The Horizontal Raphe of the Human Retina and Its Watershed Zones
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
12 Retina Gabriele K
299 12 Retina Gabriele K. Lang and Gerhard K. Lang 12.1 Basic Knowledge The retina is the innermost of three successive layers of the globe. It comprises two parts: ❖ A photoreceptive part (pars optica retinae), comprising the first nine of the 10 layers listed below. ❖ A nonreceptive part (pars caeca retinae) forming the epithelium of the cil- iary body and iris. The pars optica retinae merges with the pars ceca retinae at the ora serrata. Embryology: The retina develops from a diverticulum of the forebrain (proen- cephalon). Optic vesicles develop which then invaginate to form a double- walled bowl, the optic cup. The outer wall becomes the pigment epithelium, and the inner wall later differentiates into the nine layers of the retina. The retina remains linked to the forebrain throughout life through a structure known as the retinohypothalamic tract. Thickness of the retina (Fig. 12.1) Layers of the retina: Moving inward along the path of incident light, the individual layers of the retina are as follows (Fig. 12.2): 1. Inner limiting membrane (glial cell fibers separating the retina from the vitreous body). 2. Layer of optic nerve fibers (axons of the third neuron). 3. Layer of ganglion cells (cell nuclei of the multipolar ganglion cells of the third neuron; “data acquisition system”). 4. Inner plexiform layer (synapses between the axons of the second neuron and dendrites of the third neuron). 5. Inner nuclear layer (cell nuclei of the bipolar nerve cells of the second neuron, horizontal cells, and amacrine cells). 6. Outer plexiform layer (synapses between the axons of the first neuron and dendrites of the second neuron). -
Morphological Aspect of Tapetum Lucidum at Some Domestic Animals
Bulletin UASVM, Veterinary Medicine 65(2)/2008 pISSN 1843-5270; eISSN 1843-5378 MORPHOLOGICAL ASPECT OF TAPETUM LUCIDUM AT SOME DOMESTIC ANIMALS Donis ă Alina, A. Muste, F.Beteg, Roxana Briciu University of Angronomical Sciences and Veterinary Medicine Calea M ănăş tur 3-5 Cluj-Napoca [email protected] Keywords: animal ophthalmology, eye fundus, tapetum lucidum. Abstract: The ocular microanatomy of a nocturnal and a diurnal eye are very different, with compromises needed in the arrhythmic eye. Anatomic differences in light gathering are found in the organization of the retina and the optical system. The presence of a tapetum lucidum influences the light. The tapetum lucidum represents a remarkable example of neural cell and tissue specialization as an adaptation to a dim light environment and, despite these differences, all tapetal variants act to increase retinal sensitivity by reflecting light back through the photoreceptor layer. This study propose an eye fundus examination, in animals of different species: cattles, sheep, pigs, dogs cats and rabbits, to determine the presence or absence of tapetum lucidum, and his characteristics by species to species, age and even breed. Our observation were made between 2005 - 2007 at the surgery pathology clinic from FMV Cluj, on 31 subjects from different species like horses, dogs and cats (25 animals). MATERIAL AND METHOD Our observation were made between 2005 - 2007 at the surgery pathology clinic from FMV Cluj, on 30 subjects from different species like cattles, sheep, pigs, dogs cats and rabbits.The animals were halt and the examination was made with minimal tranquilization. For the purpose we used indirect ophthalmoscopy method with indirect ophthalmoscope Heine Omega 2C. -
Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors
pharmaceutics Article Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors Hyeong Min Kim 1,†, Hyounkoo Han 2,†, Hye Kyoung Hong 1, Ji Hyun Park 1, Kyu Hyung Park 1, Hyuncheol Kim 2,* and Se Joon Woo 1,* 1 Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; [email protected] (H.M.K.); [email protected] (H.K.H.); [email protected] (J.H.P.); [email protected] (K.H.P.) 2 Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; [email protected] * Correspondence: [email protected] (H.K.); [email protected] (S.J.W.); Tel.: +82-2-705-8922 (H.K.); +82-31-787-7377 (S.J.W.); Fax: +82-2-3273-0331 (H.K.); +82-31-787-4057 (S.J.W.) † These authors contributed equally to this work. Abstract: In this study, Retina-RPE-Choroid-Sclera (RCS) and RPE-Choroid-Sclera (CS) were prepared by scraping them off neural retina, and using the Ussing chamber we measured the average time– concentration values in the acceptor chamber across five isolated rabbit tissues for each drug molecule. We determined the outward direction permeability of the RCS and CS and calculated the neural retina permeability. The permeability coefficients of RCS and CS were as follows: ganciclovir, 13.78 ± 5.82 and 23.22 ± 9.74; brimonidine, 15.34 ± 7.64 and 31.56 ± 12.46; bevacizumab, 0.0136 ± 0.0059 and 0.0612 ± 0.0264 (×10−6 cm/s). -
Optic Disc Edema, Globe Flattening, Choroidal Folds, and Hyperopic Shifts Observed in Astronauts After Long-Duration Space Flight
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln NASA Publications National Aeronautics and Space Administration 10-2011 Optic Disc Edema, Globe Flattening, Choroidal Folds, and Hyperopic Shifts Observed in Astronauts after Long-duration Space Flight Thomas H. Mader Alaska Native Medical Center, [email protected] C. Robert Gibson Coastal Eye Associates Anastas F. Pass University of Houston Larry A. Kramer University of Texas Health Science Center Andrew G. Lee The Methodist Hospital See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/nasapub Part of the Physical Sciences and Mathematics Commons Mader, Thomas H.; Gibson, C. Robert; Pass, Anastas F.; Kramer, Larry A.; Lee, Andrew G.; Fogarty, Jennifer; Tarver, William J.; Dervay, Joseph P.; Hamilton, Douglas R.; Sargsyan, Ashot; Phillips, John L.; Tran, Duc; Lipsky, William; Choi, Jung; Stern, Claudia; Kuyumjian, Raffi; andolk, P James D., "Optic Disc Edema, Globe Flattening, Choroidal Folds, and Hyperopic Shifts Observed in Astronauts after Long-duration Space Flight" (2011). NASA Publications. 69. https://digitalcommons.unl.edu/nasapub/69 This Article is brought to you for free and open access by the National Aeronautics and Space Administration at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in NASA Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Thomas H. Mader, C. Robert Gibson, Anastas F. Pass, Larry A. -
Case Report a Case of Incomplete Central Retinal Artery Occlusion Associated with Short Posterior Ciliary Artery Occlusion
Hindawi Publishing Corporation Case Reports in Ophthalmological Medicine Volume 2013, Article ID 105653, 4 pages http://dx.doi.org/10.1155/2013/105653 Case Report A Case of Incomplete Central Retinal Artery Occlusion Associated with Short Posterior Ciliary Artery Occlusion Shinji Makino, Mikiko Takezawa, and Yukihiro Sato Department of Ophthalmology, Jichi Medical University, 3311-1 Yakushiji, Tochigi, Shimotsuke 329-0498, Japan Correspondence should be addressed to Shinji Makino; [email protected] Received 12 December 2012; Accepted 1 January 2013 Academic Editors: S. Machida, M. B. Parodi, and P. Venkatesh Copyright © 2013 Shinji Makino et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To our knowledge, incomplete central retinal artery occlusion associated with short posterior ciliary artery occlusion is extremely rare. Herein, we describe a case of a 62-year-old man who was referred to our hospital with of transient blindness in his right eye. At initial examination, the patient’s best-corrected visual acuity was 18/20 in the right eye. Fundus examination showed multiple so exudates around the optic disc and mild macular retinal edema in his right eye; however, a cherry red spot on the macula was not detected. Fluorescein angiography revealed delayed dye in�ow into the nasal choroidal hemisphere that is supplied by the short posterior ciliary artery. e following day, the patient’s visual acuity improved to 20/20. So exudates around the optic disc increased during observation and gradually disappeared. -
The Ganglion Cell Complex and Glaucoma
28 MARCH 2014 The ganglion cell complex and glaucoma GLAUCOMA IN ALL its manifestations (Carl Zeiss Meditec) looks for loss Graham Lakkis and clinical variants ultimately leads to of ganglion cell birefringence in the destruction of retinal ganglion cells. circumpapillary retinal nerve fibre BScOptom GradCertOcTher FACO layer. Time domain (TD) and spectral Lead Optometrist, University of Different methods are available to domain (SD) OCTs measure the Melbourne Eyecare Glaucoma Clinic detect ganglion cell damage, such as ganglion cell axons around the optic structural losses at the optic nerve nerve head to determine nerve fibre head (for example, increased C/D ratio, layer thickness and the TSNIT curve. neuroretinal rim thinning or notching) These existing clinical instruments or changes in ganglion cell function concentrate on measuring the axons of such as threshold visual field defects. the retinal ganglion cells adjacent to Existing clinical methods are limited and on the optic nerve head. in their ability to detect ganglion cell damage until there is significant loss. However, retinal ganglion cells are Approximately 40 per cent of ganglion large and complex cells extending cells need to be lost before an early from the inner retina all the way to glaucomatous threshold visual field the lateral geniculate nucleus (LGN) in defect is manifested,1 and the typically the midbrain. Ganglion cells begin at slow progression in optic nerve head the inner plexiform layer (IPL) where changes makes structural glaucoma they synapse with the bipolar and detection difficult until significant rim amacrine cells of the middle retina. tissue is lost. Their cell bodies (soma) make up the ganglion cell layer (GCL) of the inner With the advent of scanning laser retina, and the ganglion cell axons that clinical instruments, newer methods emerge are the retinal nerve fibre layer have been developed to enhance earlier (NFL). -
Characteristics of Structures and Lesions of the Eye in Laboratory Animals Used in Toxicity Studies
J Toxicol Pathol 2015; 28: 181–188 Concise Review Characteristics of structures and lesions of the eye in laboratory animals used in toxicity studies Kazumoto Shibuya1*, Masayuki Tomohiro2, Shoji Sasaki3, and Seiji Otake4 1 Testing Department, Nippon Institute for Biological Science, 9-2221-1 Shin-machi, Ome, Tokyo 198-0024, Japan 2 Clinical & Regulatory Affairs, Alcon Japan Ltd., Toranomon Hills Mori Tower, 1-23-1 Toranomon, Minato-ku, Tokyo 105-6333, Japan 3 Japan Development, AbbVie GK, 3-5-27 Mita, Minato-ku, Tokyo 108-6302, Japan 4 Safety Assessment Department, LSI Medience Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki 314-0255, Japan Abstract: Histopathology of the eye is an essential part of ocular toxicity evaluation. There are structural variations of the eye among several laboratory animals commonly used in toxicity studies, and many cases of ocular lesions in these animals are related to anatomi- cal and physiological characteristics of the eye. Since albino rats have no melanin in the eye, findings of the fundus can be observed clearly by ophthalmoscopy. Retinal atrophy is observed as a hyper-reflective lesion in the fundus and is usually observed as degenera- tion of the retina in histopathology. Albino rats are sensitive to light, and light-induced retinal degeneration is commonly observed because there is no melanin in the eye. Therefore, it is important to differentiate the causes of retinal degeneration because the lesion occurs spontaneously and is induced by several drugs or by lighting. In dogs, the tapetum lucidum, a multilayered reflective tissue of the choroid, is one of unique structures of the eye. -
Meet the Choroid N Optometric Management Joe Pizzimenti, OD, FAAO O Scientific Advisory Boards [email protected] N Zeiss N Zeavision N Thrombogenics N Genentech
10/29/19 Financial Disclosures o Honoraria n Review of Optometry Meet The Choroid n Optometric Management Joe Pizzimenti, OD, FAAO o Scientific Advisory Boards [email protected] n Zeiss n Zeavision n Thrombogenics n Genentech Financial Disclosures Goals for This Course o Consulting Fees n Zeiss o Functional anatomy review n Zeavision n Choroid n Maculogix o Choroid examination and evaluation o Proprietary Interests o Case examples n None o Interactive o Stockholder: Zeavision Questions? 1 10/29/19 The Choroid The Choroid: Structure, o Located between the Function, and Evaluation sclera and the RPE n Extends from ora serrata to optic nerve o Pigmented/vascular tissue .75mm thick o Nourishes the RPE n Choroiocapillaris designed to leak o Absorbs light that passes through retina The Choriod RPE Bruch’s Membrane thickness o Loose connective tissue o Basal lamina of RPE o Melanocytes o Anterior collagenous o Choriocapillaris layer Mel. n Fenestrated endothelium o Elastic layer allows diffusion of o Posterior collagenous proteins CC layer n S__________ regulation o Basal lamina of CC BM n High blood flow endothelium n Very little O-2 extracted, o Contamination of so high venous O-2 Bruch’s can result in sclera d________, CNVM Nourishing the Retina Choroid Microstructure o 2 main sources of blood supply to retina: • Choriocapillaris o Choroidal BVs n Supplies outer retinal • Sattler’s layer layers, including PRs o CRA • Haller’s layer n 4 branches nourish inner retina • Supra - choroid n Run radially toward fovea 2 10/29/19 Imaging the Vascular Layers Imaging the Choroid of the Choroid WHAT IS ENHANCED Imaging the Choroid-EDI DEPTH OCT IMAGING? • EDI-OCT • Enhanced-depth imaging (EDI) OCT modifies the standard technique of image acquisition to better reveal the structural details of the choroid. -
Sclera and Retina Suturing Techniques 9 Kirk H
Chapter 9 Sclera and Retina Suturing Techniques 9 Kirk H. Packo and Sohail J. Hasan Key Points 9. 1 Introduction Surgical Indications • Vitrectomy Discussion of ophthalmic microsurgical suturing tech- – Infusion line niques as they apply to retinal surgery warrants atten- – Sclerotomies tion to two main categories of operations: vitrectomy – Conjunctival closure and scleral buckling. Th is chapter reviews the surgical – Ancillary techniques indications, basic instrumentation, surgical tech- • Scleral buckles niques, and complications associated with suturing – Encircling bands techniques in vitrectomy and scleral buckle surgery. A – Meridional elements brief discussion of future advances in retinal surgery Instrumentation appears at the end of this chapter. • Vitrectomy – Instruments – Sutures 9.2 • Scleral buckles Surgical Indications – Instruments – Sutures Surgical Technique 9.2.1 • Vitrectomy Vitrectomy – Suturing the infusion line in place – Closing sclerotomies Typically, there are three indications for suturing dur- • Scleral buckles ing vitrectomy surgery: placement of the infusion can- – Rectus muscle fi xation sutures nula, closure of sclerotomy, and the conjunctival clo- – Suturing encircling elements to the sclera sure. A variety of ancillary suturing techniques may be – Suturing meridional elements to the sclera employed during vitrectomy, including the external – Closing sclerotomy drainage sites securing of a lens ring for contact lens visualization, • Closure of the conjunctiva placement of transconjunctival or scleral fi xation su- Complications tures to manipulate the eye, and transscleral suturing • General complications of dislocated intraocular lenses. Some suturing tech- – Break in sterile technique with suture nee- niques such as iris dilation sutures and transretinal su- dles tures in giant tear repairs have now been replaced with – Breaking sutures other non–suturing techniques, such as the use of per- – Inappropriate knot creation fl uorocarbon liquids. -
Retinal Ganglion Cell Loss Is Size Dependent in Experimental Glaucoma
Investigative Ophthalmology & Visual Science, Vol. 32, No. 3, March 1991 Copyright © Association for Research in Vision and Ophthalmology Retinal Ganglion Cell Loss Is Size Dependent in Experimental Glaucoma Yoseph Glovinsky,* Harry A. Quigley,f and Gregory R. Dunkelbergerf Thirty-two areas located in the temporal midperipheral retina were evaluated in whole-mount prepara- tions from four monkeys with monocular experimental glaucoma. Diameter frequency distributions of remaining ganglion cells in the glaucomatous eye were compared with corresponding areas in the normal fellow eye. Large cells were significantly more vulnerable at each stage of cell damage as determined by linear-regression analysis. The magnitude of size-dependent loss was moderate at an early stage (20% loss), peaked at 50% total cell loss, and decreased in advanced damage (70% loss). In glaucomatous eyes, the lower retina had significantly more large cell loss than the corresponding areas of the upper retina. In optic nerve zones that matched the retinal areas studied, large axons selectively were damaged first. Psychophysical testing aimed at functions subserved by larger ganglion cells is recommended for detection and follow-up of early glaucoma; however, assessment of functions unique to small cells is more appropriate for detecting change in advanced glaucoma. Invest Ophthalmol Vis Sci 32:484-491, 1991 Current psychophysical tests do not detect glau- tage of ideal cellular preservation. Eyes with mild, comatous damage until a substantial minority of reti- moderate, and late damage were evaluated. In addi- nal ganglion cells have died.1'2 To develop more sen- tion, we correlated the damage patterns in the retinas sitive tests, a comprehensive understanding of the and optic nerves of the glaucomatous eyes. -
Action and Perception Are Temporally Coupled by a Common Mechanism That Leads to a Timing Misperception
The Journal of Neuroscience, January 28, 2015 • 35(4):1493–1504 • 1493 Behavioral/Cognitive Action and Perception Are Temporally Coupled by a Common Mechanism That Leads to a Timing Misperception Elena Pretegiani,1,2 Corina Astefanoaei,3 XPierre M. Daye,1,4 Edmond J. FitzGibbon,1 Dorina-Emilia Creanga,3 Alessandra Rufa,2 and XLance M. Optican1 1Laboratory of Sensorimotor Research, NEI, NIH, DHHS, Bethesda, Maryland, 20892-4435, 2EVA-Laboratory, University of Siena, 53100 Siena, Italy, 3Alexandru Ioan Cuza University, Physics Faculty, 700506 Iasi, Romania, and 4Institut du cerveau et de la moelle´pinie e `re (ICM), INSERM UMRS 975, 75013 Paris, France We move our eyes to explore the world, but visual areas determining where to look next (action) are different from those determining what we are seeing (perception). Whether, or how, action and perception are temporally coordinated is not known. The preparation time course of an action (e.g., a saccade) has been widely studied with the gap/overlap paradigm with temporal asynchronies (TA) between peripheral target onset and fixation point offset (gap, synchronous, or overlap). However, whether the subjects perceive the gap or overlap, and when they perceive it, has not been studied. We adapted the gap/overlap paradigm to study the temporal coupling of action and perception. Human subjects made saccades to targets with different TAs with respect to fixation point offset and reported whether they perceived the stimuli as separated by a gap or overlapped in time. Both saccadic and perceptual report reaction times changed in the same way as a function of TA. The TA dependencies of the time change for action and perception were very similar, suggesting a common neural substrate. -
The Complexity and Origins of the Human Eye: a Brief Study on the Anatomy, Physiology, and Origin of the Eye
Running Head: THE COMPLEX HUMAN EYE 1 The Complexity and Origins of the Human Eye: A Brief Study on the Anatomy, Physiology, and Origin of the Eye Evan Sebastian A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2010 THE COMPLEX HUMAN EYE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ David A. Titcomb, PT, DPT Thesis Chair ______________________________ David DeWitt, Ph.D. Committee Member ______________________________ Garth McGibbon, M.S. Committee Member ______________________________ Marilyn Gadomski, Ph.D. Assistant Honors Director ______________________________ Date THE COMPLEX HUMAN EYE 3 Abstract The human eye has been the cause of much controversy in regards to its complexity and how the human eye came to be. Through following and discussing the anatomical and physiological functions of the eye, a better understanding of the argument of origins can be seen. The anatomy of the human eye and its many functions are clearly seen, through its complexity. When observing the intricacy of vision and all of the different aspects and connections, it does seem that the human eye is a miracle, no matter its origins. Major biological functions and processes occurring in the retina show the intensity of the eye’s intricacy. After viewing the eye and reviewing its anatomical and physiological domain, arguments regarding its origins are more clearly seen and understood. Evolutionary theory, in terms of Darwin’s thoughts, theorized fossilization of animals, computer simulations of eye evolution, and new research on supposed prior genes occurring in lower life forms leading to human life.