Laser Safety – Module 4: Bioeffects

Total Page:16

File Type:pdf, Size:1020Kb

Laser Safety – Module 4: Bioeffects Laser Safety – Module 4: Bioeffects Slide 1 Bioeffects The three types of beam hazards — intrabeam, direct reflections, and diffuse reflections — can have negative effects on your body. In this module, we will explain these effects and examine some of the fundamentals for protecting yourself against these hazards. After completing this module, you should be able to: Identify the retina, cornea, and lens as the parts of the eye most likely to be damaged Explain how ultraviolet wavelengths affect the cornea and lens Explain how visible and near-infrared wavelengths affect the retina Explain how middle- to far-infrared wavelengths can affect the cornea and lens Describe how laser light can damage the skin and Explain the Maximum Permissible Exposure (MPE) and its importance Page | 1 Laser Safety – Module 4: Bioeffects Slide 2 Bioeffects The greatest concern of those working with or around laser beams is eye injury. While laser eye injuries do occur, the data shows that such injuries generally are the outcome of not following safety protocols. Not every eye injury means complete or partial vision loss. The extent of damage depends on the part of the eye that is exposed and the exposure parameters, such as: wavelength, power or pulse energy, and the length of exposure. These factors are used to determine the Maximum Permissible Exposure, or MPE. The MPE is your biological limit for safety. It is the level of laser radiation to which a person may be exposed without adverse biological changes in the eye or skin. Think of the MPE as the speed limit. The higher you go above the limit, the greater your risk of having an accident and the greater the consequences of injury. MPEs determine the laser control measures and protective eyewear, which are discussed in other modules. Page | 2 Laser Safety – Module 4: Bioeffects Slide 3 Bioeffects To understand the bioeffects of laser-induced eye injuries, let’s start with an explanation of the functions of the major parts of the human eye. The cornea is the transparent layer of tissue covering the eye. Damage to the outer cornea may be uncomfortable (usually a gritty feeling) or painful, but it normally heals fairly quickly. Damage to the deeper layers can be permanent. Just beneath the cornea is the iris. The iris opens and closes to control the amount of light entering the eye through the pupil. A person’s eye color is determined by pigmentation in the iris. Just behind the iris is the lens. The cornea and lens act together to focus incoming light onto the retina. A small area of the retina contains the macula and fovea. This area provides the most detailed and acute vision, as well as color perception. Damage to the fovea can have significant impact on your vision. The rest of the retina can perceive light and movement, and provides peripheral vision, but not very detailed images. Any damage to the retina will ultimately affect vision. Page | 3 Laser Safety – Module 4: Bioeffects Slide 4 Bioeffects Laser light absorption and its effect on various parts of the eye are wavelength dependent. Here are some wavelength ranges and the parts of the eye each affects. Wavelengths in the ultraviolet range (180 to 400 nanometers) can cause damage to the cornea and lens but do not penetrate to the retina. Visible-light (400 to700 nanometers) is transmitted and focused by the cornea and lens onto the retina. Light in the near-infrared range (700 to 1400 nanometers) also reaches the retina with the potential to cause lesions. Finally, light in the mid- and far-infrared ranges (1400 nanometers to one million nanometers or 1 millimeter) is absorbed by the cornea and lens, and converted to heat; thus causing damage. Page | 4 Laser Safety – Module 4: Bioeffects Slide 5 Bioeffects Ultraviolet, or UV, radiation extends from 180 to 400 nanometers and can cause injury to the cornea, lens and skin. Invisible to the eye, UV radiation can be a hidden danger. An injury can manifest itself some time (possibly hours) after the exposure occurs. As with a sunburn, you may not feel the pain from UV damage to your eye until well after the injury occurs. Long-term exposure can result in cataracts due to lens damage. Exposure in the UV-B range is most injurious to the skin. Chronic exposure can cause premature aging of tissue and skin cancer. Also be aware that sun block creams or spray do not provide protection for the entire UV spectrum and should not be relied upon as a protective barrier. Some drugs can make you more susceptible to injury from low levels of UV exposure by increasing your sensitivity to light. If you are taking a medication that warns of avoiding sunlight, and you are working around UV light, you should contact your occupational medical provider. Page | 5 Laser Safety – Module 4: Bioeffects Slide 6 Bioeffects The properties of a laser make the visible laser the brightest light source to the human eye, and it is even brighter when focused by the lens. Incoherent light, like that from a light bulb, is focused by the lens of the eye to a 150 to 250 micrometer spot at the macula. Coherent light, like that from a laser, is focused to a 10 micrometer spot at the macula. In other words, the beam passing through the pupil is focused by the lens on a spot 100,000 times smaller at the macula. This is why a 1 milliwatt per centimeter squared laser beam entering the eye becomes 100 Watts per centimeter squared at the retina. Page | 6 Laser Safety – Module 4: Bioeffects Slide 7 Bioeffects Visible light exposures can have a significant impact even if the exposure is below the MPE. While your blink or aversion response can help protect you from a Class 2 or Class 3R laser exposure, the bright light could startle you or cause temporary impaired vision. This is sometimes referred to as flash blindness and can include blurred vision, after images or glare responses. Being flashed by a low power visible laser may not cause a permanent eye injury, but if it startles you it could cause you to drop equipment, for example, or jerk your hand or body into a dangerous location in your work area. Page | 7 Laser Safety – Module 4: Bioeffects Slide 8 Bioeffects Near-infrared, or N-I-R., wavelengths extend from 700 to 1400 nanometers. Like visible light, near-infrared light is focused by the cornea and lens onto the retina, including the most critical vision area of the retina, the macula and fovea. Titanium Sapphire lasers at 800 nanometers and the common Neodynium YAG laser emitting at 1064 nanometers are major players in laser injuries. Almost all cases involve someone performing alignment without appropriate eyewear and being struck by a reflection off an optic, something else inserted into the beam path, or a full beam that is misaligned. Some people report seeing a flash and then hearing a pop from inside their eye when injured by this type of laser. Basically, a small part of the retina has vaporized Page | 8 Laser Safety – Module 4: Bioeffects Slide 9 Bioeffects A large number of laser accidents have occurred using lasers operating in the 750 to 820 nanometer range, in particular, Titanium: Sapphire lasers. While the visible wavelength range is 400 to 700 nanometers, some texts indicate that the actual range is 380 to 780 nanometers and that a number of people can see out to 820 nanometers. 700 to 820-nanometer light is very deceptive, as individuals who can actually see the faintly visible spot can easily think that the beam power is much lower than it really is. The light from an 800-nanometer laser may appear faintly visible, but your perceived response to 800-nanometer light is much less than 1 percent of the actual beam intensity. This gives the false impression that the beam is of low power. The result of accidental exposure: severe eye injury. Instead, wear laser eyewear protection and use a camera or fluorescent card to view 800nm beams! Let’s look at an actual incident that took place at a DOE research facility. Page | 9 Laser Safety – Module 4: Bioeffects Slide 10 Bioeffects A postdoctoral employee received an eye injury from exposure to a diffuse reflection of a 100 femtosecond 800 nanometer Class 4 laser beam. The extremely short pulse beam caused a 100 micrometer diameter burn to the employee’s retina. The accident occurred shortly after a mirror was removed from its mount and replaced with a corner cube. The researcher bent over to check the height of the corner cube without blocking the beam or wearing protective eyewear. He received an eye injury from diffusely scattered light produced by the corner cube and its mount. Page | 10 Laser Safety – Module 4: Bioeffects Slide 11 Bioeffects The mid- infrared range is fourteen-hundred nanometers to three thousand nanometers. Far- infrared wavelengths extend from three thousand nanometers to one million nanometers, or 1 millimeter. 1550 nanometer beams, for example, are commonly used for fiber optic communications. The Carbon Dioxide laser at 10.6 micrometers, is also found in this range. This laser is commonly used in medicine to cut tissue. Mid to Far-Infrared lasers operate outside the Retinal Hazard Region and have sometimes been mistakenly called “eye safe.” This is incorrect as these wavelengths can still cause corneal damage and potential damage to the lens. There are no “eye safe” Class 3B or Class 4 lasers! Page | 11 .
Recommended publications
  • Symptoms of Age Related Macular Degeneration
    WHAT IS MACULAR DEGENERATION? wavy or crooked, visual distortions, doorway and the choroid are interrupted causing waste or street signs seem bowed, or objects may deposits to form. Lacking proper nutrients, the light- Age related macular degeneration (AMD) is appear smaller or farther away than they sensitive cells of the macula become damaged. a disease that may either suddenly or gradually should, decrease in or loss of central vision, and The damaged cells can no longer send normal destroy the macula’s ability to maintain sharp, a central blurry spot. signals from the macula through the optic nerve to central vision. Interestingly, one’s peripheral or DRY: Progression with dry AMD is typically slower your brain, and consequently your vision becomes side vision remains unaffected. AMD is the leading de-gradation of central vision: need for increasingly blurred cause of “legal blindness” in the United States for bright illumination for reading or near work, diffi culty In either form of AMD, your vision may remain fi ne persons over 65 years of age. AMD is present in adapting to low levels of illumination, worsening blur in one eye up to several years even while the other approximately 10 percent of the population over of printed words, decreased intensity or brightness of eye’s vision has degraded. Most patients don’t the age of 52 and in up to 33 percent of individuals colors, diffi culty recognizing faces, gradual increase realize that one eye’s vision has been severely older than 75. The macula allows alone gives us the in the haziness of overall vision, and a profound drop reduced because your brain compensates the bad ability to have: sharp vision, clear vision, color vision, in your central vision acuity.
    [Show full text]
  • Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors
    pharmaceutics Article Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors Hyeong Min Kim 1,†, Hyounkoo Han 2,†, Hye Kyoung Hong 1, Ji Hyun Park 1, Kyu Hyung Park 1, Hyuncheol Kim 2,* and Se Joon Woo 1,* 1 Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; [email protected] (H.M.K.); [email protected] (H.K.H.); [email protected] (J.H.P.); [email protected] (K.H.P.) 2 Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; [email protected] * Correspondence: [email protected] (H.K.); [email protected] (S.J.W.); Tel.: +82-2-705-8922 (H.K.); +82-31-787-7377 (S.J.W.); Fax: +82-2-3273-0331 (H.K.); +82-31-787-4057 (S.J.W.) † These authors contributed equally to this work. Abstract: In this study, Retina-RPE-Choroid-Sclera (RCS) and RPE-Choroid-Sclera (CS) were prepared by scraping them off neural retina, and using the Ussing chamber we measured the average time– concentration values in the acceptor chamber across five isolated rabbit tissues for each drug molecule. We determined the outward direction permeability of the RCS and CS and calculated the neural retina permeability. The permeability coefficients of RCS and CS were as follows: ganciclovir, 13.78 ± 5.82 and 23.22 ± 9.74; brimonidine, 15.34 ± 7.64 and 31.56 ± 12.46; bevacizumab, 0.0136 ± 0.0059 and 0.0612 ± 0.0264 (×10−6 cm/s).
    [Show full text]
  • Sclera and Retina Suturing Techniques 9 Kirk H
    Chapter 9 Sclera and Retina Suturing Techniques 9 Kirk H. Packo and Sohail J. Hasan Key Points 9. 1 Introduction Surgical Indications • Vitrectomy Discussion of ophthalmic microsurgical suturing tech- – Infusion line niques as they apply to retinal surgery warrants atten- – Sclerotomies tion to two main categories of operations: vitrectomy – Conjunctival closure and scleral buckling. Th is chapter reviews the surgical – Ancillary techniques indications, basic instrumentation, surgical tech- • Scleral buckles niques, and complications associated with suturing – Encircling bands techniques in vitrectomy and scleral buckle surgery. A – Meridional elements brief discussion of future advances in retinal surgery Instrumentation appears at the end of this chapter. • Vitrectomy – Instruments – Sutures 9.2 • Scleral buckles Surgical Indications – Instruments – Sutures Surgical Technique 9.2.1 • Vitrectomy Vitrectomy – Suturing the infusion line in place – Closing sclerotomies Typically, there are three indications for suturing dur- • Scleral buckles ing vitrectomy surgery: placement of the infusion can- – Rectus muscle fi xation sutures nula, closure of sclerotomy, and the conjunctival clo- – Suturing encircling elements to the sclera sure. A variety of ancillary suturing techniques may be – Suturing meridional elements to the sclera employed during vitrectomy, including the external – Closing sclerotomy drainage sites securing of a lens ring for contact lens visualization, • Closure of the conjunctiva placement of transconjunctival or scleral fi xation su- Complications tures to manipulate the eye, and transscleral suturing • General complications of dislocated intraocular lenses. Some suturing tech- – Break in sterile technique with suture nee- niques such as iris dilation sutures and transretinal su- dles tures in giant tear repairs have now been replaced with – Breaking sutures other non–suturing techniques, such as the use of per- – Inappropriate knot creation fl uorocarbon liquids.
    [Show full text]
  • The Eye Is a Natural Optical Tool
    KEY CONCEPT The eye is a natural optical tool. BEFORE, you learned NOW, you will learn •Mirrors and lenses focus light • How the eye depends on to form images natural lenses •Mirrors and lenses can alter • How artificial lenses can be images in useful ways used to correct vision problems VOCABULARY EXPLORE Focusing Vision cornea p. 607 How does the eye focus an image? pupil p. 607 retina p. 607 PROCEDURE 1 Position yourself so you can see an object about 6 meters (20 feet) away. 2 Close one eye, hold up your index finger, and bring it as close to your open eye as you can while keeping the finger clearly in focus. 3 Keeping your finger in place, look just to the side at the more distant object and focus your eye on it. 4 Without looking away from the more distant object, observe your finger. WHAT DO YOU THINK? • How does the nearby object look when you are focusing on something distant? • What might be happening in your eye to cause this change in the nearby object? The eye gathers and focuses light. The eyes of human beings and many other animals are natural optical tools that process visible light. Eyes transmit light, refract light, and respond to different wavelengths of light. Eyes contain natural lenses that focus images of objects. Eyes convert the energy of light waves into signals that can be sent to the brain. The brain interprets these signals as shape, brightness, and color. Altogether, these processes make vision possible. In this section, you will learn how the eye works.
    [Show full text]
  • Cut-And-Assemble Paper Eye Model
    CUT-AND-ASSEMBLE PAPER EYE MODEL Background information: This activity assumes that you have study materials available for your students. However, if you need a quick review of how the eye works, try one of these videos on YouTube. (Just use YouTube’s search feature with these key words.) “Anatomy and Function of the Eye: posted by Raphael Fernandez (2 minutes) “Human Eye” posted by Smart Learning for All (cartoon, 10 minutes) “A Journey Through the Human Eye” posted by Bausch and Lomb (2.5 minutes) “How the Eye Works” posted by AniMed (2.5 minutes) You will need: • copies of the pattern pages printed onto lightweight card stock (vellum bristol is fine, or 65 or 90 pound card stock) • scissors • white glue or good quality glue stick (I always advise against “school glue.”) • clear tape (I use the shiny kind, not the “invisible” kind, as I find the shiny kind more sticky.) • a piece of thin, clear plastic (a transparency [used in copiers] is fine, or a piece of recycled clear packaging as long as it is not too thick-- it should be fairly flimsy and bend very easily) • colored pencils: red for blood vessels and muscle, and brown/blue/green for coloring iris (your choice) (Also, you can use a few other colors for lacrimal gland, optic nerve, if you want to.) • thin permanent marker for a number labels on plastic parts (such as a very thin point Sharpie) Assembly: 1) After copying pattern pages onto card stock, cut out all parts. On the background page that says THE HUMAN EYE, cut away the black rectangles and trim the triangles at the bottom, as shown in picture above.
    [Show full text]
  • Scleral Lenses and Eye Health
    Scleral Lenses and Eye Health Anatomy and Function of the Human Eye How Scleral Lenses Interact with the Ocular Surface Just as the skin protects the human body, the ocular surface protects the human Scleral lenses are large-diameter lenses designed to vault the cornea and rest on the conjunctival tissue sitting on eye. The ocular surface is made up of the cornea, the conjunctiva, the tear film, top of the sclera. The space between the back surface of the lens and the cornea acts as a fluid reservoir. Scleral and the glands that produce tears, oils, and mucus in the tear film. lenses can range in size from 13mm to 19mm, although larger diameter lenses may be designed for patients with more severe eye conditions. Due to their size, scleral lenses consist SCLERA: The sclera is the white outer wall of the eye. It is SCLERAL LENS made of collagen fibers that are arranged for strength rather of at least two zones: than transmission of light. OPTIC ZONE The optic zone vaults over the cornea CORNEA: The cornea is the front center portion of the outer Cross section of FLUID RESERVOIR wall of the eye. It is made of collagen fibers that are arranged in the eye shows The haptic zone rests on the conjunctiva such a way so that the cornea is clear. The cornea bends light the cornea, overlying the sclera as it enters the eye so that the light is focused on the retina. conjunctiva, and sclera as CORNEA The cornea has a protective surface layer called the epithelium.
    [Show full text]
  • How the Eye Works
    HOW THE EYE WORKS The Eyes & Vision Our ability to "see" starts when light reflects off an object and enters the eye. As it enters the eye, the light is unfocused. The first step in seeing is to focus the light rays onto the retina, which is the light sensitive layer found inside the eye. Once the light is focused, it stimulates cells to send millions of electrochemical impulses along the optic nerve to the brain. The portion of the brain at the back of the head interprets the impulses, enabling us to see the object. The Refraction of Light by the Eye Light entering the eye is first bent, or refracted, by the cornea -- the clear window on the outer front surface of the eyeball. The cornea provides most of the eye's optical power or light- bending ability. After the light passes through the cornea, it is bent again -- to a more finely adjusted focus -- by the crystalline lens inside the eye. The lens focuses the light on the retina. This is achieved by the ciliary muscles in the eye. They change the shape of the lens, bending or flattening it to focus the light rays on the retina. This adjustment in the lens is necessary for bringing near and far objects into focus. The process of bending light to produce a focused image on the retina is called "refraction". Ideally, the light is "refracted" in such a manner that the rays are focused into a precise image on the retina. Many vision problems occur because of an error in how our eyes refract light.
    [Show full text]
  • Retinal Anatomy and Histology
    1 Q Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? 2 Q/A Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? While often used interchangeably (including, on occasion, in this slide-set), these are technically not synonyms. The term neurosensory retina refers to the neural lining on the inside of the eye, whereas the term retina refers to this neural lining along with the retinal pigmentthree epithelium words (RPE). 3 A Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? While often used interchangeably (including, on occasion, in this slide-set), these are technically not synonyms. The term neurosensory retina refers to the neural lining on the inside of the eye, whereas the term retina refers to this neural lining along with the retinal pigment epithelium (RPE). 4 Q Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? While often used interchangeably (including, on occasion, in this slide-set), these are technically not synonyms. The term neurosensory retina refers to the neural lining on the inside of the eye, whereas the term retina refers to this neural lining along with the retinal pigment epithelium (RPE). The neurosensory retina contains three classes of cells—what are they? There are five types of neural elements—what are they? What are the three types of glial cells? The two vascular cell types? --? ----PRs ----Bipolar cells ----Ganglion cells ----Amacrine cells ----Horizontal cells --? ----Müeller cells ----Astrocytes ----Microglia --? ----Endothelial cells ----Pericytes 5 A Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? While often used interchangeably (including, on occasion, in this slide-set), these are technically not synonyms.
    [Show full text]
  • Anatomy and Physiology of the Afferent Visual System
    Handbook of Clinical Neurology, Vol. 102 (3rd series) Neuro-ophthalmology C. Kennard and R.J. Leigh, Editors # 2011 Elsevier B.V. All rights reserved Chapter 1 Anatomy and physiology of the afferent visual system SASHANK PRASAD 1* AND STEVEN L. GALETTA 2 1Division of Neuro-ophthalmology, Department of Neurology, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA 2Neuro-ophthalmology Division, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA INTRODUCTION light without distortion (Maurice, 1970). The tear–air interface and cornea contribute more to the focusing Visual processing poses an enormous computational of light than the lens does; unlike the lens, however, the challenge for the brain, which has evolved highly focusing power of the cornea is fixed. The ciliary mus- organized and efficient neural systems to meet these cles dynamically adjust the shape of the lens in order demands. In primates, approximately 55% of the cortex to focus light optimally from varying distances upon is specialized for visual processing (compared to 3% for the retina (accommodation). The total amount of light auditory processing and 11% for somatosensory pro- reaching the retina is controlled by regulation of the cessing) (Felleman and Van Essen, 1991). Over the past pupil aperture. Ultimately, the visual image becomes several decades there has been an explosion in scientific projected upside-down and backwards on to the retina understanding of these complex pathways and net- (Fishman, 1973). works. Detailed knowledge of the anatomy of the visual The majority of the blood supply to structures of the system, in combination with skilled examination, allows eye arrives via the ophthalmic artery, which is the first precise localization of neuropathological processes.
    [Show full text]
  • Rapid Evolution of the Visual System: a Cellular Assay of the Retina and Dorsal Lateral Geniculate Nucleus of the Spanish Wildcat and the Domestic Cat
    The Journal of Neuroscience, January 1993, 13(l): 208-229 Rapid Evolution of the Visual System: A Cellular Assay of the Retina and Dorsal Lateral Geniculate Nucleus of the Spanish Wildcat and the Domestic Cat Robert W. Williams,’ Carmen Cavada,2 and Fernando Reinoso-Suhrez* ‘Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis, Tennessee 38163 and *Departamento de Morfologia, Facultad de Medicina, Universidad Aut6noma de Madrid, 28029 Madrid, Spain The large Spanish wildcat, Fe/is silvestris tartessia, has re- and important topic, it has been difficult to study the process tained features of the Pleistocene ancestor of the modern of brain evolution in any detail. Our approach has been to domestic cat, F. catus. To gauge the direction and magnitude identify a pair of closely related living species,one from a highly of short-term evolutionary change in this lineage, we have conservative branch that has retained near identity with the compared the retina, the optic nerve, and the dorsal lateral ancestral species,and the other from a derived branch that has geniculate nucleus (LGN) of Spanish wildcats and their do- undergone rapid evolutionary change. The recent recognition mestic relatives. Retinas of the two species have the same that evolution and speciationcan occur in short bursts separated area. However, densities of cone photoreceptors are higher by long interludes of stasisprovides a sound theoretical basis in wildcat-over 100% higher in the area centralis-where- for a search for such pairs (Schindewolf, 1950; Eldredge and as rod densities are as high, or higher, in the domestic lin- Gould, 1972; Stanley, 1979; Gould and Eldredge, 1986).
    [Show full text]
  • Physiology of the Retina
    PHYSIOLOGY OF THE RETINA András M. Komáromy Michigan State University [email protected] 12th Biannual William Magrane Basic Science Course in Veterinary and Comparative Ophthalmology PHYSIOLOGY OF THE RETINA • INTRODUCTION • PHOTORECEPTORS • OTHER RETINAL NEURONS • NON-NEURONAL RETINAL CELLS • RETINAL BLOOD FLOW Retina ©Webvision Retina Retinal pigment epithelium (RPE) Photoreceptor segments Outer limiting membrane (OLM) Outer nuclear layer (ONL) Outer plexiform layer (OPL) Inner nuclear layer (INL) Inner plexiform layer (IPL) Ganglion cell layer Nerve fiber layer Inner limiting membrane (ILM) ©Webvision Inherited Retinal Degenerations • Retinitis pigmentosa (RP) – Approx. 1 in 3,500 people affected • Age-related macular degeneration (AMD) – 15 Mio people affected in U.S. www.nei.nih.gov Mutations Causing Retinal Disease http://www.sph.uth.tmc.edu/Retnet/ Retina Optical Coherence Tomography (OCT) Histology Monkey (Macaca fascicularis) fovea Ultrahigh-resolution OCT Drexler & Fujimoto 2008 9 Adaptive Optics Roorda & Williams 1999 6 Types of Retinal Neurons • Photoreceptor cells (rods, cones) • Horizontal cells • Bipolar cells • Amacrine cells • Interplexiform cells • Ganglion cells Signal Transmission 1st order SPECIES DIFFERENCES!! Photoreceptors Horizontal cells 2nd order Bipolar cells Amacrine cells 3rd order Retinal ganglion cells Visual Pathway lgn, lateral geniculate nucleus Changes in Membrane Potential Net positive charge out Net positive charge in PHYSIOLOGY OF THE RETINA • INTRODUCTION • PHOTORECEPTORS • OTHER RETINAL NEURONS
    [Show full text]
  • Corneal Erosion?
    What Is the Cornea? The cornea is the clear front window of the eye. It covers the iris (colored portion of the eye) and the round pupil, much like a watch crystal covers the face of a watch. The cornea is composed of five layers. The outermost surface layer is called the epithelium. Normal Eye Anatomy What Is a Corneal Abrasion? A corneal abrasion is an injury (a scratch, scrape or cut) to the corneal epithelium. Abrasions are commonly caused by fingernail scratches, paper cuts, makeup brushes, scrapes from tree or bush limbs, and rubbing of the eye. Some eye conditions, such as dry eye, increase the chance of an abrasion. You may experience the following symptoms with corneal abrasion: • Feeling of having something in your eye • Pain and soreness of the eye • Redness of the eye • Sensitivity to light • Tearing • Blurred vision To detect an abrasion on the cornea, your ophthalmologist (Eye M.D.) will use a special dye called fluorescein (pronounced FLOR-uh-seen) to illuminate the injury. How Is a Corneal Abrasion Treated? Treatment may include the following: • Patching the injured eye to prevent eyelid blinking from irritating the injury. • Applying lubricating eyedrops or ointment to the eye to form a soothing layer between the eyelid and the abrasion. • Using antibiotics to prevent infection. • Dilating (widening) the pupil to relieve pain. • Wearing a special contact lens to help healing. Minor abrasions usually heal within a day or two; larger abrasions usually take about a week. It is important not to rub the eye while it is healing.
    [Show full text]