Single Olfactory Receptors Set Odor Detection Thresholds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Downloaded for Further Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.10.288951; this version posted September 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Coordination of two enhancers drives expression of olfactory trace amine- associated receptors Aimei Fei1,8, Wanqing Wu1,8, Longzhi Tan3,8, Cheng Tang4,8, Zhengrong Xu1, Xiaona Huo4, Hongqiang Bao1, Mark Johnson5, Griffin Hartmann5, Mustafa Talay5, Cheng Yang1, Clemens Riegler6, Kristian Joseph6, Florian Engert6, X. Sunney Xie3, Gilad Barnea5, Stephen D. Liberles7, Hui Yang4, and Qian Li1,2,* 1Center for Brain Science, Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; 2Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China; 3Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; 4Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brian-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; 5Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA; 6Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; 7Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; 8These authors contributed equally to this work. *Correspondence to [email protected], phone: +86-21-63846590 ext. 776985 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.10.288951; this version posted September 11, 2020. -
Identification of a Subset of Trace Amine-Associated Receptors and Ligands As Potential Modulators of Insulin Secretion
Journal Pre-proofs Identification of a subset of trace amine-associated receptors and ligands as po- tential modulators of insulin secretion Michael J. Cripps, Marta Bagnati, Tania A. Jones, Babatunji W. Ogunkolade, Sophie R. Sayers, Paul W. Caton, Katie Hanna, Merell Billacura, Kathryn Fair, Carl Nelson, Robert Lowe, Graham A. Hitman, Mark D. Berry, Mark D. Turner PII: S0006-2952(19)30384-3 DOI: https://doi.org/10.1016/j.bcp.2019.113685 Reference: BCP 113685 To appear in: Biochemical Pharmacology Received Date: 22 August 2019 Accepted Date: 24 October 2019 Please cite this article as: M.J. Cripps, M. Bagnati, T.A. Jones, B.W. Ogunkolade, S.R. Sayers, P.W. Caton, K. Hanna, M. Billacura, K. Fair, C. Nelson, R. Lowe, G.A. Hitman, M.D. Berry, M.D. Turner, Identification of a subset of trace amine-associated receptors and ligands as potential modulators of insulin secretion, Biochemical Pharmacology (2019), doi: https://doi.org/10.1016/j.bcp.2019.113685 This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Elsevier Inc. All rights reserved. -
G Protein-Coupled Receptors
S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. -
The Involvement of Trace Amine-Associated Receptor 1 and Thyroid Hormone Transporters in Non-Classical Pathways of the Thyroid Gland Auto-Regulation
The Involvement of Trace Amine-Associated Receptor 1 and Thyroid Hormone Transporters in Non-Classical Pathways of the Thyroid Gland Auto-Regulation by Maria Qatato a Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell Biology Approved Dissertation Committee Prof. Dr. Klaudia Brix Jacobs University Bremen Prof. Sebastian Springer, DPhil Jacobs University Bremen Dr. Georg Homuth Ernst-Moritz-Arndt-Universität Greifswald Date of Defence: 16 January 2018 Department of Life Sciences and Chemistry Statutory Declaration Family Name, Given/First Name Qatato, Maria Matriculation number 20330110 What kind of thesis are you submitting: PhD Thesis English: Declaration of Authorship I hereby declare that the thesis submitted was created and written solely by myself without any external support. Any sources, direct or indirect, are marked as such. I am aware of the fact that the contents of the thesis in digital form may be revised with regard to usage of unauthorized aid as well as whether the whole or parts of it may be identified as plagiarism. I do agree my work to be entered into a database for it to be compared with existing sources, where it will remain in order to enable further comparisons with future theses. This does not grant any rights of reproduction and usage, however. This document was neither presented to any other examination board nor has it been published. German: Erklärung der Autorenschaft (Urheberschaft) Ich erkläre hiermit, dass die vorliegende Arbeit ohne fremde Hilfe ausschließlich von mir erstellt und geschrieben worden ist. Jedwede verwendeten Quellen, direkter oder indirekter Art, sind als solche kenntlich gemacht worden. -
MHC-Dependent Mate Choice Is Linked to a Trace-Amine-Associated Receptor Gene in a Mammal Received: 25 September 2015 Pablo S
www.nature.com/scientificreports OPEN MHC-dependent mate choice is linked to a trace-amine-associated receptor gene in a mammal Received: 25 September 2015 Pablo S. C. Santos1,2, Alexandre Courtiol1,3, Andrew J. Heidel4,†, Oliver P. Höner1, Accepted: 11 November 2016 Ilja Heckmann1, Martina Nagy5,‡, Frieder Mayer5, Matthias Platzer4, Christian C. Voigt1 Published: 12 December 2016 & Simone Sommer1,2 Major histocompatibility complex (MHC) genes play a pivotal role in vertebrate self/nonself recognition, parasite resistance and life history decisions. In evolutionary terms, the MHC’s exceptional diversity is likely maintained by sexual and pathogen-driven selection. Even though MHC-dependent mating preferences have been confirmed for many species, the sensory and genetic mechanisms underlying mate recognition remain cryptic. Since olfaction is crucial for social communication in vertebrates, variation in chemosensory receptor genes could explain MHC-dependent mating patterns. Here, we investigated whether female mate choice is based on MHC alleles and linked to variation in chemosensory trace amine-associated receptors (TAARs) in the greater sac-winged bat (Saccopteryx bilineata). We sequenced several MHC and TAAR genes and related their variation to mating and paternity data. We found strong evidence for MHC class I-dependent female choice for genetically diverse and dissimilar males. We also detected a significant interaction between mate choice and the female TAAR3 genotype, with TAAR3-heterozygous females being more likely to choose MHC-diverse males. These results suggest that TAARs and olfactory cues may be key mediators in mammalian MHC-dependent mate choice. Our study may help identify the ligands involved in the chemical communication between potential mates. -
TAAR5) and Its Action on Brain Neurochemistry E
P.833 Identifying the agonist of trace amine associated receptor 5 (TAAR5) and its action on brain neurochemistry E. V. Efimova, A.S. Gerasimov, I. Sukhanov, K.A. Antonova, M.A. Ptuha, A.B.Volnova, R.R. Gainetdinov 1. Institute of Translational Biomedicine, St. Petersburg State University, 199034, St. Petersburg, Russia. 2. Department of Physiology, St. Petersburg State University, 199034, St. Petersburg, Russia. 3. Skolkovo Institute of Science and Technology, Skolkovo, 143025, Moscow Region, Russia Introduction Influence on behavior Trace amines are structurally close to classical monoamine neurotransmitters and We measured locomotor activity using Omnitec they play an important role in regulation of movement, feeding and many other equipment for 90 min after injection of alpha-NETA functions. However many of other functions in mammals are still remain in three doses - 1, 3 and 10 mg/kg. unknown. Unraveling the role of trace amine in physiology could give answers to Injection of alpha-NETA caused significant pathologies and pharmacology of monoamine neurotransmission. Study of action decrease in locomotion and the effect was dose of TAAR5 agonist can elucidate the functions and modulatory influence of trace dependent. amines on classical neurotransmitters. Interestingly, the effect of alpha-NETA was delayed Fig. 5. Locomotor activity after alpha- and the change in activity started 20-30 min after NETA injection Time in open arms the injection. 350 For identification of TAAR5 ligands we performed screening of compounds from We also done elevated plus-maze to measure 300 commercially available compound libraries (The SCREEN-WELL® anxiety level. In this test we used video tracking 250 neurotransmitter library (Enzo Life Scienes) containing 661 compounds) on cAMP s time, software Noldus Ethovision. -
[ I]-3-Iodothyronamine in Mouse in Vivo: Relationship with Trace
223 Distribution of exogenous [125I]-3-iodothyronamine in mouse in vivo: relationship with trace amine-associated receptors Grazia Chiellini1, Paola Erba2, Vittoria Carnicelli1, Chiara Manfredi2, Sabina Frascarelli1, Sandra Ghelardoni1, Giuliano Mariani2 and Riccardo Zucchi1 1Dipartimento di Scienze dell’Uomo e dell’Ambiente and 2Dipartimento di Oncologia, University of Pisa, Via Roma 55, 56126 Pisa, Italy (Correspondence should be addressed to G Chiellini; Email: [email protected]) Abstract 3-Iodothyronamine (T1AM) is a novel chemical messenger, intestine, liver, and kidney. Tissue radioactivity decreased structurally related to thyroid hormone, able to interact with exponentially over time, consistent with biliary and urinary G protein-coupled receptors known as trace amine-associated excretion, and after 24 h, 75% of the residual radioactivity was receptors (TAARs). Little is known about the physiological detected in liver, muscle, and adipose tissue. TAARs were role of T1AM. In this prospective, we synthesized expressed only at trace amounts in most of the tissues, the 125 [ I]-T1AM and explored its distribution in mouse after exceptions being TAAR1 in stomach and testis and TAAR8 injecting in the tail vein at a physiological concentration in intestine, spleen, and testis. Thus, while T1AM has a (0.3 nM). The expression of the nine TAAR subtypes was systemic distribution, TAARs are only expressed in certain 125 evaluated by quantitative real-time PCR. [ I]-T1AM was tissues suggesting that other high-affinity molecular targets taken up by each organ. A significant increase in tissue vs besides TAARs exist. blood concentration occurred in gallbladder, stomach, Journal of Endocrinology (2012) 213, 223–230 Introduction the physiological role of T1AM is still uncertain, this compound has recently been detected also in human blood The term thyroid hormone (TH) refers to 3,5,30,50- (Saba et al. -
TAAR5) Knockout Mice
International Journal of Molecular Sciences Article Minor Changes in Erythrocyte Osmotic Fragility in Trace Amine-Associated Receptor 5 (TAAR5) Knockout Mice Ilya S. Zhukov 1,2 , Larisa G. Kubarskaya 2,3, Inessa V. Karpova 2 , Anastasia N. Vaganova 1, Marina N. Karpenko 2 and Raul R. Gainetdinov 1,4,* 1 Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; [email protected] (I.S.Z.); [email protected] (A.N.V.) 2 Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; [email protected] (L.G.K.); [email protected] (I.V.K.); [email protected] (M.N.K.) 3 Institute of Toxicology of Federal Medical-Biological Agency, 192019 Saint Petersburg, Russia 4 Saint Petersburg State University Hospital, Saint Petersburg State University, 199034 Saint Petersburg, Russia * Correspondence: [email protected] Abstract: Trace amine-associated receptors (TAARs) are a group of G protein-coupled receptors that are expressed in the olfactory epithelium, central nervous system, and periphery. TAAR family generally consists of nine types of receptors (TAAR1-9), which can detect biogenic amines. During the last 5 years, the TAAR5 receptor became one of the most intriguing receptors in this subfamily. Recent studies revealed that TAAR5 is involved not only in sensing socially relevant odors but also in the regulation of dopamine and serotonin transmission, emotional regulation, and adult neurogenesis by providing significant input from the olfactory system to the limbic brain areas. Such results indicate that future antagonistic TAAR5-based therapies may have high pharmacological Citation: Zhukov, I.S.; Kubarskaya, potential in the field of neuropsychiatric disorders. -
Pattern of TAAR5 Expression in the Human Brain Based on Transcriptome Datasets Analysis
International Journal of Molecular Sciences Article Pattern of TAAR5 Expression in the Human Brain Based on Transcriptome Datasets Analysis Anastasia N. Vaganova 1 , Ramilya Z. Murtazina 1 , Taisiia S. Shemyakova 1 , Andrey D. Prjibelski 1 , Nataliia V. Katolikova 1 and Raul R. Gainetdinov 1,2,* 1 Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; [email protected] (A.N.V.); [email protected] (R.Z.M.); [email protected] (T.S.S.); [email protected] (A.D.P.); [email protected] (N.V.K.) 2 St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia * Correspondence: [email protected] Abstract: Trace amine-associated receptors (TAAR) recognize organic compounds, including primary, secondary, and tertiary amines. The TAAR5 receptor is known to be involved in the olfactory sensing of innate socially relevant odors encoded by volatile amines. However, emerging data point to the involvement of TAAR5 in brain functions, particularly in the emotional behaviors mediated by the limbic system which suggests its potential contribution to the pathogenesis of neuropsychiatric diseases. TAAR5 expression was explored in datasets available in the Gene Expression Omnibus, Allen Brain Atlas, and Human Protein Atlas databases. Transcriptomic data demonstrate ubiquitous low TAAR5 expression in the cortical and limbic brain areas, the amygdala and the hippocampus, Citation: Vaganova, A.N.; the nucleus accumbens, the thalamus, the hypothalamus, the basal ganglia, the cerebellum, the Murtazina, R.Z.; Shemyakova, T.S.; substantia nigra, and the white matter. Altered TAAR5 expression is identified in Down syndrome, Prjibelski, A.D.; Katolikova, N.V.; Gainetdinov, R.R. -
Mouse Taar3 Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Taar3 Knockout Project (CRISPR/Cas9) Objective: To create a Taar3 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Taar3 gene (NCBI Reference Sequence: NM_001008429 ; Ensembl: ENSMUSG00000069708 ) is located on Mouse chromosome 10. 1 exon is identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 1 (Transcript: ENSMUST00000045152). Exon 1 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 1 starts from about 0.1% of the coding region. Exon 1 covers 100.0% of the coding region. The size of effective KO region: ~1029 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 Legends Exon of mouse Taar3 Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of start codon is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of stop codon is aligned with itself to determine if there are tandem repeats. -
Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Amy Sue Bogard University of Tennessee Health Science Center
University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2013 Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Amy Sue Bogard University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Medical Cell Biology Commons, and the Medical Molecular Biology Commons Recommended Citation Bogard, Amy Sue , "Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells" (2013). Theses and Dissertations (ETD). Paper 330. http://dx.doi.org/10.21007/etd.cghs.2013.0029. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Biomedical Sciences Track Molecular Therapeutics and Cell Signaling Research Advisor Rennolds Ostrom, Ph.D. Committee Elizabeth Fitzpatrick, Ph.D. Edwards Park, Ph.D. Steven Tavalin, Ph.D. Christopher Waters, Ph.D. DOI 10.21007/etd.cghs.2013.0029 Comments Six month embargo expired June 2014 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/330 Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Amy Sue Bogard December 2013 Copyright © 2013 by Amy Sue Bogard. -
The Origin and Molecular Evolution of Two Multigene Families: G-Protein Coupled Receptors and Glycoside Hydrolase Families
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Theses in Biological Sciences Biological Sciences, School of Fall 9-25-2013 THE ORIGIN AND MOLECULAR EVOLUTION OF TWO MULTIGENE FAMILIES: G-PROTEIN COUPLED RECEPTORS AND GLYCOSIDE HYDROLASE FAMILIES Seong-il Eyun University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscidiss Part of the Bioinformatics Commons, and the Evolution Commons Eyun, Seong-il, "THE ORIGIN AND MOLECULAR EVOLUTION OF TWO MULTIGENE FAMILIES: G-PROTEIN COUPLED RECEPTORS AND GLYCOSIDE HYDROLASE FAMILIES" (2013). Dissertations and Theses in Biological Sciences. 57. https://digitalcommons.unl.edu/bioscidiss/57 This Article is brought to you for free and open access by the Biological Sciences, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Theses in Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. THE ORIGIN AND MOLECULAR EVOLUTION OF TWO MULTIGENE FAMILIES: G- PROTEIN COUPLED RECEPTORS AND GLYCOSIDE HYDROLASE FAMILIES by Seong-il Eyun A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Biological Sciences Under the Supervision of Professor Etsuko Moriyama Lincoln, Nebraska August, 2013 THE ORIGIN AND MOLECULAR EVOLUTION OF TWO MULTIGENE FAMILIES: G- PROTEIN COUPLED RECEPTORS AND GLYCOSIDE HYDROLASE FAMILIES Seong-il Eyun, Ph.D. University of Nebraska, 2013 Advisor: Etsuko Moriyama Multigene family is a group of genes that arose from a common ancestor by gene duplication. Gene duplications are a major driving force of new function acquisition.