Physiology of the Retina

Total Page:16

File Type:pdf, Size:1020Kb

Physiology of the Retina PHYSIOLOGY OF THE RETINA András M. Komáromy Michigan State University [email protected] 12th Biannual William Magrane Basic Science Course in Veterinary and Comparative Ophthalmology PHYSIOLOGY OF THE RETINA • INTRODUCTION • PHOTORECEPTORS • OTHER RETINAL NEURONS • NON-NEURONAL RETINAL CELLS • RETINAL BLOOD FLOW Retina ©Webvision Retina Retinal pigment epithelium (RPE) Photoreceptor segments Outer limiting membrane (OLM) Outer nuclear layer (ONL) Outer plexiform layer (OPL) Inner nuclear layer (INL) Inner plexiform layer (IPL) Ganglion cell layer Nerve fiber layer Inner limiting membrane (ILM) ©Webvision Inherited Retinal Degenerations • Retinitis pigmentosa (RP) – Approx. 1 in 3,500 people affected • Age-related macular degeneration (AMD) – 15 Mio people affected in U.S. www.nei.nih.gov Mutations Causing Retinal Disease http://www.sph.uth.tmc.edu/Retnet/ Retina Optical Coherence Tomography (OCT) Histology Monkey (Macaca fascicularis) fovea Ultrahigh-resolution OCT Drexler & Fujimoto 2008 9 Adaptive Optics Roorda & Williams 1999 6 Types of Retinal Neurons • Photoreceptor cells (rods, cones) • Horizontal cells • Bipolar cells • Amacrine cells • Interplexiform cells • Ganglion cells Signal Transmission 1st order SPECIES DIFFERENCES!! Photoreceptors Horizontal cells 2nd order Bipolar cells Amacrine cells 3rd order Retinal ganglion cells Visual Pathway lgn, lateral geniculate nucleus Changes in Membrane Potential Net positive charge out Net positive charge in PHYSIOLOGY OF THE RETINA • INTRODUCTION • PHOTORECEPTORS • OTHER RETINAL NEURONS • NON-NEURONAL RETINAL CELLS • RETINAL BLOOD FLOW Photoreceptors Retinal pigment epithelium (RPE) Photoreceptor segments Outer limiting membrane (OLM) Outer nuclear layer (ONL) Outer plexiform layer (OPL) Inner nuclear layer (INL) Inner plexiform layer (IPL) Ganglion cell layer Nerve fiber layer Inner limiting membrane (ILM) ©Webvision Photoreceptor Cells • Rods – Vision in dim light • Cones – Vision in bright light – Color vision – Central visual acuity ©webvision Photoreceptor Cells Dowling 1998 cones discs are open to extracellular space (rapid flux of substances) cell body OS = outer segment IS = inner segment Photoreceptors • Topographic variations in numbers and rod/cone ratios in different species • Spatial distribution of cones correlated to visual acuity • Domestic animals do not have a fovea, but an area centralis, area of high cone density • Visual streak is region with greatest concentration of RGC Densities of rods and cones in the human retina Sternberg 1935 Gradient central peripheral Peak cone densities: 64,000-212,000 cells/m2 •22 Rod density: 200,000-540,000/mm2 Peak density matched spatially with thickest part of tapetum Dorsal to visual streak. 23 PHYSIOLOGY OF THE RETINA • PHOTORECEPTOR CELLS – PHOTOTRANSDUCTION Phototransduction Yau & Hardie 2009 Rod Phototransduction • Light: 11-cis-retinal all-trans-retinal • Dissociation of rhodopsin opsin and all-trans-retinal • Activation of alpha transducin (Gtα) • Gtα activates cGMP-PDE • cGMP-PDE hydrolyzes cGMP, which closes the OS plasma membrane channel Rod Phototransduction • Rod stimuli by light leads to hyperpolarization, which means an increase in intrinsic negative charge • Darkness is the actual stimulus that gives rise to a depolarization and transmitter release. Upon stimuli this continuous signal is interrupted. Phototransduction Darkness: channel open Light: channel closed Arshavsky et al. 2002 PHYSIOLOGY OF THE RETINA • PHOTORECEPTOR CELLS – PHOTOTRANSDUCTION • VISUAL PIGMENT Phototransduction Yau & Hardie 2009 Visual Pigments • Holopigment – Opsin = protein moiety – 11-cis retinal = chromophore • Covalently linked by Schiff base ©Webvision Retinoid Structures Picaud 2003 ©Webvision Light Rhodopsin Mutations • Over 100 different mutations identified P = proline • Most common mutation: P23H H = histidine • Majority are gain-of-function mutations • Autosomal dominant Arshavsky et al. 2002 Autosomal Dominant PRA Kijas, James W. et al. (2002) Proc. Natl. Acad. Sci. USA 99, 6328-6333 Fig. 1. Consequences of clinical human retinal photography in Modest light levels, as used the RHO mutant dog in routine clinical practice, dramatically accelerate the neurodegeneration!!! Cideciyan, Artur V. et al. (2005) Proc. Natl. Acad. Sci. USA 102, 5233-5238 A-D: standard microscope E-F: night-vision system • Severe light-induced retinal damage • Visual performance preserved • Islands of surviving photoreceptors 37 PHYSIOLOGY OF THE RETINA • PHOTORECEPTOR CELLS – PHOTOTRANSDUCTION • VISUAL PIGMENT • COLOR VISION Different types of cone photoreceptor ©Webvision Some Specificities of Color Vision • Human color vision depends on 3 types of cones which differ from each other in their absorption spectra • In highly diurnal animals (turtles and goldfish) there are 4 classes of cones • In less diurnal animals (dogs, cats, squirrels) there are only 2 classes of cones Canine Retina Different types of cone photoreceptor Goldsmith 2013 ©Webvision Photopigments in the Retina Rod photoreceptors: Rhodopsin ~506-510nm (dog) Rhodopsin ©webvision Photopigments in the Retina Rod photoreceptors: Rhodopsin ~506-510nm (dog) Red/Green cone photoreceptors: L/M-opsin ~555nm (dog) -opsin L/M ©webvision Photopigments in the Retina Rod photoreceptors: Rhodopsin ~506-510nm (dog) Red/Green cone photoreceptors: L/M-opsin ~555nm (dog) Blue cone photoreceptors: S-opsin ~429-435nm (dog) S-opsin ©webvision Cone Photopigments – Spectral Tuning Jacobs 2008 Cone Photopigments – Spectral Tuning X chromosome Neitz & Neitz 2011 Dichromatic vs. Trichromatic Jacobs & Nathans 2009 How Primate Trichromacy Evolved Jacobs & Nathans 2009 Jacobs & Nathans 2009 2 Designs forPrimate Vision Color Old World Primates Jacobs & Nathans 2009 New World Primates Jacobs & Nathans 2009 https://www.youtube.com/watch?v=Ya8c6VdPwng http://www.neitzvision.com/ PHYSIOLOGY OF THE RETINA • PHOTORECEPTOR CELLS – PHOTOTRANSDUCTION • VISUAL PIGMENT • COLOR VISION • RETINOIDS AND THE VISUAL CYCLE Phototransduction Yau & Hardie 2009 Retinoids and the Visual Cycle Light 11-cis-retinal all-trans-retinal Dissociation of all-trans-retinal and opsin All-trans-retinal all-trans-retinol exits cell Binding to interphotoreceptor retinoid- binding protein (IRBP) Transport to RPE Yau & Hardie 2009 R-ester, retinyl ester RDH, retinol dehydrogenase REH, retinyl ester hydrolase LRAT, lecithin:retinol acyl tranferase CRBP, cellular retinol-binding protein CRALBP, cellular retinaldehyde-binding protein IRBP, interphotoreceptor retinoid binding protein hv, photon RAL, retinal ROL, retinol R-ester, retinyl ester Photopigment Regeneration • All-trans-retinal is reduced to all-trans-retinol • All-trans-retinol leaves photoreceptor, traverses IPM, finds IRBP, and enters RPE • Esterified by LRAT (lecithin:retinol acyl tranferase) • Ester is converted to 11-cis-retinol by retinyl isomerohydrolase = RPE65 • 11-cis-retinol ester is stored or oxidized by 11-RDH, and 11-cis-retinal passes into the receptor and binds with opsin to regenerate rhodopsin IPM, interphotoreceptor matrix Visual Pigments Because chromophore is highly hydrophobic Intracellular carrier proteins: CRBP and CRALBP involved in shuttling Extracellular carrier protein: IRBP involved in shuttling CRBP, cellular retinol-binding protein CRALBP, cellular retinaldehyde-binding protein IRBP, interphotoreceptor retinoid binding protein Substrate for Retinoids • Bleached pigment is one of the substrates for 11-cis-retinaldehyde synthesis in RPE • Dietary uptake is main source – Vitamin A (retinol) is formed in intestine from carotenoid compounds in food – Esterified and transported to liver, bound to retinol binding protein (RBP), further transported to the eye – Specific receptors cause retinol to be taken up by the RPE cell, where it is bound to CRBP R-ester, retinyl ester RDH, retinol dehydrogenase REH, retinyl ester hydrolase LRAT, lecithin:retinol acyl tranferase CRBP, cellular retinol-binding protein CRALBP, cellular retinaldehyde-binding protein IRBP, interphotoreceptor retinoid binding protein hv, photon RAL, retinal ROL, retinol R-ester, retinyl ester Wang & Kefalov 2011 61 Pigment Cycle • Pigment regeneration in RPE – Both rods and cones • Dedicated regeneration pathway for cones – Necessary because rod opsin outcompetes cone opsin in acquiring chromophore; acts as huge sink for for 11-cis-retinal – Müller cells • All-trans-retinol 11-cis-retinol returned to cones – Cones • 11-cis-retinol 11-cis-retinal Yau & Hardie 2009 R-ester, retinyl ester RDH, retinol dehydrogenase REH, retinyl ester hydrolase ARAT, acyl-CoA:retinol acyl tranferase CRBP, cellular retinol-binding protein CRALBP, cellular retinaldehyde-binding protein IRBP, interphotoreceptor retinoid binding protein hv, photon RAL, retinal ROL, retinol R-ester, retinyl ester R-ester, retinyl ester RDH, retinol dehydrogenase REH, retinyl ester hydrolase LRAT, lecithin:retinol acyl tranferase CRBP, cellular retinol-binding protein CRALBP, cellular retinaldehyde-binding protein IRBP, interphotoreceptor retinoid binding protein hv, photon RAL, retinal ROL, retinol R-ester, retinyl ester Wang & Kefalov 2011 64 Palczewski 2012 65 Leber Congenital Amaurosis (LCA) • Theodor Leber (1869) • Syndrome in children characterized by severe visual deficiency, with total or nearly total blindness, present at birth or shortly thereafter; pendular or searching nystagmus, with slowly progressive retinal atrophy. Inheritance is autosomal recessive and disease is heterogeneous • Mutations in at least 20 different
Recommended publications
  • The Organization of the Inner Nuclear Layer of the Rabbit Retina
    The Journal of Neuroscience. January 1995. 15(l): 875-888 The Organization of the Inner Nuclear Layer of the Rabbit Retina Enrica Strettoil and Richard H. Masland2 ‘Istituto di Neurofisiologia del C.N.R., Pisa, Italy; 2Program in Neuroscience and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts The initial goal of this study was to establish an accounting function (reviewed by Kolb et al., 198 1; Masland, 1988; Cohen of the major classes of cells present in the inner nuclear and Sterling, 1990; WHssle and Boycott, 199 1; Masland, 1992). layer (INL) of the rabbit’s retina. Series of 80-100 radial What one does not know is how many more cell types there sections 1 pm thick were cut from retinal blocks dissected are-how many cells have not yet been encountered by current, at intervals along the vertical meridian. They were photo- essentially trial and error, methods. graphed at high magnification in the light microscope. By The missing cells-those invisible to present staining tech- visualizing the initial segments of processes leaving the so- niques-are important. They represent unseen actors in the ret- mata, we could identify each cell as a bipolar, amacrine, ina’s circuitry. The responses of the retinal ganglion cells are horizontal, or Muller cell. The identifications made by light controlled by all of the neurons afferent to them. If there are microscopy were confirmed by electron microscopy of al- unseen elements afferent to the ganglion cell, our understanding ternating ultrathin sections. On average, bipolar cells made of the creation of ganglion cell responses risks major error.
    [Show full text]
  • Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors
    pharmaceutics Article Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors Hyeong Min Kim 1,†, Hyounkoo Han 2,†, Hye Kyoung Hong 1, Ji Hyun Park 1, Kyu Hyung Park 1, Hyuncheol Kim 2,* and Se Joon Woo 1,* 1 Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; [email protected] (H.M.K.); [email protected] (H.K.H.); [email protected] (J.H.P.); [email protected] (K.H.P.) 2 Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; [email protected] * Correspondence: [email protected] (H.K.); [email protected] (S.J.W.); Tel.: +82-2-705-8922 (H.K.); +82-31-787-7377 (S.J.W.); Fax: +82-2-3273-0331 (H.K.); +82-31-787-4057 (S.J.W.) † These authors contributed equally to this work. Abstract: In this study, Retina-RPE-Choroid-Sclera (RCS) and RPE-Choroid-Sclera (CS) were prepared by scraping them off neural retina, and using the Ussing chamber we measured the average time– concentration values in the acceptor chamber across five isolated rabbit tissues for each drug molecule. We determined the outward direction permeability of the RCS and CS and calculated the neural retina permeability. The permeability coefficients of RCS and CS were as follows: ganciclovir, 13.78 ± 5.82 and 23.22 ± 9.74; brimonidine, 15.34 ± 7.64 and 31.56 ± 12.46; bevacizumab, 0.0136 ± 0.0059 and 0.0612 ± 0.0264 (×10−6 cm/s).
    [Show full text]
  • How Can Retroreflective Clothing Provide More Safety Through Visibility in a Semi-Dark Urban Environment? a Study Taking Plac
    MASTER’S THESIS How can retroreflective clothing BY VIOLA SCHMITZ provide more safety through visibility in a semi-dark urban Royal Institute of Technology environment? KTH School of Architecture Master’s Program in A study taking place in Scandinavia. Architectural Lighting Design 2018-2019 24.05.2019 AF270X VT19-1 Tutor: Foteini Kyriakidou 0 Index Abstract P. 2 1. Introduction P. 2 2. Background P. 3 2.1. Urban Background P. 4 2.2. Biological background P. 4 2.2.1. Reflexes and reactions P. 4 2.2.2. Types of vision P. 4 2.2.3. Effect of pattern P. 5 recognition 2.2.4. Human field of vision P. 5 3. Analysis P. 6 3.1. Analysis: Retroreflectors P. 6 3.2. Analysis: Existing products P. 7 4. Methodology P. 9 5. Methods P. 10 5.1. Survey: P. 10 Lines defining the human body 5.2. Video Experiment: P. 10 Designs in motion 5.2.1. Analysis: Location P. 10 5.2.2. Video Experiment P. 11 5.2.3. Procedure P. 12 5.3. Experimental survey: P. 12 Size of a human 5.4. Visualization: P. 13 Pattern recognition in surroundings 6. Results P. 14 6.1. Survey: P. 14 Lines defining the human body 6.2. Video Experiment: P. 15 Designs in motion 6.2.1. Analysis: Location P. 15 6.2.2. Video Experiment P. 16 6.2.3. Observation P. 17 6.3. Experimental survey: P. 17 Size of a human 6.4. Visualization: Pattern P. 17 recognition in surroundings 7. Discussion P.
    [Show full text]
  • A Rhodopsin Gene Expressed in Photoreceptor Cell R7 of the Drosophila Eye: Homologies with Other Signal-Transducing Molecules
    The Journal of Neuroscience, May 1987, 7(5): 1550-I 557 A Rhodopsin Gene Expressed in Photoreceptor Cell R7 of the Drosophila Eye: Homologies with Other Signal-Transducing Molecules Charles S. Zuker, Craig Montell, Kevin Jones, Todd Laverty, and Gerald M. Rubin Department of Biochemistry, University of California, Berkeley, California 94720 We have isolated an opsin gene from D. melanogaster that example, Pak, 1979; Hardie, 1983; Rubin, 1985). The com- is expressed in the ultraviolet-sensitive photoreceptor cell pound eye of Drosophila contains 3 distinct classesof photo- R7 of the Drosophila compound eye. This opsin gene con- receptor cells, Rl-6, R7, and R8, distinguishableby their mor- tains no introns and encodes a 383 amino acid polypeptide phological arrangement and the spectral behavior of their that is approximately 35% homologous to the blue absorbing corresponding visual pigments (reviewed by Hardie, 1983). In ninaE and Rh2 opsins, which are expressed in photoreceptor each of the approximately 800 ommatidia that make up the eye cells RI-6 and R8, respectively. Amino acid homologies be- there are 6 outer (Rl-R6) and 2 central (1 R7 and 1 R8) pho- tween these different opsins and other signal-transducing toreceptor cells (Fig. 1). The photopigments found in the Rl- molecules suggest an important role for the conserved do- R6 cells, the R7 cell, and the R8 cell differ in their absorption mains of rhodopsin in the transduction of extracellular sig- spectra (Harris et al., 1976) most likely becausedifferent opsin nals. genesare expressedin these distinct classesof photoreceptor cells. The 6 peripheral cells (RI-6) contain the major visual Phototransduction, the neuronal excitation processtriggered by pigment, a rhodopsin that absorbsmaximally at 480 nm (Ostroy light, provides an ideal model system for the study of sensory et al., 1974).
    [Show full text]
  • Chemoreception
    Senses 5 SENSES live version • discussion • edit lesson • comment • report an error enses are the physiological methods of perception. The senses and their operation, classification, Sand theory are overlapping topics studied by a variety of fields. Sense is a faculty by which outside stimuli are perceived. We experience reality through our senses. A sense is a faculty by which outside stimuli are perceived. Many neurologists disagree about how many senses there actually are due to a broad interpretation of the definition of a sense. Our senses are split into two different groups. Our Exteroceptors detect stimulation from the outsides of our body. For example smell,taste,and equilibrium. The Interoceptors receive stimulation from the inside of our bodies. For instance, blood pressure dropping, changes in the gluclose and Ph levels. Children are generally taught that there are five senses (sight, hearing, touch, smell, taste). However, it is generally agreed that there are at least seven different senses in humans, and a minimum of two more observed in other organisms. Sense can also differ from one person to the next. Take taste for an example, what may taste great to me will taste awful to someone else. This all has to do with how our brains interpret the stimuli that is given. Chemoreception The senses of Gustation (taste) and Olfaction (smell) fall under the category of Chemoreception. Specialized cells act as receptors for certain chemical compounds. As these compounds react with the receptors, an impulse is sent to the brain and is registered as a certain taste or smell. Gustation and Olfaction are chemical senses because the receptors they contain are sensitive to the molecules in the food we eat, along with the air we breath.
    [Show full text]
  • Localization of S-100 Protein in Mulier Cells of the Retina— 1
    Reports Localization of S-100 Protein in Mulier Cells of the Retina— 1. Light Microscopical Immunocytochemistry G. Terenghi,* D. Cocchia,f F. Micherti,f A. R. T. Pererson4 D. F. Cole,§ S. R. Bloom,11 ond J. M. Polok* S-100 is an acidic brain protein previously found to be pres- constituent and could be involved in the functions ent in glial cells of the brain and the nervous system of gut of normal and diseased retina10"; their identification and respiratory tract. Immunocytochemistry at the light by the use of a suitable marker is thus of primary microscopical level localized immunoreactivity for S-100 in relevance. In this study, we report on the immuno- the Mulier cells in the retina of rat, guinea pig, and Chinese cytochemical visualization at light microscopic level hamster. The Mulier cells represent the main glial com- ponent of the retina, with a structural role in the support of Mulier cells in the mammalian retina by using the and insulation of neurons and sensory elements. The use presence of S-100 protein as a marker for glial cells. of S-100 protein as an immunocytochemical marker of Materials and Methods. Albino rats (n = 5), guinea Miiller cells may be useful in the study of pathologic con- pigs (n = 5), and Chinese hamsters (n = 4) were used. ditions of the retina where glial cell proliferation could re- The animals were killed by exsanguination under flect the index of neuronal injury. Invest Ophthalmol Vis ether anaesthesia; the eyeballs were removed and im- Sci 24:976-980, 1983 mediately processed.
    [Show full text]
  • In Vivo Sublayer Analysis of Human Retinal Inner Plexiform Layer Obtained by Visible- Light Optical Coherence Tomography
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.08.425925; this version posted January 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. In Vivo Sublayer Analysis Of Human Retinal Inner Plexiform Layer Obtained By Visible- Light Optical Coherence Tomography Zeinab Ghassabi*1, Roman V. Kuranov*2,3, Mengfei Wu1, Behnam Tayebi1,4, Yuanbo Wang3, Ian Rubinoff2, Xiaorong Liu5, Gadi Wollstein1,6, Joel S. Schuman1,6, Hao F. Zhang2, and Hiroshi Ishikawa1,6 1 Department of Ophthalmology, NYU Langone Health, New York, NY, United States. 2 Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States. 3 Opticent Inc., Evanston, IL, United States. 4 Neuroscience Institute, NYU Langone Health, NY, United States. 5 Department of Biology, University of Virginia, Charlottesville, VA, United States 6 Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY, United States Funding: NIH: R01-EY013178, R01EY029121, R01EY026078, R44EY026466 * These authors contributed equally to this work Correspondence author: Dr. Hiroshi Ishikawa, [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.01.08.425925; this version posted January 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Purpose: Growing evidence suggests, in glaucoma, the dendritic degeneration of subpopulation of the retinal ganglion cells (RGCs) may precede RGCs soma death. Since different RGCs synapse in different IPL sublayers, visualization of the lamellar structure of the IPL could enable both clinical and fundamental advances in glaucoma understanding and management.
    [Show full text]
  • Sclera and Retina Suturing Techniques 9 Kirk H
    Chapter 9 Sclera and Retina Suturing Techniques 9 Kirk H. Packo and Sohail J. Hasan Key Points 9. 1 Introduction Surgical Indications • Vitrectomy Discussion of ophthalmic microsurgical suturing tech- – Infusion line niques as they apply to retinal surgery warrants atten- – Sclerotomies tion to two main categories of operations: vitrectomy – Conjunctival closure and scleral buckling. Th is chapter reviews the surgical – Ancillary techniques indications, basic instrumentation, surgical tech- • Scleral buckles niques, and complications associated with suturing – Encircling bands techniques in vitrectomy and scleral buckle surgery. A – Meridional elements brief discussion of future advances in retinal surgery Instrumentation appears at the end of this chapter. • Vitrectomy – Instruments – Sutures 9.2 • Scleral buckles Surgical Indications – Instruments – Sutures Surgical Technique 9.2.1 • Vitrectomy Vitrectomy – Suturing the infusion line in place – Closing sclerotomies Typically, there are three indications for suturing dur- • Scleral buckles ing vitrectomy surgery: placement of the infusion can- – Rectus muscle fi xation sutures nula, closure of sclerotomy, and the conjunctival clo- – Suturing encircling elements to the sclera sure. A variety of ancillary suturing techniques may be – Suturing meridional elements to the sclera employed during vitrectomy, including the external – Closing sclerotomy drainage sites securing of a lens ring for contact lens visualization, • Closure of the conjunctiva placement of transconjunctival or scleral fi xation su- Complications tures to manipulate the eye, and transscleral suturing • General complications of dislocated intraocular lenses. Some suturing tech- – Break in sterile technique with suture nee- niques such as iris dilation sutures and transretinal su- dles tures in giant tear repairs have now been replaced with – Breaking sutures other non–suturing techniques, such as the use of per- – Inappropriate knot creation fl uorocarbon liquids.
    [Show full text]
  • Intrinsically Different Retinal Progenitor Cells Produce Specific Types Of
    PERSPECTIVES These clonal data demonstrated that OPINION RPCs are generally multipotent. However, these data could not determine whether Intrinsically different retinal the variability in clones was due to intrinsic differences among RPCs or extrinsic and/ progenitor cells produce specific or stochastic effects on equivalent RPCs or their progeny. Furthermore, the fates identi- fied within a clone demonstrated an RPC’s types of progeny ‘potential’ but not the ability of an RPC to make a specific cell type at a specific devel- Connie Cepko opmental time or its ‘competence’ (BOX 2). Moreover, although many genes that regu- Abstract | Lineage studies conducted in the retina more than 25 years ago late the development of retinal cell types demonstrated the multipotency of retinal progenitor cells (RPCs). The number have been studied, using the now classical and types of cells produced by individual RPCs, even from a single time point in gain- and loss‑of‑function approaches18,19, development, were found to be highly variable. This raised the question of the precise roles of such regulators in defin- whether this variability was due to intrinsic differences among RPCs or to extrinsic ing an RPC’s competence or potential have not been well elucidated, as most studies and/or stochastic effects on equivalent RPCs or their progeny. Newer lineage have examined the outcome of a perturba- studies that have made use of molecular markers of RPCs, retrovirus-mediated tion on the development of a cell type but lineage analyses of specific RPCs and live imaging have begun to provide answers not the stage and/or cell type in which such a to this question.
    [Show full text]
  • The Complexity and Origins of the Human Eye: a Brief Study on the Anatomy, Physiology, and Origin of the Eye
    Running Head: THE COMPLEX HUMAN EYE 1 The Complexity and Origins of the Human Eye: A Brief Study on the Anatomy, Physiology, and Origin of the Eye Evan Sebastian A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2010 THE COMPLEX HUMAN EYE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ David A. Titcomb, PT, DPT Thesis Chair ______________________________ David DeWitt, Ph.D. Committee Member ______________________________ Garth McGibbon, M.S. Committee Member ______________________________ Marilyn Gadomski, Ph.D. Assistant Honors Director ______________________________ Date THE COMPLEX HUMAN EYE 3 Abstract The human eye has been the cause of much controversy in regards to its complexity and how the human eye came to be. Through following and discussing the anatomical and physiological functions of the eye, a better understanding of the argument of origins can be seen. The anatomy of the human eye and its many functions are clearly seen, through its complexity. When observing the intricacy of vision and all of the different aspects and connections, it does seem that the human eye is a miracle, no matter its origins. Major biological functions and processes occurring in the retina show the intensity of the eye’s intricacy. After viewing the eye and reviewing its anatomical and physiological domain, arguments regarding its origins are more clearly seen and understood. Evolutionary theory, in terms of Darwin’s thoughts, theorized fossilization of animals, computer simulations of eye evolution, and new research on supposed prior genes occurring in lower life forms leading to human life.
    [Show full text]
  • Radial and Tangential Dispersion Patterns in the Mouse Retina Are Cell
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 2494-2498, March 1995 Neurobiology Radial and tangential dispersion patterns in the mouse retina are cell-class specific (cell migration/cell lineage/retinal development/transgenic mice/X chromosome inactivation) B. E. REESE*, A. R. HARvEyt, AND S.-S. TANt§ *Neuroscience Research Institute and Department of Psychology, University of California, Santa Barbara, CA 93106; tDepartment of Anatomy and Human Biology, University of Western Australia, Nedlands, WA 6009 Australia; and tDepartment of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria 3052, Australia Communicated by Pasko Rakic, Yale University School ofMedicine, New Haven, CT, December 16, 1994 ABSTRACT The retina is derived from a pseudostratified retinal cells remain clonally segregated, they should appear as germinal zone in which the relative position of a progenitor distinct groups of blue versus white cells. We have used this cell is believed to determine the position ofthe progeny aligned approach to address the issue of whether radially aligned cells in the radial axis. Such a developmental mechanism would in the mature retina reflect such a clonal derivation. ensure that radial arrays of cells which comprise functional units in the mature central nervous system are also clonally MATERIALS AND METHODS related. The present study has tested this hypothesis by using Retinas from adult transgenic mice, derived from founder line X chromosome-inactivation transgenic mosaic mice. We re- H253, which carries a lacZ transgene
    [Show full text]
  • Birdshot Chorioretinopathy
    Ocular Inflammation Service, Oxford Eye Hospital Birdshot Chorioretinopathy Information for patients What is birdshot chorioretinopathy? Birdshot chorioretinopathy (or retinochoroidopathy), normally shortened to ‘birdshot’, is a rare, potentially blinding, posterior uveitis. This is chronic inflammation of the choroid, which also tends to affect the retina and retinal vessels. It affects both eyes. In the picture below, you can see the position of the vitreous, retina and uvea (iris, ciliary body, pars planar and choroid), which has three sections; anterior, intermediate and posterior. The dotted area represents the uvea. Choroid Retina Vitreous Cornea Macula Lens Fovea Iris Optic nerve Ciliary body anterior intermediate posterior page 2 Birdshot chorioretinopathy is characterised by inflammation of the vitreous (clear jelly in the eye) which causes orange, yellow or cream coloured oval shaped spots at the back of your eye on your retina. These affect the macula (an area near the centre of the retina used for detailed vision) and can cause vision loss. The reason this disease is called ‘birdshot’ is because these spots look like the pattern seen when you fire birdshot pellets from a shotgun. What causes birdshot? It is believed to be due to an autoimmune disease. An autoimmune disease is an illness that occurs when the body tissues are attacked by its own immune system, which causes chronic inflammation. It is most likely to develop in people aged between 45 and 55, although it can also occur in much younger and older people. Birdshot is a relatively new disease. It was first discovered in 1949 and only given the title ‘birdshot’ in 1980.
    [Show full text]