosis of the lamina propria. -
Diagnosis and Treatment of Multi-Species Fish Mortality Attributed to Enteromyxum Leei While in Quarantine at a US Aquarium
Vol. 132: 37–48, 2018 DISEASES OF AQUATIC ORGANISMS Published December 11 https://doi.org/10.3354/dao03303 Dis Aquat Org Diagnosis and treatment of multi-species fish mortality attributed to Enteromyxum leei while in quarantine at a US aquarium Michael W. Hyatt1,5,*, Thomas B. Waltzek2, Elizabeth A. Kieran3,6, Salvatore Frasca Jr.3, Jan Lovy4 1Adventure Aquarium, Camden, New Jersey 08103, USA 2Wildlife & Aquatic Veterinary Disease Laboratory, University of Florida College of Veterinary Medicine, Gainesville, Florida 32611, USA 3Aquatic, Amphibian and Reptile Pathology Service, Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610, USA 4Office of Fish & Wildlife Health & Forensics, New Jersey Division of Fish & Wildlife, Oxford, New Jersey 07863, USA 5Present address: Wildlife Conservation Society, New York Aquarium, Brooklyn, NY 11224, USA 6Present address: Arizona Veterinary Diagnostic Laboratory, University of Arizona, Tucson, Arizona 85705, USA ABSTRACT: Enteromyxum leei is an enteric myxozoan parasite of fish. This myxozoan has low host specificity and is the causative agent of myxozoan emaciation disease, known for heavy mor- talities and significant financial losses within Mediterranean, Red Sea, and Asian aquaculture industries. The disease has rarely been documented within public aquaria and, to our knowledge, has never been confirmed within the USA. This case report describes an outbreak of E. leei in a population of mixed-species east African/Indo-Pacific marine fish undergoing quarantine at a public aquarium within the USA. Four of 16 different species of fish in the population, each of a different taxonomic family, were confirmed infected by the myxozoan through cloacal flush or intestinal wet mount cytology at necropsy. -
In Vitro Studies on Viability and Proliferation of Enteromyxum Scophthalmi (Myxozoa), an Enteric Parasite of Cultured Turbot Scophthalmus Maximus
DISEASES OF AQUATIC ORGANISMS Vol. 55: 133–144, 2003 Published July 8 Dis Aquat Org In vitro studies on viability and proliferation of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of cultured turbot Scophthalmus maximus María J. Redondo, Oswaldo Palenzuela*, Pilar Alvarez-Pellitero Consejo Superior de Investigaciones Científicas, Instituto de Acuicultura Torre la Sal, 12595 Ribera de Cabanes, Castellón, Spain ABSTRACT: In vitro cultivation of the myxozoan Enteromyxum scophthalmi was attempted using dif- ferent culture media and conditions. The progress of the cultures was monitored using dye-exclusion viability counts, tetrazolium-based cell-proliferation assays, measuring the incorporation of BrdU during DNA synthesis, and by morphological studies using light and electron microscopes. In pre- liminary experiments, the persistence of viable stages for a few days was ascertained in both medium 199 (M199) and in seawater. An apparent initial proliferation was noticed in the culture media, with many young stages observed by Day 7 post-inoculation (p.i.). In contrast, fast degeneration occurred in seawater, with but a few living stages persisting to Day 1 p.i and none to Day 5 p.i. Both tetrazolium-based cell-proliferation assays and dye-exclusion viability counts demonstrated a pro- gressive degeneration of the cultures. Although M199 medium and neutral pH with the addition of sera appeared to provide the most favourable conditions during the first few hours, all cultures degenerated with time and no parasite proliferation or maintenance could be achieved in the long term in any of the conditions assayed, including attempts of co-cultivation with a turbot cell line. The ultrastructure of stages cultured for 15 d demonstrated complete degeneration of organelles and mitochondria, although the plasma membrane remained intact in many stages. -
AFRICAN HERP NEWS ISSN 1017-6187 No
AFRICAN HERP NEWS ISSN 1017-6187 No. 36 December 2003 CONTENTS AFRICAN HERP NEWS E DITORIAL.____________________ l NEWSLETTER OF THE S HORT C OMMUNICATIONS MENEGON M et al. Nguu North forest reserve, Tanzania.___ 2 HERPETOLOGICAL ASSOCIATION OF AFRICA N ATURAL HISTORY NOTES CUNNINGHAM PL & W ADANK. Geochelone pardalis. ____ 9 CUNNINGHAM PL & W ADANK. Pachydactylus turneri 10 GEOGRAPHICAL D ISTRIBUTION RASMUSSEN JB. Micrelaps vaillanti 12 SCHMIDT WR & SCOTT E. Lamprophis-- swazicus-------- 14 DU TOIT DA & ALBLAS A. Nucras livida 15 ESTERHUIZEN A et al. Varanus albigularis 16 BROAD LEY DG & VAN DAELE P. Colopus wahlbergi 20 BAUER AM & LAMB T. Pachydactylus fasciatus 20 H ERPETOLOGICAL S URVEYS CUNNINGHAM M et al. Cockscomb Mt. South Africa. ____22 RECENT AFRICAN H ERPETOLOGICAL LITERATURE_____ _ _ 26 NEWS & ANNOUNCEMENTS_ _____________38 HAA FINANCIAL STATEMENTS.________ _ ____40 No. 36 December 2003 Af rican Herp News N o. 36 December 2003 HERPETOLOGICAL ASSOCIATION OF AFRICA http:/ /www. wits.ac.za/haa EDITORIAL FOUNDED 1965 The HAA is dedicated to the study and conservation of African reptiles and amphibians. Membership is open to anyone with an interest in the African herpetofauna. Members receive the It is now over a year since issue 35 of African Herp News and this long Association's journal, African Journal of Herpetolog,; (which publishes review papers, research overdue issue is replete with natural history and distribution notes, along with articles, short communications and book reviews - subject to peer review) and newsletter, Africa,i the latest update on African Herp literature from Bill Branch (apologies from Herp News (which includes short communications, life history notes, geographical distribution notes, herpetological survey reports, venom and snakebite notes, short book reviews, the editor for the delay). -
Unesco-Eolss Sample Chapters
FISHERIES AND AQUACULTURE - Myxozoan Biology And Ecology - Dr. Ariadna Sitjà-Bobadilla and Oswaldo Palenzuela MYXOZOAN BIOLOGY AND ECOLOGY Ariadna Sitjà-Bobadilla and Oswaldo Palenzuela Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain Keywords: Myxozoa, Myxosporea, Actinosporea, Malacosporea, Metazoa, Parasites, Fish Pathology, Invertebrates, Taxonomy, Phylogeny, Cell Biology, Life Cycle Contents 1. Introduction 2. Phylogeny 3. Morphology and Taxonomy 3.1. Spore Morphology 3.2. Taxonomy 4. Life Cycle 4.1. Life Cycle of Myxosporea 4.2. Life Cycle of Malacosporea 5. Cell Biology and Development 6. Ecological Aspects 6.1. Hosts 6.2. Habitats 6.3. Environmental Cues 7. Pathology 7.1. General Remarks 7.2. Pathogenic Effects of Myxozoans 7.2.1. Effects on Invertebrates 7.2.2. Effects on Fish 7.2.3. Effects on non-fish Vertebrates Acknowledgements Glossary Bibliography Biographical Sketches Summary UNESCO-EOLSS The phylum Myxozoa is a group of microscopic metazoans with an obligate endoparasitic lifestyle.SAMPLE Traditionally regarded CHAPTERS as protists, research findings during the last decades have dramatically changed our knowledge of these organisms, nowadays understood as examples of early metazoan evolution and extreme adaptation to parasitic lifestyles. Two distinct classes of myxozoans, Myxosporea and Malacosporea, are characterized by profound differences in rDNA evolution and well supported by differential biological and developmental features. This notwithstanding, most of the existing Myxosporea subtaxa require revision in the light of molecular phylogeny data. Most known myxozoans exhibit diheteroxenous cycles, alternating between a vertebrate host (mostly fish but also other poikilothermic vertebrates, and exceptionally birds and mammals) and an invertebrate (mainly annelids and bryozoans but possibly other ©Encyclopedia of Life Support Systems (EOLSS) FISHERIES AND AQUACULTURE - Myxozoan Biology And Ecology - Dr. -
Terrestrial Fauna Impact Assessment
July 2014 ENVIRONMENTAL IMPACT ASSESSMENT FOR SASOL PSA AND LPG PROJECT TERRESTRIAL FAUNA IMPACT ASSESSMENT Specialist Report 10 OOD OF MARK WOOD CONSULTANTS SSOCIADOS MOZAMBIQUE LDA PREPARED BY Author: AR Deacon Submitted to: EIA CONDUCTED BY GOLDER A WITH EIA LEADERSHIP BY MARK W SASOL Petroleum Mozambique Limitada & Sasol Petroleum Temane Limitada Report Number: 1302793 - 10712 - 20 (Eng) TERRESTRIAL FAUNA NON TECHNICAL SUMMARY Introduction Sasol Petroleum Mozambique (SPM) and Sasol Petroleum Temane (SPT) are proposing to develop the PSA Development and Liquefied Petroleum Gas (LPG) Project, situated near Inhassoro in the Inhambane Province of Mozambique. The project is an expansion of the existing Sasol Natural Gas Project in this area. Proposed new infrastructure includes 19 wells (oil and gas), associated flowlines and a new Manifold Station (8.8 ha), from which the oil flowlines will be combined into a single pipeline routed to the new Integrated PSA Liquids and LPG Plant (9.5 ha), constructed adjacent to the Central Processing Facility (CPF). This Study This study presents the findings of an assessment of the impact of the project on Terrestrial Fauna. It is one of a series of studies prepared for the Environmental Impact Assessment for the project. The study takes into account Mozambique laws and regulations, regional conventions and protocols and importantly, the Performance Standards of the International Finance Corporation, in particular Performance Standard 6, Biodiversity Conservation and Sustainable Management of Living Natural Resources, as the underpinning of the assessment and the recommendations made in the report. Methodology The survey made use of habitat availability in the different vegetation types, while the presence of observed species was used as an indicator of habitat integrity. -
First Report of Enteromyxum Leei (Myxozoa)
魚病研究 Fish Pathology, 49 (2), 57–60, 2014. 6 © 2014 The Japanese Society of Fish Pathology Short communication Typical mature spores in the intestine and gall blad- der of infected fish were in an arcuate, almost semicircu- First Report of Enteromyxum leei lar shape (Fig. 1B–D). Polar capsules were elongated, (Myxozoa) in the Black Sea in a tapering to their distal ends, open at one side of the spore, diverging at an angle of about 90°. Polar Potential Reservoir Host filaments coiled 7 times on average (range 6–8). Chromis chromis Spore and polar capsule dimensions are provided in Table 1. Based on the overall morphology and spore dimentions, the parasite was identified as a myxozoan, Ahmet Özer*, Türkay Öztürk, Hakan Özkan Enteromyxum leei. and Arzu Çam The phylum Myxozoa is composed entirely of endo- parasites, including some that cause diseases which Sinop University, Faculty of Fisheries and Aquatic substantial impact on aquaculture and fisheries around Sciences, 57000 Sinop, Turkey the world (Kent et al., 2001). Myxosporean infection occurs in a wide range of both marine and freshwater (Received January 25, 2014) fish species. Some reviews have stressed the impor- tance of those species that are associated with pathol- ogy in mariculture (Alvarez-Pellitero and Sitjà-Bobadilla, ABSTRACT—Damselfish Chromis chromis collected from 1993; Alvarez-Pellitero et al., 1995) and in freshwater the Black Sea coasts of Sinop, Turkey, were examined for farming (El-Matbouli et al., 1992). Enteromyxum leei is myxosporeans in June and July 2013. One of 25 healthy certainly one species of such concern. To our knowl- fish and 2 dead fish had infections with Enteromyxum leei. -
AN ABSTRACT of the DISSERTATION of Damien E
AN ABSTRACT OF THE DISSERTATION OF Damien E. Barrett for the degree of Doctor of Philosophy in Microbiology presented on September 17, 2020. Title: What Makes a Fish Resistant? Comparative Genomics and Transcriptomics of Oncorhynchus mykiss with Differential Resistance to the Parasite Ceratonova shasta Abstract approved: ______________________________________________________ Jerri L. Bartholomew The myxozoan Ceratonova shasta is an intestinal parasite of salmon and trout that causes ceratomyxosis, a disease characterized by severe inflammation of the intestine that can lead to hemorrhaging, necrosis, and death of the fish host. The parasite is endemic to the Pacific Northwest of the United States and Canada, where it has been linked to the decline of wild fish stocks. The parasite exerts a strong selective force on its fish host, and fish populations from C. shasta endemic watersheds become genetically fixed for resistance to ceratomyxosis. This contrasts with fish from watersheds where the parasite is not established, who are highly susceptible the disease, with a single spore capable of causing a lethal infection. Management of the disease relies on selective stocking of resistant fish, however, even these fish can succumb to the infection. Understanding the genetic and immunological basis of resistance to this disease would provide the framework for the development of therapeutics and identification of genetic markers that could be used in selective breeding. In this project, we employed a comparative transcriptomics and genomics approach to understand how resistant and susceptible strains of Oncorhynchus mykiss (rainbow trout/steelhead) respond to C. shasta infection and identify the genomic loci conferring resistance. We found that infection by C. -
Myxobolus Opsaridiumi Sp. Nov. (Cnidaria: Myxosporea) Infecting
European Journal of Taxonomy 733: 56–71 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.733.1221 www.europeanjournaloftaxonomy.eu 2021 · Lekeufack-Folefack G.B. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:901649C0-64B5-44B5-84C6-F89A695ECEAF Myxobolus opsaridiumi sp. nov. (Cnidaria: Myxosporea) infecting different tissues of an ornamental fi sh, Opsaridium ubangiensis (Pellegrin, 1901), in Cameroon: morphological and molecular characterization Guy Benoit LEKEUFACK-FOLEFACK 1, Armandine Estelle TCHOUTEZO-TIWA 2, Jameel AL-TAMIMI 3, Abraham FOMENA 4, Suliman Yousef AL-OMAR 5 & Lamjed MANSOUR 6,* 1,2,4 University of Yaounde 1, Faculty of Science, PO Box 812, Yaounde, Cameroon. 3,5,6 Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451 Riyadh, Saudi Arabia. 6 Laboratory of Biodiversity and Parasitology of Aquatic Ecosystems (LR18ES05), Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, University Campus, 2092 Tunis, Tunisia. * Corresponding author: [email protected]; [email protected] 1 Email: [email protected] 2 Email: [email protected] 4 Email: [email protected] 5 Email: [email protected] 1 urn:lsid:zoobank.org:author:A9AB57BA-D270-4AE4-887A-B6FB6CCE1676 2 urn:lsid:zoobank.org:author:27D6C64A-6195-4057-947F-8984C627236D 3 urn:lsid:zoobank.org:author:0CBB4F23-79F9-4246-9655-806C2B20C47A 4 urn:lsid:zoobank.org:author:860A2A52-A073-49D8-8F42-312668BD8AC7 5 urn:lsid:zoobank.org:author:730CFB50-9C42-465B-A213-BE26BCFBE9EB 6 urn:lsid:zoobank.org:author:2FB65FF2-E43F-40AF-8C6F-A743EEAF3233 Abstract. -
Factors Affecting the Occurrence and Abundance of the Natal Cascade Frog
Factors affecting the occurrence and abundance of the Natal Cascade frog, Hadromophryne natalensis, at Mariepskop, South Africa by KATRINA HEATHER DU TOIT Submitted in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE IN ENVIRONMENTAL ECOLOGY FACULTY OF NATURAL AND AGRICULTURAL SCIENCE UNIVERSITY OF PRETORIA PRETORIA SUPERVISOR: PROFESSOR WILLEM FERGUSON JUNE 2016 i © University of Pretoria Factors affecting the abundance and occurrence of the Natal cascade frog, Hadromophryne natalensis along streams at Mariepskop, Limpopo Student: Katrina Heather du Toit Supervisor: Professor Willem Ferguson Centre for Environmental Studies University of Pretoria Pretoria, 0002 Email: [email protected] Submitted for the degree Master of Science (Environmental Ecology) in the Faculty of Natural and Agricultural Science ii © University of Pretoria SUMMARY Amphibians have long been recognized as excellent indicators of both biological and ecological health of ecosystems, as they occupy many habitats and environments and have a diverse range of impacts on their immediate environments. It is thus important to investigate the critical habitat requirements, as well as the preferred environmental variables that are associated with different amphibian species in order to provide insight into conservation and management plans, and to predict what effects climate change and disease might have on amphibian populations. The aim of this study was to investigate the abundance and occurrence of the Natal cascade frog, Hadromophryne natalensis on Mariepskop Mountain in Limpopo, South Africa. In this regard, we investigated what environmental factors had an effect on the occurrence and temporal variation of H. natalensis (i.e. pH, water temperature, stream substrate) and, determined when the optimal breeding period of H.