Ixodes Scapularis in North Dakota: Phenology, Population Genetics, and Local Host Reservoir Competency in an Emerging Vector Population Michael Dougherty
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of Ixodes Ricinus Female Salivary Glands Factors Involved in Bartonella Henselae Transmission
UNIVERSITÉ PARIS-EST École Doctorale Agriculture, Biologie, Environnement, Santé T H È S E Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PARIS-EST Spécialité : Sciences du vivant Présentée et soutenue publiquement par Xiangye LIU Le 15 Novembre 2013 Identification of Ixodes ricinus female salivary glands factors involved in Bartonella henselae transmission Directrice de thèse : Dr. Sarah I. Bonnet USC INRA Bartonella-Tiques, UMR 956 BIPAR, Maisons-Alfort, France Jury Dr. Catherine Bourgouin, Chef de laboratoire, Institut Pasteur Rapporteur Dr. Karen D. McCoy, Chargée de recherches, CNRS Rapporteur Dr. Patrick Mavingui, Directeur de recherches, CNRS Examinateur Dr. Karine Huber, Chargée de recherches, INRA Examinateur ACKNOWLEDGEMENTS To everyone who helped me to complete my PhD studies, thank you. Here are the acknowledgements for all those people. Foremost, I express my deepest gratitude to all the members of the jury, Dr. Catherine Bourgouin, Dr. Karen D. McCoy, Dr. Patrick Mavingui, Dr. Karine Huber, thanks for their carefully reviewing of my thesis. I would like to thank my supervisor Dr. Sarah I. Bonnet for supporting me during the past four years. Sarah is someone who is very kind and cheerful, and it is a happiness to work with her. She has given me a lot of help for both living and studying in France. Thanks for having prepared essential stuff for daily use when I arrived at Paris; it was greatly helpful for a foreigner who only knew “Bonjour” as French vocabulary. And I also express my profound gratitude for her constant guidance, support, motivation and untiring help during my doctoral program. -
Genus Boophilus Curtice Genus Rhipicentor Nuttall & Warburton
3 CONTENTS General remarks 4 Genus Amblyomma Koch 5 Genus Anomalohimalaya Hoogstraal, Kaiser & Mitchell 46 Genus Aponomma Neumann 47 Genus Boophilus Curtice 58 Genus Hyalomma Koch. 63 Genus Margaropus Karsch 82 Genus Palpoboophilus Minning 84 Genus Rhipicentor Nuttall & Warburton 84 Genus Uroboophilus Minning. 84 References 86 SUMMARI A list of species and subspecies currently included in the tick genera Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus, and Rhipicentor, as well as in the unaccepted genera Palpoboophilus and Uroboophilus is given in this paper. The published synonymies and authors of each spécifie or subspecific name are also included. Remaining tick genera have been reviewed in part in a previous paper of this series, and will be finished in a future third part. Key-words: Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus, Rhipicentor, Uroboophilus, Palpoboophilus, species, synonymies. RESUMEN Se proporciona una lista de las especies y subespecies actualmente incluidas en los géneros Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus y Rhipicentor, asi como en los géneros no aceptados Palpoboophilus and Uroboophilus. Se incluyen también las sinonimias publicadas y los autores de cada nombre especifico o subespecifico. Los restantes géneros de garrapatas han sido revisados en parte en un volumen previo de esta serie, y serân terminados en una futura tercera parte. Palabras claves Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus, Rhipicentor, Uroboophilus, Palpoboophilus, especies, sinonimias. 4 GENERAL REMARKS Following is a list of species and subspecies of ticks d~e scribed in the genera Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalorma, Margaropus, and Rhipicentor, as well as in the unaccepted genera Palpoboophilus and Uroboophilus. The first volume (Estrada- Pena, 1991) included data for Haemaphysalis, Anocentor, Dermacentor, and Cosmiomma. -
Electronic Polytomous and Dichotomous Keys to the Genera and Species of Hard Ticks (Acari: Ixodidae) Present in New Zealand
Systematic & Applied Acarology (2010) 15, 163–183. ISSN 1362-1971 Electronic polytomous and dichotomous keys to the genera and species of hard ticks (Acari: Ixodidae) present in New Zealand SCOTT HARDWICK AgResearch, Lincoln Research Centre, Private Bag 4749, Christchurch 8140, New Zealand Email: [email protected] Abstract New Zealand has a relatively small tick fauna, with nine described and one undescribed species belonging to the genera Ornithodoros, Amblyomma, Haemaphysalis and Ixodes. Although exotic hard ticks (Ixodidae) are intercepted in New Zealand on a regular basis, the country has largely remained free of these organisms and the significant diseases that they can vector. However, professionals in the biosecurity, health and agricultural industries in New Zealand have little access to user-friendly identification tools that would enable them to accurately identify the ticks that are already established in the country or to allow recognition of newly arrived exotics. The lack of access to these materials has the potential to lead to delays in the identification of exotic tick species. This is of concern as 40-60% of exotic ticks submitted for identification by biosecurity staff in New Zealand are intercepted post border. This article presents dichotomous and polytomous keys to the eight species of hard tick that occur in New Zealand. These keys have been digitised using Lucid® and Phoenix® software and are deployed at http://keys.lucidcentral.org/keys/v3/hard_ticks/Ixodidae genera.html in a form that allows use by non-experts. By enabling non-experts to carry out basic identifications, it is hoped that professionals in the health and agricultural industries in New Zealand can play a greater role in surveillance for exotic ticks. -
Ticks Associated with the Three Largest Wild Ruminant Species in Southern Africa
Onderstepoort Journal of Veterinary Research, 74:231–242 (2007) Ticks associated with the three largest wild ruminant species in southern Africa I.G. HORAK1*, H. GOLEZARDY2 and A.C. UYS2 ABSTRACT HORAK, I.G., GOLEZARDY, H. & UYS, A.C. 2007. Ticks associated with the three largest wild rumi- nant species in southern Africa. Onderstepoort Journal of Veterinary Research, 74:231–242 The objective of this study was to assess the host status of the three largest southern African wild ruminants, namely giraffes, Giraffa camelopardalis, African buffaloes, Syncerus caffer, and eland, Taurotragus oryx for ixodid ticks. To this end recently acquired unpublished data are added here to already published findings on the tick burdens of these animals, and the total numbers and species of ticks recorded on 12 giraffes, 18 buffaloes and 36 eland are summarized and discussed. Twenty-eight ixodid tick species were recovered. All stages of development of ten species, namely Amblyomma hebraeum, Rhipicephalus (Boophilus) decoloratus, Haemaphysalis silacea, Ixodes pilosus group, Margaropus winthemi, Rhipicephalus appendiculatus, Rhipicephalus evertsi evertsi, Rhipicephalus glabroscutatum, Rhipicephalus maculatus and Rhipicephalus muehlensi were collected. The adults of 13 species, of which the immature stages use small mammals as hosts, namely Haemaphysalis aciculifer, Hyalomma glabrum, Hyalomma marginatum rufipes, Hyalomma truncatum, Ixodes rubi- cundus, Rhipicephalus capensis, Rhipicephalus exophthalmos, Rhipicephalus follis, Rhipicephalus gertrudae, Rhipicephalus -
Lauren Maestas M.S
11/5/12 Lauren Maestas M.S. Candidate University of Tennessee Department of Forestry, Wildlife and Fisheries Photo Credits: Robyn Nadolny, Chelsea Wright Wayne Hynes, Daniel Sonenshine, Holly Gaff Old Dominion University Dept. of Biology } Introduction and Justification } Objectives } Methods } Anticipated Results } Future Directions 1 11/5/12 Bridging Vector • Ticks carry and transmit a I. scapularis greater variety of pathogens to domestic animals than any Sylvaticother type cycle of biting arthropod • Ticks are a close second to mosquitos worldwide in human disease transmission I. affinis Photo Credit: Robyn Nadolny, Chelsea Wright Wayne Hynes, Daniel Sonenshine, Holly Gaff Old Dominion University Dept. of Biology Maria Duik-Wasser Ixodes affinis Ixodes scapularis •Both have a 1-2 year life cycle •Both feed on multiple wildlife hosts http://www.humanillnesses.com/Infectious-Diseases-He-My/Lyme-Disease.html 0% Bbsl 40% Bbsl Maggi 2009 Bbss? Photo Credit: Robyn Nadolny, Chelsea Wright Wayne Hynes, Daniel Sonenshine, Holly Gaff Old Dominion University Dept. of Biology A. Causey personal communication http://www.fishing-nc.com/nc-fishing-regulations.php 2 11/5/12 18 Species of Borrelia currently recognized in the Bbsl complex Rudenko et al. 2011 1. To test for North- South latitudinal trends in Ixodes spp. genotype, and Bbsl prevalence and strain type. 2. In South Carolina, to compare the prevalence of Bbsl and Ixodid tick species collected from wild mesomammals with those from a) vegetation, and b) domestic dogs (Sentinels). 3 11/5/12 -
Dog Ticks Have Been Introduced and Are Establishing in Alaska: Protect Yourself and Your Dogs from Disease
1300 College Road Fairbanks, Alaska 99701-1551 Main: 907.328.8354 Fax: 907.459.7332 American Dog tick, Dermacentor variablis Dog ticks have been introduced and are establishing in Alaska: Protect yourself and your dogs from disease Most Alaskans, including dog owners, are under the mistaken impression that there are no ticks in Alaska. This is has always been incorrect as ticks on small mammals and birds are endemic to Alaska (meaning part of our native fauna), it was just that the typical ‘dog’ ticks found in the Lower 48 were not surviving, reproducing and spread here. The squirrel tick, Ixodes angustus, for example, although normally feasting on lemmings, hares and squirrels is the most common tick found incidentally on dogs and cats in Alaska. However, recently the Alaska Dept. of Fish & Game along with the Office of the State Veterinarian have detected an increasing incidence of dog ticks that are exotic to Alaska (that is Alaska is not part of the reported geographic range). These alarming trends lead to an article on the ADFG webpage several years ago http://www.adfg.alaska.gov/index.cfm?adfg=wildlifenews.main&issue_id=111. We’ve coauthored a research paper documenting eight species of ticks collected on dogs in Alaska and six found on people. Of additional concern is that many of these ticks are potential vectors of serious zoonotic (diseases transmitted from animals to humans) as well as animal diseases and are being found on dogs that have never let the state. Wildlife disease specialists expect there to be profound impacts of climate change on animal and parasite distributions, and with the introduction of ticks to Alaska, we should expect some of these species will become established. -
Annotated List of the Hard Ticks (Acari: Ixodida: Ixodidae) of New Jersey
applyparastyle "fig//caption/p[1]" parastyle "FigCapt" applyparastyle "fig" parastyle "Figure" Journal of Medical Entomology, 2019, 1–10 doi: 10.1093/jme/tjz010 Review Review Downloaded from https://academic.oup.com/jme/advance-article-abstract/doi/10.1093/jme/tjz010/5310395 by Rutgers University Libraries user on 09 February 2019 Annotated List of the Hard Ticks (Acari: Ixodida: Ixodidae) of New Jersey James L. Occi,1,4 Andrea M. Egizi,1,2 Richard G. Robbins,3 and Dina M. Fonseca1 1Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901-8536, 2Tick- borne Diseases Laboratory, Monmouth County Mosquito Control Division, 1901 Wayside Road, Tinton Falls, NJ 07724, 3 Walter Reed Biosystematics Unit, Department of Entomology, Smithsonian Institution, MSC, MRC 534, 4210 Silver Hill Road, Suitland, MD 20746-2863 and 4Corresponding author, e-mail: [email protected] Subject Editor: Rebecca Eisen Received 1 November 2018; Editorial decision 8 January 2019 Abstract Standardized tick surveillance requires an understanding of which species may be present. After a thorough review of the scientific literature, as well as government documents, and careful evaluation of existing accessioned tick collections (vouchers) in museums and other repositories, we have determined that the verifiable hard tick fauna of New Jersey (NJ) currently comprises 11 species. Nine are indigenous to North America and two are invasive, including the recently identified Asian longhorned tick,Haemaphysalis longicornis (Neumann, 1901). For each of the 11 species, we summarize NJ collection details and review their known public health and veterinary importance and available information on seasonality. Separately considered are seven additional species that may be present in the state or become established in the future but whose presence is not currently confirmed with NJ vouchers. -
Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East
Acta Soc. Zool. Bohem. 78: 1–162, 2014 ISSN 1211-376X Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 11. On the bat fauna of Libya II Petr BENDA1,2), Friederike SPITZENBERGER3), Vladimír HANÁK2), Michal ANDREAS4), Antonín REITER5), Martin Ševčík2), Jiří Šmíd1) & Marcel UHRIN6) 1) Department of Zoology, National Museum (Natural History), Václavské nám. 68, CZ–115 79 Praha 1, Czech Republic; e-mail: [email protected] 2) Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, CZ–128 44 Praha 2, Czech Republic 3) BatLife Österreich c/o Säugetiersammlung Naturhistorisches Museum, Burgring 7, A–1010 Wien, Austria 4) Department of Biology, University of Hradec Králové, Rokitanského 62, CZ–500 03 Hradec Králové, Czech Republic 5) South Moravian Museum in Znojmo, Přemyslovců 8, CZ–669 45 Znojmo, Czech Republic 6) Department of Zoology, Institute of Biology and Ecology, P. J. Šafárik University, Moyzesova 11, SK–040 01 Košice, Slovakia Received 6 November 2014; accepted 5 December 2014 Published 22 December 2014 Abstract. A complete list of bat records available from Libya was compiled from literature and from new records, based on field studies and examination of museum specimens. The record review is complemented by distribution maps, summaries of distributional status of the particular species, files of field data, findings on feeding ecology, observations of morphology and variation, and records of arthropod ectoparasites. From the territory of Libya, at least 138 records of 18 bat species belonging to six families are known; viz. Rhinopoma cystops Thomas, 1903 (1 record site), Rhinolophus ferrumequinum (Schreber, 1774) (2), R. -
Ticks of Japan, Korea, and the Ryukyu Islands Noboru Yamaguti Department of Parasitology, Tokyo Women's Medical College, Tokyo, Japan
Brigham Young University Science Bulletin, Biological Series Volume 15 | Number 1 Article 1 8-1971 Ticks of Japan, Korea, and the Ryukyu Islands Noboru Yamaguti Department of Parasitology, Tokyo Women's Medical College, Tokyo, Japan Vernon J. Tipton Department of Zoology, Brigham Young University, Provo, Utah Hugh L. Keegan Department of Preventative Medicine, School of Medicine, University of Mississippi, Jackson, Mississippi Seiichi Toshioka Department of Entomology, 406th Medical Laboratory, U.S. Army Medical Command, APO San Francisco, 96343, USA Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Yamaguti, Noboru; Tipton, Vernon J.; Keegan, Hugh L.; and Toshioka, Seiichi (1971) "Ticks of Japan, Korea, and the Ryukyu Islands," Brigham Young University Science Bulletin, Biological Series: Vol. 15 : No. 1 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol15/iss1/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. MUS. CO MP. zooi_: c~- LIBRARY OCT 2 9 1971 HARVARD Brigham Young University UNIVERSITY Science Bulletin TICKS Of JAPAN, KOREA, AND THE RYUKYU ISLANDS by Noboru Yamaguti Vernon J. Tipton Hugh L. Keegan Seiichi Toshioka BIOLOGICAL SERIES — VOLUME XV, NUMBER 1 AUGUST 1971 BRIGHAM YOUNG UNIVERSITY SCIENCE BULLETIN BIOLOGICAL SERIES Editor: Stanley L. Welsh, Department of Botany, Brigham Young University, Prove, Utah Members of the Editorial Board: Vernon J. -
Protozoan and Bacterial Pathogens in Tick Salivary Glands in Wild and Domestic Animal Environments in South Africa M
Protozoan and bacterial pathogens in tick salivary glands in wild and domestic animal environments in South Africa M. Berggoetz, M. Schmid, D. Ston, V. Wyss, Christine Chevillon, A.-M Pretorius, L. Gern To cite this version: M. Berggoetz, M. Schmid, D. Ston, V. Wyss, Christine Chevillon, et al.. Protozoan and bacterial pathogens in tick salivary glands in wild and domestic animal environments in South Africa. Ticks and Tick-borne Diseases, Elsevier, 2014, 5 (2), pp.176-185. 10.1016/j.ttbdis.2013.10.003. hal-02152195 HAL Id: hal-02152195 https://hal.archives-ouvertes.fr/hal-02152195 Submitted on 28 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. G Model TTBDIS-266; No. of Pages 10 ARTICLE IN PRESS Ticks and Tick-borne Diseases xxx (2013) xxx–xxx Contents lists available at ScienceDirect Ticks and Tick-borne Diseases jo urnal homepage: www.elsevier.com/locate/ttbdis Original article Protozoan and bacterial pathogens in tick salivary glands in wild and domestic animal environments in South Africa a,∗ a a a b c a M. Berggoetz , M. Schmid , D. Ston , V. Wyss , C. Chevillon , A.-M. -
Ticks and Tick-Borne Pathogens at the Interplay of Game and Livestock
University of Neuchâtel Faculty of Sciences Institute of Biology Laboratory of Eco-Epidemiology Ticks and tick-borne pathogens at the interplay of game and livestock animals in South Africa Thesis presented to the Faculty of Sciences of the University of Neuchâtel for the Degree of Doctor of Sciences by Mirko Berggoetz Members of the Jury: Prof. Lise Gern (Thesis Director); Prof. Patrick Guerin (University of Neuchâtel); Prof. Lorenza Beati (Southern University, Georgia); Prof. Kurt Pfister (University of Munich); Dr Heinz Sager (Novartis Saint-Aubin) Index 1 Abstract .............................................................................................................................. 9 2 Introduction ...................................................................................................................... 13 2.1 Tick biology ................................................................................................................ 13 2.1.1 Rhipicephalus species ......................................................................................... 16 2.1.2 Amblyomma species........................................................................................... 18 2.1.3 Hyalomma species ............................................................................................. 19 2.1.4 Haemaphysalis species ....................................................................................... 19 2.1.5 Ixodes species .................................................................................................... -
Article Argas Vespertilionis (Ixodida: Argasidae): a Parasite Of
Persian Journal of Acarology, Vol. 2, No. 2, pp. 321–330. Article Argas vespertilionis (Ixodida: Argasidae): A parasite of Pipistrel bat in Western Iran Asadollah Hosseini-Chegeni1* & Majid Tavakoli2 1 Department of Plant Protection, Faculty of Agriculture, University of Guilan, Guilan, Iran; E-mail: [email protected] 2 Lorestan Agricultural & Natural Resources Research Center, Khorram Abad, Lorestan, Iran; E-mail: [email protected] * Corresponding author Abstract Ticks (suborder Ixodida) ecologically divided into two nidicolous and non-nidicolous groups. More argasid ticks are classified into the former group whereas they are able to coordinate with the specific host(s) and living inside/adjacent to their host’s nest. The current study focused on an argasid tick species adapted to bats in Iran. Tick specimens collected on a bat were captured in a thatched rural house located in suburban Koohdasht in Lorestan province, west of Iran. Tick’s larvae and nymphs were identified as Argas vespertilionis (Latreille, 1796) by using descriptive morphological keys. This argasid tick behaves as a nidicolous species commonly parasitizing bats. We suggest that future studies be conducted on ticks parasitizing wild animals for detection of real fauna of Iranian ticks. Key words: Argas vespertilionis, nidicolous tick, Ixodida, bat, Iran Introduction Only 10% of all ticks (suborder Ixodida) including soft ticks (Argasidae) and hard ticks (Ixodidae) may be captured on livestock and domestic animals (Oliver 1989), and remaining species must be searched through wild animals (e.g. birds, mammals, lizards, rodents, even amphibians and the other none-domestic animals). Acarologists need to determine the biological models of tick parasitism on wildlife and the factors that have permitted to less than 10% of all ticks to become economically important pests and vectors of disease agents to livestock and human (Hoogstraal 1985).