Rapid Evolution of the Visual System: a Cellular Assay of the Retina and Dorsal Lateral Geniculate Nucleus of the Spanish Wildcat and the Domestic Cat

Total Page:16

File Type:pdf, Size:1020Kb

Rapid Evolution of the Visual System: a Cellular Assay of the Retina and Dorsal Lateral Geniculate Nucleus of the Spanish Wildcat and the Domestic Cat The Journal of Neuroscience, January 1993, 13(l): 208-229 Rapid Evolution of the Visual System: A Cellular Assay of the Retina and Dorsal Lateral Geniculate Nucleus of the Spanish Wildcat and the Domestic Cat Robert W. Williams,’ Carmen Cavada,2 and Fernando Reinoso-Suhrez* ‘Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis, Tennessee 38163 and *Departamento de Morfologia, Facultad de Medicina, Universidad Aut6noma de Madrid, 28029 Madrid, Spain The large Spanish wildcat, Fe/is silvestris tartessia, has re- and important topic, it has been difficult to study the process tained features of the Pleistocene ancestor of the modern of brain evolution in any detail. Our approach has been to domestic cat, F. catus. To gauge the direction and magnitude identify a pair of closely related living species,one from a highly of short-term evolutionary change in this lineage, we have conservative branch that has retained near identity with the compared the retina, the optic nerve, and the dorsal lateral ancestral species,and the other from a derived branch that has geniculate nucleus (LGN) of Spanish wildcats and their do- undergone rapid evolutionary change. The recent recognition mestic relatives. Retinas of the two species have the same that evolution and speciationcan occur in short bursts separated area. However, densities of cone photoreceptors are higher by long interludes of stasisprovides a sound theoretical basis in wildcat-over 100% higher in the area centralis-where- for a search for such pairs (Schindewolf, 1950; Eldredge and as rod densities are as high, or higher, in the domestic lin- Gould, 1972; Stanley, 1979; Gould and Eldredge, 1986). eage. Densities of retinal ganglion cells are typically 20- A candidate pair among mammals is the wildcat, Fe/is sil- 100% higher across the wildcat retina, and the total ganglion vestris, and the domestic cat, F. catus. Historical, biochemical, cell population is nearly 70% higher than in the domestic and genetic data point to a derivation of the domestic cat from cat. These differences are confined to the populations of the North African wildcat, F. silvestris lybica (Darwin, 1890; beta and gamma retinal ganglion cells. In contrast, the pop- Clutton-Brock, 1981; Benveniste, 1985; Collier and O’Brien, ulation of alpha cells is almost precisely the same in both 1985; Wayne et al., 1989). This small North African wildcat species. The wildcat LGN is much larger than that of the descendedfrom a larger ancestorwhose Pleistocene fossil record domestic cat and contains-50% more neurons. However, has been described carefully by Km-ten (1965a,b). These Pleis- cell size does not differ appreciably in either the retina or tocene wildcats share a constellation of features-short pre- LGN of these species. The differences in total numbers of molar-canine diastema, large canine and carnassialteeth, and ganglion cells and LGN neurons correspond neatly to the a low crowned fourth lower premolar-with the particular sub- overall decline in brain size in the domestic lineage and to specieswe have studied, F. silvestristartessia (Km-ten, 1965a,b). allometric predictions based on average species differences In fact, the Spanishwildcat has more in common with wildcats in body size. We suggest that an increase in the severity of living toward the end of the Wtirm glaciation, 15,000-20,000 naturally occurring cell death is the most plausible mecha- years before present (BP) than with other extant F. silvestris nism that can account for the rapid evolutionary reduction subspecies(Table 1). For this reason,KurtCn (1965b) concluded in cell populations in this feline lineage. that the Spanish subspeciesis an isolated relict of an ancient [Key words: brain size, allometry, rods and cones, retinal Mediterranean wildcat population that has survived with min- ganglion cell, optic nerve, lateral geniculate nucleus, cell imal change for over 20,000 years in a warm Iberian refuge. death] We decided that a comparison of this particular wildcat sub- specieswith the domestic cat could provide detailed insight into The tempo of mammalian brain evolution has beenrapid. Two- the range, rate, and direction of evolutionary change in brain fold changesin brain weight have occurred over periods of l- structure. For example, we thought we would be able to deter- 5 million years in several lineages,including that of humans mine whether the rapid decline in body size in the cat lineage (Edinger, 1948, 1966; Jerison, 1973, 1979; Radinsky, 1973, has been associatedwith a matched decline in brain massand, 1975, 198 1; Eisenberg, 1981). Although this is an interesting if so, whether this changehas been brought about by a reduction in neuron number or an increase in cell packing density. We Received Apr. 14, 1992; revised July 13, 1992; accepted July 15, 1992. also thought it would be possibleto determine whether numer- This research was supported in part by Grant DGICYT PB88-0170 and a grant ical relations among interconnected parts of the brain have been from the NIH. We are especially indebted to Mariano Sanz Pech and Antonio conserved in this rapidly evolving mammalian lineage, and if Ptrez Alonso-Geta ofthe Institute for the Conservation ofNature, Madrid, Spain, so, then how precisely. Finally, we thought it might be possible for wildcat material. We thank Drs. Leo Chalupa, Andrea Elberger, and Douglas Frost for the generous use of material from their collections of domestic cat tissue, to compare ontogenetic differencesin thesespecies and thereby and Drs. Leo Chalupa, Robert Foehring, Dan Goldowitz, Todd Preuss, Anton expose developmental and cellular mechanismsthat ultimately Reiner, and Michael Rowe for critical comments on drafts of the manuscript. Correspondence should be addressed to Dr. Robert Williams at the above underlie phyletic change. address. Taking advantage of the wealth of data on the structure of Copyright 0 1993 Society for Neuroscience 0270-6474/93/130208-21$05.00/O the primary visual systemof domestic cats, we have begunwith The Journal of Neuroscience, January 1993, 13(i) 209 a quantitative analysis of populations of cells in the retina and Femurs of European wildcats are typically less than 13 cm long (Rijhrs, the dorsal lateral geniculate nucleus (LGN) of the Spanish wild- 1955). HRP injection procedure. We made injections of horseradish perox- cat. In this analysis we make two explicit assumptions: first, idase (HRP) into the left dorsal lateral geniculate nucleus (LGN), left that th; adult wildcats, which we have had the very rare op- superior colliculus, and left pretectal region of the male wildcat (SI). portunitv to studv,_ I are representative of the Spanish subspecies; Similar unilateral (n = 1) and bilateral (n = 3) series of injections were and second, that the Spanish wildcat is itselfrepresentative of, made into normal domestic cats. Some of the domestic cat retinas have or at least similar to, the ancestral population of Pleistocene been described and illustrated in previous studies (Chalupa et al., 1984; Kirby and Chalupa, 1986). Animals initially received a single intra- wildcats from which domestic cats ultimately trace their descent. muscular dose of ketamine f0.4~ cc)I and atrooine (0.2 cc) and were The validity of these key assumptions is supported by data subseauentlv anesthetized with an intravenous miection of sodium pen- summarized in the next section (Table 1). From this vantage tobarbital (30 mg/kg). They were placed in a stereotaxic device-and point, we attempt to assess structural changes in the primary craniotomies were made over the approximate locations of the left superior colliculus, pretectum, and dorsal lateral geniculate nucleus. The visual system associated with approximately 25,000 years of boundaries of retinorecipient nuclei were mapped by recording multi- natural selection at the close of the Pleistocene, followed by cellular visually evoked activity with a tungsten microelectrode..A series 3000-4000 years of domestication. of 150-200 nl iniections of 25% HRP diluted in oure dimethvl sulfoxide (DMSO) were made along each penetration within the LGN (23 pen- etrations), pretectum (6 penetrations), and superior colliculus (10 pen- etrations) as described in Chalupa et al. (1984). The total volume of Materials and Methods HRP delivered in a single penetration ranged from 200 to 600 nl. We received two adult wildcats (Felis silvestris tartessiu Miller), a male Perfusion and dissection of the animals. All animals received an over- (SI) and a female (S2), from the Institute for the Conservation ofNature dose of pentobarbital(200 mg) and were subsequently perfused through (ICONA), Spain. Both animals had been rescued from game traps in the heart with phosphate-buffered saline (0.1 M, pH 7.3), followed by a the Sierra Morena of south central Spain. The two thin but healthy mixture of 1.25% paraformaldehyde and 2.5% glutaraldehyde in phos- animals had been held for several months in a large outdoor pen. Breed- phate buffer. We removed the cranial vault in one large intact piece, ing was thought to have failed. Both animals had the coat color and and the brain-including olfactory bulb, pituitary, and the entire me- pattern typical of wildcats and many domestic tabby cats (Haltenorth, dulla (Fig. I)-the eyes, and segments of most cranial nerves were re- 1953; Rodriguez de la Fuente, 1979). Each had four prominent dark moved. We took retinas from the eyes and flattened them by making a streaks running down the neck, a single broad dark band running along set of radial cuts. The areas of flat-mounted retinas were measured before the dorsal midline to the base of the tail, six to eight less distinct dark dehydration. We cleaned crania and dentaries in a 25% solution of arched bands running from back to abdomen, and three to four dark bleach. Pelts of both wildcats were returned to ICONA. rings around limbs and tails. Figure 26 in Haltenorth (1953) shows a Following the transcardial perfusion of wildcat S2, an adult female specimen of the F.
Recommended publications
  • Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors
    pharmaceutics Article Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors Hyeong Min Kim 1,†, Hyounkoo Han 2,†, Hye Kyoung Hong 1, Ji Hyun Park 1, Kyu Hyung Park 1, Hyuncheol Kim 2,* and Se Joon Woo 1,* 1 Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; [email protected] (H.M.K.); [email protected] (H.K.H.); [email protected] (J.H.P.); [email protected] (K.H.P.) 2 Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; [email protected] * Correspondence: [email protected] (H.K.); [email protected] (S.J.W.); Tel.: +82-2-705-8922 (H.K.); +82-31-787-7377 (S.J.W.); Fax: +82-2-3273-0331 (H.K.); +82-31-787-4057 (S.J.W.) † These authors contributed equally to this work. Abstract: In this study, Retina-RPE-Choroid-Sclera (RCS) and RPE-Choroid-Sclera (CS) were prepared by scraping them off neural retina, and using the Ussing chamber we measured the average time– concentration values in the acceptor chamber across five isolated rabbit tissues for each drug molecule. We determined the outward direction permeability of the RCS and CS and calculated the neural retina permeability. The permeability coefficients of RCS and CS were as follows: ganciclovir, 13.78 ± 5.82 and 23.22 ± 9.74; brimonidine, 15.34 ± 7.64 and 31.56 ± 12.46; bevacizumab, 0.0136 ± 0.0059 and 0.0612 ± 0.0264 (×10−6 cm/s).
    [Show full text]
  • Understanding Sensory Processing: Looking at Children's Behavior Through the Lens of Sensory Processing
    Understanding Sensory Processing: Looking at Children’s Behavior Through the Lens of Sensory Processing Communities of Practice in Autism September 24, 2009 Charlottesville, VA Dianne Koontz Lowman, Ed.D. Early Childhood Coordinator Region 5 T/TAC James Madison University MSC 9002 Harrisonburg, VA 22807 [email protected] ______________________________________________________________________________ Dianne Koontz Lowman/[email protected]/2008 Page 1 Looking at Children’s Behavior Through the Lens of Sensory Processing Do you know a child like this? Travis is constantly moving, pushing, or chewing on things. The collar of his shirt and coat are always wet from chewing. When talking to people, he tends to push up against you. Or do you know another child? Sierra does not like to be hugged or kissed by anyone. She gets upset with other children bump up against her. She doesn’t like socks with a heel or toe seam or any tags on clothes. Why is Travis always chewing? Why doesn’t Sierra liked to be touched? Why do children react differently to things around them? These children have different ways of reacting to the things around them, to sensations. Over the years, different terms (such as sensory integration) have been used to describe how children deal with the information they receive through their senses. Currently, the term being used to describe children who have difficulty dealing with input from their senses is sensory processing disorder. _____________________________________________________________________ Sensory Processing Disorder
    [Show full text]
  • Sclera and Retina Suturing Techniques 9 Kirk H
    Chapter 9 Sclera and Retina Suturing Techniques 9 Kirk H. Packo and Sohail J. Hasan Key Points 9. 1 Introduction Surgical Indications • Vitrectomy Discussion of ophthalmic microsurgical suturing tech- – Infusion line niques as they apply to retinal surgery warrants atten- – Sclerotomies tion to two main categories of operations: vitrectomy – Conjunctival closure and scleral buckling. Th is chapter reviews the surgical – Ancillary techniques indications, basic instrumentation, surgical tech- • Scleral buckles niques, and complications associated with suturing – Encircling bands techniques in vitrectomy and scleral buckle surgery. A – Meridional elements brief discussion of future advances in retinal surgery Instrumentation appears at the end of this chapter. • Vitrectomy – Instruments – Sutures 9.2 • Scleral buckles Surgical Indications – Instruments – Sutures Surgical Technique 9.2.1 • Vitrectomy Vitrectomy – Suturing the infusion line in place – Closing sclerotomies Typically, there are three indications for suturing dur- • Scleral buckles ing vitrectomy surgery: placement of the infusion can- – Rectus muscle fi xation sutures nula, closure of sclerotomy, and the conjunctival clo- – Suturing encircling elements to the sclera sure. A variety of ancillary suturing techniques may be – Suturing meridional elements to the sclera employed during vitrectomy, including the external – Closing sclerotomy drainage sites securing of a lens ring for contact lens visualization, • Closure of the conjunctiva placement of transconjunctival or scleral fi xation su- Complications tures to manipulate the eye, and transscleral suturing • General complications of dislocated intraocular lenses. Some suturing tech- – Break in sterile technique with suture nee- niques such as iris dilation sutures and transretinal su- dles tures in giant tear repairs have now been replaced with – Breaking sutures other non–suturing techniques, such as the use of per- – Inappropriate knot creation fl uorocarbon liquids.
    [Show full text]
  • The Visual System: Higher Visual Processing
    The Visual System: Higher Visual Processing Primary visual cortex The primary visual cortex is located in the occipital cortex. It receives visual information exclusively from the contralateral hemifield, which is topographically represented and wherein the fovea is granted an extended representation. Like most cortical areas, primary visual cortex consists of six layers. It also contains, however, a prominent stripe of white matter in its layer 4 - the stripe of Gennari - consisting of the myelinated axons of the lateral geniculate nucleus neurons. For this reason, the primary visual cortex is also referred to as the striate cortex. The LGN projections to the primary visual cortex are segregated. The axons of the cells from the magnocellular layers terminate principally within sublamina 4Ca, and those from the parvocellular layers terminate principally within sublamina 4Cb. Ocular dominance columns The inputs from the two eyes also are segregated within layer 4 of primary visual cortex and form alternating ocular dominance columns. Alternating ocular dominance columns can be visualized with autoradiography after injecting radiolabeled amino acids into one eye that are transported transynaptically from the retina. Although the neurons in layer 4 are monocular, neurons in the other layers of the same column combine signals from the two eyes, but their activation has the same ocular preference. Bringing together the inputs from the two eyes at the level of the striate cortex provide a basis for stereopsis, the sensation of depth perception provided by binocular disparity, i.e., when an image falls on non-corresponding parts of the two retinas. Some neurons respond to disparities beyond the plane of fixation (far cells), while others respond to disparities in front of the plane of the fixation (near cells).
    [Show full text]
  • Visual Stimulation Activities for Infants and Toddlers
    National Institute for the Mentally Handicapped VISUAL STIMULATION ACTIVITIES FOR INFANTS AND TODDLERS A GUIDE TO PARENTS AND CAREGIVERS DR. AMAR Jyoihi PERShA Ms. K.R.NAWVi National Institute for the Mentally Handicapped (Ministryof Social Justice & Empowerment, Government of India) Manovikasnagar, Secunderabad - 500 009, Andhra Pradesh, INDIA. Grams : MANOVIKAS Phone : 040-27751741 Fax :040-27750198 E-mail : [email protected] Website : www.nimhindia.org VISUAL STIMULATION ACTIVITIES FOR INFANTS AND TODDLERS Authors : Dr. Amar Jyothi Persha, Ms. K.R. Nawvi Copyright 2004 National Institute for the Mentally Handicapped Secunderabad - 500 009. All rights Reserved. ISBN 81 89001 02 7 Designing Ramana Chepuri, Ramesh Chepuri, Ramaswamy, Secunderabad - 500 003. Ph : 040-55762484 Printed by : Sree Ramana Process Pvt. Ltd., Secunderabad - 500 003. Ph : 040-27811750 ,&ii1iti iiiificti icçiIii FP-1T1 (i1 1TfTftrr Icl1,'T NATIONALINSTITUTE FOR THE Dr.L. GOVINDA RAO MENTALLYHANDICAPPED irector (Ministry of Social Justice and Empowerment, Government of India) FOREWORD This book is an outcome of the project titled "Development of stimulation activities for visually impaired infants and toddlers". Studies show that there are six lakh children born with visual problem each year, among them almost 80% have a residual visual capacity. The visual system gives us a variety of information about the environment, which is necessary for learning and acquiring skills for daily living. Vision is the sense that reveals the mystery of the world to the child. The eyes are the outgrowth of the brain and they parallel the development and growth of the brain in the first few months of life. Visual system matures rapidly as the brain does in these early years of life.
    [Show full text]
  • How the Eye Works
    HOW THE EYE WORKS The Eyes & Vision Our ability to "see" starts when light reflects off an object and enters the eye. As it enters the eye, the light is unfocused. The first step in seeing is to focus the light rays onto the retina, which is the light sensitive layer found inside the eye. Once the light is focused, it stimulates cells to send millions of electrochemical impulses along the optic nerve to the brain. The portion of the brain at the back of the head interprets the impulses, enabling us to see the object. The Refraction of Light by the Eye Light entering the eye is first bent, or refracted, by the cornea -- the clear window on the outer front surface of the eyeball. The cornea provides most of the eye's optical power or light- bending ability. After the light passes through the cornea, it is bent again -- to a more finely adjusted focus -- by the crystalline lens inside the eye. The lens focuses the light on the retina. This is achieved by the ciliary muscles in the eye. They change the shape of the lens, bending or flattening it to focus the light rays on the retina. This adjustment in the lens is necessary for bringing near and far objects into focus. The process of bending light to produce a focused image on the retina is called "refraction". Ideally, the light is "refracted" in such a manner that the rays are focused into a precise image on the retina. Many vision problems occur because of an error in how our eyes refract light.
    [Show full text]
  • Olfaction Modulates Ambiguous Visual Motion Perception
    OPEN Smelling directions: Olfaction modulates SUBJECT AREAS: ambiguous visual motion perception HUMAN BEHAVIOUR Shenbing Kuang & Tao Zhang PERCEPTION MOTION State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China. OLFACTORY CORTEX Senses of smells are often accompanied by simultaneous visual sensations. Previous studies have Received documented enhanced olfactory performance with concurrent presence of congruent color- or shape- 27 February 2014 related visual cues, and facilitated visual object perception when congruent smells are simultaneously present. These visual object-olfaction interactions suggest the existences of couplings between the olfactory Accepted pathway and the visual ventral processing stream. However, it is not known if olfaction can modulate visual 3 July 2014 motion perception, a function that is related to the visual dorsal stream. We tested this possibility by examining the influence of olfactory cues on the perceptions of ambiguous visual motion signals. We Published showed that, after introducing an association between motion directions and olfactory cues, olfaction could 23 July 2014 indeed bias ambiguous visual motion perceptions. Our result that olfaction modulates visual motion processing adds to the current knowledge of cross-modal interactions and implies a possible functional linkage between the olfactory system and the visual dorsal pathway. Correspondence and requests for materials n our daily life, we are constantly exposed to multiple sensory inputs from different sensory modalities of should be addressed to varying reliability. Yet we could effortless integrate these parallel sensory signals and maintain a unified T.Z. (taozhang@psych. I perception that allows us to interact with the external world.
    [Show full text]
  • Retinal Anatomy and Histology
    1 Q Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? 2 Q/A Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? While often used interchangeably (including, on occasion, in this slide-set), these are technically not synonyms. The term neurosensory retina refers to the neural lining on the inside of the eye, whereas the term retina refers to this neural lining along with the retinal pigmentthree epithelium words (RPE). 3 A Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? While often used interchangeably (including, on occasion, in this slide-set), these are technically not synonyms. The term neurosensory retina refers to the neural lining on the inside of the eye, whereas the term retina refers to this neural lining along with the retinal pigment epithelium (RPE). 4 Q Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? While often used interchangeably (including, on occasion, in this slide-set), these are technically not synonyms. The term neurosensory retina refers to the neural lining on the inside of the eye, whereas the term retina refers to this neural lining along with the retinal pigment epithelium (RPE). The neurosensory retina contains three classes of cells—what are they? There are five types of neural elements—what are they? What are the three types of glial cells? The two vascular cell types? --? ----PRs ----Bipolar cells ----Ganglion cells ----Amacrine cells ----Horizontal cells --? ----Müeller cells ----Astrocytes ----Microglia --? ----Endothelial cells ----Pericytes 5 A Retinal Anatomy and Histology What is the difference between the retina and the neurosensory retina? While often used interchangeably (including, on occasion, in this slide-set), these are technically not synonyms.
    [Show full text]
  • Anatomy and Physiology of the Afferent Visual System
    Handbook of Clinical Neurology, Vol. 102 (3rd series) Neuro-ophthalmology C. Kennard and R.J. Leigh, Editors # 2011 Elsevier B.V. All rights reserved Chapter 1 Anatomy and physiology of the afferent visual system SASHANK PRASAD 1* AND STEVEN L. GALETTA 2 1Division of Neuro-ophthalmology, Department of Neurology, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA 2Neuro-ophthalmology Division, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA INTRODUCTION light without distortion (Maurice, 1970). The tear–air interface and cornea contribute more to the focusing Visual processing poses an enormous computational of light than the lens does; unlike the lens, however, the challenge for the brain, which has evolved highly focusing power of the cornea is fixed. The ciliary mus- organized and efficient neural systems to meet these cles dynamically adjust the shape of the lens in order demands. In primates, approximately 55% of the cortex to focus light optimally from varying distances upon is specialized for visual processing (compared to 3% for the retina (accommodation). The total amount of light auditory processing and 11% for somatosensory pro- reaching the retina is controlled by regulation of the cessing) (Felleman and Van Essen, 1991). Over the past pupil aperture. Ultimately, the visual image becomes several decades there has been an explosion in scientific projected upside-down and backwards on to the retina understanding of these complex pathways and net- (Fishman, 1973). works. Detailed knowledge of the anatomy of the visual The majority of the blood supply to structures of the system, in combination with skilled examination, allows eye arrives via the ophthalmic artery, which is the first precise localization of neuropathological processes.
    [Show full text]
  • Mapping out the Olfactory Design Space for Novel Interactions
    1 SMELL SPACE: Mapping out the Olfactory Design Space for 2 Novel Interactions 3 4 SCHI Lab, School of Engineering and Informatics, University of Sussex, UK 5 EMANUELA MAGGIONI, 6 ROBERT COBDEN, SCHI Lab, School of Engineering and Informatics, University of Sussex, UK 7 DMITRIJS DMITRENKO, SCHI Lab, School of Engineering and Informatics, University of Sussex, UK 8 KASPER HORNBÆK, Department of Computer Science, University of Copenhagen, Denmark 9 MARIANNA OBRIST, SCHI Lab, School of Engineering and Informatics, University of Sussex, UK 10 The human sense of smell is powerful. However, the way we use smell as interaction modality in HCI is 11 limited. We lack a common reference point to guide designers’ choices when using smell. Here, we map out 12 an olfactory design space to provide designers with such guidance. We identified four key design features: (i) 13 chemical, (ii) emotional, (iii) spatial, and (iv) temporal. Each feature defines a building block for smell-based 14 interaction design and is grounded in a review of the relevant scientific literature. We then demonstrate 15 the design opportunities in three application cases. Each application (i.e. one desktop, two virtual reality 16 implementations) highlights the design choices alongside the implementation and evaluation possibilities in 17 using smell. We conclude by discussing how identifying those design features facilitates a healthy growth of 18 this research domain and contributes to an intermediate-level knowledge space. Finally, we discuss further 19 challenges the HCI community needs to tackle. 20 CCS Concepts: • Human-centered computing → Interaction techniques; Empirical studies in HCI. 21 Additional Key Words and Phrases: Smell; Olfactory Design Space; Chemical Sense; Scent-based Interaction 22 Design; Odour Interfaces; Smell-based Applications; Novel Interactions 23 ACM Reference Format: 24 Emanuela Maggioni, Robert Cobden, Dmitrijs Dmitrenko, Kasper Hornbæk, and Marianna Obrist.
    [Show full text]
  • Physiology of the Retina
    PHYSIOLOGY OF THE RETINA András M. Komáromy Michigan State University [email protected] 12th Biannual William Magrane Basic Science Course in Veterinary and Comparative Ophthalmology PHYSIOLOGY OF THE RETINA • INTRODUCTION • PHOTORECEPTORS • OTHER RETINAL NEURONS • NON-NEURONAL RETINAL CELLS • RETINAL BLOOD FLOW Retina ©Webvision Retina Retinal pigment epithelium (RPE) Photoreceptor segments Outer limiting membrane (OLM) Outer nuclear layer (ONL) Outer plexiform layer (OPL) Inner nuclear layer (INL) Inner plexiform layer (IPL) Ganglion cell layer Nerve fiber layer Inner limiting membrane (ILM) ©Webvision Inherited Retinal Degenerations • Retinitis pigmentosa (RP) – Approx. 1 in 3,500 people affected • Age-related macular degeneration (AMD) – 15 Mio people affected in U.S. www.nei.nih.gov Mutations Causing Retinal Disease http://www.sph.uth.tmc.edu/Retnet/ Retina Optical Coherence Tomography (OCT) Histology Monkey (Macaca fascicularis) fovea Ultrahigh-resolution OCT Drexler & Fujimoto 2008 9 Adaptive Optics Roorda & Williams 1999 6 Types of Retinal Neurons • Photoreceptor cells (rods, cones) • Horizontal cells • Bipolar cells • Amacrine cells • Interplexiform cells • Ganglion cells Signal Transmission 1st order SPECIES DIFFERENCES!! Photoreceptors Horizontal cells 2nd order Bipolar cells Amacrine cells 3rd order Retinal ganglion cells Visual Pathway lgn, lateral geniculate nucleus Changes in Membrane Potential Net positive charge out Net positive charge in PHYSIOLOGY OF THE RETINA • INTRODUCTION • PHOTORECEPTORS • OTHER RETINAL NEURONS
    [Show full text]
  • Visual-Vestibular Coordination
    Visual-Vestibular Coordination The visual and vestibular systems share an inseparable neurological and functional connection. Together they provide the foundation for skillful and comfortable movement through space and time as well as for efficient intake of visual information for learning. Although vestibular functions and oculomotor control are typically addressed in sensory integration treatment, the efficient coordination of these systems is more recently being targeted in treatment for enhanced functional visual skills. Your therapist here at OTA The Koomar Center (OTA) may be talking to you about incorporating such focused activities within treatment sessions and within a home program. The vestibular system is often referred to as the movement or balance system. The receptors are located within the inner ear, and respond to gravity and detect motion and change of head position. They tell us where we are in relationship to gravity, if we are moving or at rest, and our speed and direction of movement. The vestibular system is a powerful integrator that interacts with all other sensory systems. It most noticeably impacts our posture, balance, muscle tone, and bilateral coordination. The visual system is more than just eyesight, or the ability to see clearly. It is also our ability to understand what we see. It is estimated that at least 75% of learning occurs through visual pathways. If an individual is experiencing any visual difficulties, learning will most likely be impacted. For efficient oculomotor function, complex integration of many sensory systems must occur. According to Josephine Moore, the vestibular system is like a tripod stand that holds a camera, in that it helps hold the head stable so that the eyes can focus on an object.
    [Show full text]