Ticks of Florida

Total Page:16

File Type:pdf, Size:1020Kb

Ticks of Florida Tick Identification Ticks of Florida: • A good tick key is needed – Google is making this easier, but beware of Google Image Basic Identification • Helpful to know – Where the tick was collected – From what animal – What time of year Phillip E. Kaufman Initial questions to ask: Entomology & Nematology Department 1. Is it a hard or soft tick? University of Florida a. Sometimes an engorged hard tick may appear as a soft tick 2. What is the life stage: larva, nymph or adult? a. Critical for use of most ID keys b. Unfed much easier to ID than engorged Metastigmata: Ticks Evolutionary Relationships between Ticks Ixodinae Ixodes (243 spp.) Amblyomminae Amblyomma (130 spp.) Characterized by… Prostriata Ixodidae Borthriocrotoninae Bothriocroton (7 spp.) 702 species • No distinct head Metastriata Haemaphysalinae Haemaphysalis (166 spp.) – mouthparts (palpi & hypostome) + basis capituli = capitulum (head-like structure) Hyalomminae Hyalomma (27 spp.) Nutalliellidae Nuttalliella (1 sp.) Nosomma (2 spp.) • 4 pairs of legs, except larvae (3 pr.) 1 species Argasinae -- Argas (61 spp.) Rhipicephalinae Dermacentor (34 spp.) • 1 pr. simple eyes, or eyeless Ornithodorinae -- Ornithodoros (112 spp.) Cosmiomma (1 spp.) Rhipicephalus (82 spp.) • Stigmata located behind the 4th pair of legs Otobinae -- Otobius (2 spp.) Argasidae Anomalohimalaya (3 spp.) • Scutum = plate that covers dorsum 193 species Antricolinae -- Antricola (17 spp.) Rhipicentor (2 spp.) – patterns, colors, and shape often species specific Margaropus (3 spp.) Nothoaspinae -- Nothoaspis (1 sp.) Margaropus (3 spp.) Soft vs. Hard Tick Morphology Ixodidae = Hard ticks Argasidae Ixodidae • 1 pr. Spiracles latero-ventrally on abdomen near 3rd. Soft Ticks Hard Ticks and 4th leg bases Sexual Slight Differential scutum size and dimorphism markings • Festoons = along posterior sub-marginal area of dorsum, thought to help in expansion and contraction Head Capitulum Ventral: Not seen from Anterior: Can see from above above in unbloodfed ticks • Anal groove = may show location of anus; either in Palpi Leg-like w/subequal front, beside, or behind the anus segments Relatively rigid, varied forms Body Scutum Absent Present • Eyes (if present) are located on the lateral edges of Festoons Absent Generally present the scutum Eyes – if Super-coaxial folds Dorsal on sides of scutum • Mouthparts visible from above present • Females mate, feed, oviposit (1x) then die Legs Coxae No spurs Generally, 1+ spurs – 1K to 18K eggs 1 Family Ixodidae (hard ticks) Tick Lifestage Hypostome • Leg number A. americanum Palpus Nymph Capitulum – Larva = 6 Basis capituli – Nymph & Adult = 8 Eye Scutum • Genital pore Anus – Nymph – No Spiracle Anal groove – Adult - Yes Festoons A. americanum Male Ixodidae Black-legged or Deer tick Female Dorsal plate Ixodes scapularis covers only a portion of abdomen • Long mouthparts • No Festoons Anal groove • No Eyes • Anal groove is conspicuous Male and anterior to the anus Dorsal plate (posterior to anus in all other covers most/all hard ticks) – next slide of abdomen • Which of these is the female? Anal shield Ixodes scapularis Ixodes scapularis Anal Anal groove groove 2 Brown dog tick Rhipicephalus sangiuneus Rhipicephalus sangiuneus • Feeds on dogs in U.S. – Dogs and humans elsewhere in world • Short mouthparts • Hexogonal basis capituli • Scutum may have punctuations and grooves forming patterns – never w/white markings • Eyes present • Festoons present • Anal groove is posterior to anus and obvious • Anal plates in males are conspicuous Rhipicephalus sangiuneus Rhipicephalus sangiuneus Female Larva Nymph Male Cattle ticks Tropical or Southern cattle tick Rhipicephalus (Boophilus) spp. Boophilus microplus • Regulatory species • Vector of Texas cattle fever (Bovine babesiosis) • Very short palpi • Eradicated from US in 1943 – Shorter than hypostome • Eyes present – But very small • Inornate and brown • Basis capituli: short and broad with rounded lateral margins. • Anal plate well developed & large in males Engorged • One host parasites of ungulates – Primarily cattle, but also deer, African antelope B. microplus Note: point Male Female 3 Cattle Tick Boophilus annulatus Boophilus Females B. annulatus B. microplus • Vector of Texas cattle fever (Bovine babesiosis) • Eradicated from US in 1943 + Ext. spur + Ext. spurs No spur No spurs No point Male Female American dog tick Dermacentor variabilis Dermacentor variabilis Female Male • Large ticks with complex patterns of white on scutum • Fairly short mouthparts • Basis capituli appears rectangular • Eyes present • 11 Festoons • Shape narrows toward head • Scutum highly ornate, but variable • No anal plates and anal groove is inconspicuous Amblyomma Lone star tick Amblyomma americanum • Long fragile mouthparts – segment 2 at least twice as long • Most common tick in North/Central Florida as segment 3 • Females w/ 1 large white spot at end of scutum – Only Ixodes has similarly long mouthparts • Males w/ 4 white spots on lateral sides of scutum • Eyes present – not in sockets and coloration on festoons • Anal groove obvious • Nymphs have no spots, with short scutum • Scutum usually with bright pattern • 3-host ticks, will attack humans in all stages • Very small anal plate • Vector Erlichiosis, RMSF and Tularemia • Worldwide distribution 4 Lone star tick Lone star tick Amblyomma americanum Amblyomma americanum Female Male Unengorged Nymph Engorged Nymph Female Male Gulf Coast tick Amblyomma maculatum • Female: • Adults on: cattle, horses, – Scutum is longer than deer, swine, coyotes, dogs, wide cats, etc. – Ornate, w/reddish-brown • Increasing importance as a markings over pale vector cream background • Range expansion?? • Male: • Unfed appears similar to – Oval, pale in color with D. variabilis, but mouthparts elongated reddish-brown are much longer in A. mottling maculatum Cayenne Tick Differentiating Males Amblyomma cajennense Lone star Gulf coast • Perhaps Southern FL, also Southern Texas • Very long mouthparts • Females: Tan-colored scutum that has dark markings creating the image of a pendant-like tan necklace • Males: Scutum coloration ranges from tan to golden- beige, often with rust-colored patches on dark-brown mottled striations 5 Tropical Bont tick Amblyomma variegatum Family Argasidae: Soft ticks Semi-engorged • Very large ticks female • Metallic coloration, • Integument is leathery, wrinkled, granulated particularly males • Head not visible from dorsal side, covered by dorsal • Vector several viruses, shield (Hood) heartwater disease • Eyes, if present, are on sides above 2nd coxae • Common throughout tropics • Most are parasites of nesting animals – birds and • Found on cattle on St. Croix, rodents. US Virgin Is. & other islands Male • Most feed multiple times as an adult, with repeated A. variegatum I. scapularis egg batches • Spinose ear tick is the exception to both of these rules. Spinose ear tick Tick ID Resources Otobius megnini • Keirans and Litwak. 1989. Pictorial key to the adults of • Gray to light-brown in color hard ticks, Family Ixodidae (Ixodida: Ixodoidea), East of the • Oval body with a Mississippi River. J. Med. Entomol. 26: 435-448. constriction midway • Only larvae, and 2 nymphal Unfed nymph • Ticks of Veterinary Importance: instars feed on 1 host http://naldc.nal.usda.gov/download/CAT87208761/PDF • Well developed chelicerae • Has spines or thick bristles • Order: Interactive Program for Teaching Tick Morphology: all over body of nymph http://www.afpmb.org/teaching-cds • Found in North/South • Tick Encounter: America, Africa, and Asia http://www.tickencounter.org/tick_identification • Tick App: http://tickapp.tamu.edu/ Engorged nymph 6 .
Recommended publications
  • Identification of Ixodes Ricinus Female Salivary Glands Factors Involved in Bartonella Henselae Transmission
    UNIVERSITÉ PARIS-EST École Doctorale Agriculture, Biologie, Environnement, Santé T H È S E Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PARIS-EST Spécialité : Sciences du vivant Présentée et soutenue publiquement par Xiangye LIU Le 15 Novembre 2013 Identification of Ixodes ricinus female salivary glands factors involved in Bartonella henselae transmission Directrice de thèse : Dr. Sarah I. Bonnet USC INRA Bartonella-Tiques, UMR 956 BIPAR, Maisons-Alfort, France Jury Dr. Catherine Bourgouin, Chef de laboratoire, Institut Pasteur Rapporteur Dr. Karen D. McCoy, Chargée de recherches, CNRS Rapporteur Dr. Patrick Mavingui, Directeur de recherches, CNRS Examinateur Dr. Karine Huber, Chargée de recherches, INRA Examinateur ACKNOWLEDGEMENTS To everyone who helped me to complete my PhD studies, thank you. Here are the acknowledgements for all those people. Foremost, I express my deepest gratitude to all the members of the jury, Dr. Catherine Bourgouin, Dr. Karen D. McCoy, Dr. Patrick Mavingui, Dr. Karine Huber, thanks for their carefully reviewing of my thesis. I would like to thank my supervisor Dr. Sarah I. Bonnet for supporting me during the past four years. Sarah is someone who is very kind and cheerful, and it is a happiness to work with her. She has given me a lot of help for both living and studying in France. Thanks for having prepared essential stuff for daily use when I arrived at Paris; it was greatly helpful for a foreigner who only knew “Bonjour” as French vocabulary. And I also express my profound gratitude for her constant guidance, support, motivation and untiring help during my doctoral program.
    [Show full text]
  • Comparative Functional Morphology of Attachment Devices in Arachnida
    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
    [Show full text]
  • Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York
    SUNY College of Environmental Science and Forestry Digital Commons @ ESF Honors Theses 5-2016 Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York Brigitte Wierzbicki Follow this and additional works at: https://digitalcommons.esf.edu/honors Part of the Entomology Commons Recommended Citation Wierzbicki, Brigitte, "Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York" (2016). Honors Theses. 106. https://digitalcommons.esf.edu/honors/106 This Thesis is brought to you for free and open access by Digital Commons @ ESF. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ ESF. For more information, please contact [email protected], [email protected]. HABITAT ASSOCIATIONS OF IXODES SCAPULARIS (ACARI: IXODIDAE) IN SYRACUSE, NEW YORK By Brigitte Wierzbicki Candidate for Bachelor of Science Environmental and Forest Biology With Honors May,2016 APPROVED Thesis Project Advisor: Af ak Ck M issa K. Fierke, Ph.D. Second Reader: ~~ Nicholas Piedmonte, M.S. Honors Director: w44~~d. William M. Shields, Ph.D. Date: ~ / b / I & r I II © 2016 Copyright B. R. K. Wierzbicki All rights reserved. 111 ABSTRACT Habitat associations of Jxodes scapularis Say were described at six public­ use sites within Syracuse, New York. Adult, host-seeking blacklegged ticks were collected using tick flags in October and November, 2015 along two 264 m transects at each site, each within a distinct forest patch. We examined the association of basal area, leaf litter depth, and percent understory cover with tick abundance using negative binomial regression models. Models indicated tick abundance was negatively associated with percent understory cover, but was not associated with particular canopy or understory species.
    [Show full text]
  • TICKS in RELATION to HUMAN DISEASES CAUSED by <I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Navy Research U.S. Department of Defense 1967 TICKS IN RELATION TO HUMAN DISEASES CAUSED BY RICKETTSIA SPECIES Harry Hoogstraal Follow this and additional works at: https://digitalcommons.unl.edu/usnavyresearch This Article is brought to you for free and open access by the U.S. Department of Defense at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in U.S. Navy Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. TICKS IN RELATION TO HUMAN DISEASES CAUSED BY RICKETTSIA SPECIES1,2 By HARRY HOOGSTRAAL Department oj Medical Zoology, United States Naval Medical Research Unit Number Three, Cairo, Egypt, U.A.R. Rickettsiae (185) are obligate intracellular parasites that multiply by binary fission in the cells of both vertebrate and invertebrate hosts. They are pleomorphic coccobacillary bodies with complex cell walls containing muramic acid, and internal structures composed of ribonucleic and deoxyri­ bonucleic acids. Rickettsiae show independent metabolic activity with amino acids and intermediate carbohydrates as substrates, and are very susceptible to tetracyclines as well as to other antibiotics. They may be considered as fastidious bacteria whose major unique character is their obligate intracellu­ lar life, although there is at least one exception to this. In appearance, they range from coccoid forms 0.3 J.I. in diameter to long chains of bacillary forms. They are thus intermediate in size between most bacteria and filterable viruses, and form the family Rickettsiaceae Pinkerton. They stain poorly by Gram's method but well by the procedures of Macchiavello, Gimenez, and Giemsa.
    [Show full text]
  • Dermacentor Rhinocerinus (Denny 1843) (Acari : Lxodida: Ixodidae): Rede­ Scription of the Male, Female and Nymph and First Description of the Larva
    Onderstepoort J. Vet. Res., 60:59-68 (1993) ABSTRACT KEIRANS, JAMES E. 1993. Dermacentor rhinocerinus (Denny 1843) (Acari : lxodida: Ixodidae): rede­ scription of the male, female and nymph and first description of the larva. Onderstepoort Journal of Veterinary Research, 60:59-68 (1993) Presented is a diagnosis of the male, female and nymph of Dermacentor rhinocerinus, and the 1st description of the larval stage. Adult Dermacentor rhinocerinus paras1tize both the black rhinoceros, Diceros bicornis, and the white rhinoceros, Ceratotherium simum. Although various other large mammals have been recorded as hosts for D. rhinocerinus, only the 2 species of rhinoceros are primary hosts for adults in various areas of east, central and southern Africa. Adults collected from vegetation in the Kruger National Park, Transvaal, South Africa were reared on rabbits at the Onderstepoort Veterinary Institute, where larvae were obtained for the 1st time. INTRODUCTION longs to the rhinoceros tick with the binomen Am­ blyomma rhinocerotis (De Geer, 1778). Although the genus Dermacentor is represented throughout the world by approximately 30 species, Schulze (1932) erected the genus Amblyocentorfor only 2 occur in the Afrotropical region. These are D. D. rhinocerinus. Present day workers have ignored circumguttatus Neumann, 1897, whose adults pa­ this genus since it is morphologically unnecessary, rasitize elephants, and D. rhinocerinus (Denny, but a few have relegated Amblyocentor to a sub­ 1843), whose adults parasitize both the black or genus of Dermacentor. hook-lipped rhinoceros, Diceros bicornis (Lin­ Two subspecific names have been attached to naeus, 1758), and the white or square-lipped rhino­ D. rhinocerinus. Neumann (191 0) erected D.
    [Show full text]
  • Gamasid Mites
    NATIONAL RESEARCH TOMSK STATE UNIVERSITY BIOLOGICAL INSTITUTE RUSSIAN ACADEMY OF SCIENCE ZOOLOGICAL INSTITUTE M.V. Orlova, M.K. Stanyukovich, O.L. Orlov GAMASID MITES (MESOSTIGMATA: GAMASINA) PARASITIZING BATS (CHIROPTERA: RHINOLOPHIDAE, VESPERTILIONIDAE, MOLOSSIDAE) OF PALAEARCTIC BOREAL ZONE (RUSSIA AND ADJACENT COUNTRIES) Scientific editor Andrey S. Babenko, Doctor of Science, professor, National Research Tomsk State University Tomsk Publishing House of Tomsk State University 2015 UDK 576.89:599.4 BBK E693.36+E083 Orlova M.V., Stanyukovich M.K., Orlov O.L. Gamasid mites (Mesostigmata: Gamasina) associated with bats (Chiroptera: Vespertilionidae, Rhinolophidae, Molossidae) of boreal Palaearctic zone (Russia and adjacent countries) / Scientific editor A.S. Babenko. – Tomsk : Publishing House of Tomsk State University, 2015. – 150 р. ISBN 978-5-94621-523-7 Bat gamasid mites is a highly specialized ectoparasite group which is of great interest due to strong isolation and other unique features of their hosts (the ability to fly, long distance migration, long-term hibernation). The book summarizes the results of almost 60 years of research and is the most complete summary of data on bat gamasid mites taxonomy, biology, ecol- ogy. It contains the first detailed description of bat wintering experience in sev- eral regions of the boreal Palaearctic. The book is addressed to zoologists, ecologists, experts in environmental protection and biodiversity conservation, students and teachers of biology, vet- erinary science and medicine. UDK 576.89:599.4
    [Show full text]
  • Mesostigmata No
    16 (1) · 2016 Christian, A. & K. Franke Mesostigmata No. 27 ............................................................................................................................................................................. 1 – 41 Acarological literature .................................................................................................................................................... 1 Publications 2016 ........................................................................................................................................................................................... 1 Publications 2015 ........................................................................................................................................................................................... 9 Publications, additions 2014 ....................................................................................................................................................................... 17 Publications, additions 2013 ....................................................................................................................................................................... 18 Publications, additions 2012 ....................................................................................................................................................................... 20 Publications, additions 2011 ......................................................................................................................................................................
    [Show full text]
  • Ixodida: Argasidae) En México
    Universidad Nacional Autónoma de México Facultad de Estudios Superiores – Zaragoza Diferenciación morfológica y molecular de garrapatas del género Antricola (Ixodida: Argasidae) en México. TESIS Que para obtener el título de: BIÓLOGO Presenta: Jesús Alberto Lugo Aldana Directora de tesis: Dra. María del Carmen Guzmán Cornejo Asesor interno: Dr. David Nahum Espinosa Organista México, D. F. Abril 2013 Facultad de Estudios Superiores Zaragoza, UNAM. *** Laboratorio de Acarología “Anita Hoffman” Facultad de Ciencias, UNAM. Dedicatoria A mi esposa Diana Sánchez y mi pequeña princesa Quetzalli por ser el motivo, para ser mejor día con día. A mi mamá Sara H. Aldana G. y mi papá Jesús G. Lugo C. por enseñarme los valores que hoy me hacen ser una gran persona, además de ser el ejemplo para superarme todos los días. A mi hermana Mitzi Saraí y hermano José Luis por su apoyo incondicional, que además de ser inspiración, lograron alentarme en todo momento para concluir este gran proyecto. A la familia Aldana Sánchez, Aldana Godínez, Del Moral Aldana, Lugo Cid, Lugo Romero, Lugo Maldonado y a la Sra. Irene Cabrera R., por todos sus consejos y apoyo incondicional a lo largo de toda mi carrera. Mil gracias… Agradecimientos o A mi alma mater U.N.A.M., por darme la oportunidad de ser parte de ésta gran institución. o A la Facultad de Estudios Superiores Zaragoza, por brindarme los conocimientos esenciales en toda mi formación como biólogo. o A la Dra. Ma. Del Carmen Guzmán Cornejo, “Meli”, por todo su apoyo incondicional durante la realización de éste trabajo, ya que sin sus consejos, orientación, confianza y amistad no se hubieran alcanzado tantas satisfacciones.
    [Show full text]
  • Genus Boophilus Curtice Genus Rhipicentor Nuttall & Warburton
    3 CONTENTS General remarks 4 Genus Amblyomma Koch 5 Genus Anomalohimalaya Hoogstraal, Kaiser & Mitchell 46 Genus Aponomma Neumann 47 Genus Boophilus Curtice 58 Genus Hyalomma Koch. 63 Genus Margaropus Karsch 82 Genus Palpoboophilus Minning 84 Genus Rhipicentor Nuttall & Warburton 84 Genus Uroboophilus Minning. 84 References 86 SUMMARI A list of species and subspecies currently included in the tick genera Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus, and Rhipicentor, as well as in the unaccepted genera Palpoboophilus and Uroboophilus is given in this paper. The published synonymies and authors of each spécifie or subspecific name are also included. Remaining tick genera have been reviewed in part in a previous paper of this series, and will be finished in a future third part. Key-words: Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus, Rhipicentor, Uroboophilus, Palpoboophilus, species, synonymies. RESUMEN Se proporciona una lista de las especies y subespecies actualmente incluidas en los géneros Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus y Rhipicentor, asi como en los géneros no aceptados Palpoboophilus and Uroboophilus. Se incluyen también las sinonimias publicadas y los autores de cada nombre especifico o subespecifico. Los restantes géneros de garrapatas han sido revisados en parte en un volumen previo de esta serie, y serân terminados en una futura tercera parte. Palabras claves Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus, Rhipicentor, Uroboophilus, Palpoboophilus, especies, sinonimias. 4 GENERAL REMARKS Following is a list of species and subspecies of ticks d~e scribed in the genera Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalorma, Margaropus, and Rhipicentor, as well as in the unaccepted genera Palpoboophilus and Uroboophilus. The first volume (Estrada- Pena, 1991) included data for Haemaphysalis, Anocentor, Dermacentor, and Cosmiomma.
    [Show full text]
  • The External Parasites of Birds: a Review
    THE EXTERNAL PARASITES OF BIRDS: A REVIEW BY ELIZABETH M. BOYD Birds may harbor a great variety and numher of ectoparasites. Among the insects are biting lice (Mallophaga), fleas (Siphonaptera), and such Diptera as hippohoscid flies (Hippohoscidae) and the very transitory mosquitoes (Culicidae) and black flies (Simuliidae), which are rarely if every caught on animals since they fly off as soon as they have completed their blood-meal. One may also find, in birds ’ nests, bugs of the hemipterous family Cimicidae, and parasitic dipterous larvae that attack nestlings. Arachnida infesting birds comprise the hard ticks (Ixodidae), soft ticks (Argasidae), and certain mites. Most ectoparasites are blood-suckers; only the Ischnocera lice and some species of mites subsist on skin components. The distribution of ectoparasites on the host varies with the parasite concerned. Some show no habitat preference while others tend to confine themselves to, or even are restricted to, definite areas on the body. A list of 198 external parasites for 2.55 species and/or subspecies of birds east of the Mississippi has been compiled by Peters (1936) from files of the Bureau of Entomology and Plant Quarantine between 1928 and 1935. Fleas and dipterous larvae were omitted from this list. According to Peters, it is possible to collect three species of lice, one or two hippoboscids, and several types of mites on a single bird. He records as many as 15 species of ectoparasites each from the Bob-white (Co&us uirginianus), Song Sparrow (Melospiza melodia), and Robin (Turdus migratorius). The lice and plumicolous mites, however, are typically the most abundant forms present on avian hosts.
    [Show full text]
  • Electronic Polytomous and Dichotomous Keys to the Genera and Species of Hard Ticks (Acari: Ixodidae) Present in New Zealand
    Systematic & Applied Acarology (2010) 15, 163–183. ISSN 1362-1971 Electronic polytomous and dichotomous keys to the genera and species of hard ticks (Acari: Ixodidae) present in New Zealand SCOTT HARDWICK AgResearch, Lincoln Research Centre, Private Bag 4749, Christchurch 8140, New Zealand Email: [email protected] Abstract New Zealand has a relatively small tick fauna, with nine described and one undescribed species belonging to the genera Ornithodoros, Amblyomma, Haemaphysalis and Ixodes. Although exotic hard ticks (Ixodidae) are intercepted in New Zealand on a regular basis, the country has largely remained free of these organisms and the significant diseases that they can vector. However, professionals in the biosecurity, health and agricultural industries in New Zealand have little access to user-friendly identification tools that would enable them to accurately identify the ticks that are already established in the country or to allow recognition of newly arrived exotics. The lack of access to these materials has the potential to lead to delays in the identification of exotic tick species. This is of concern as 40-60% of exotic ticks submitted for identification by biosecurity staff in New Zealand are intercepted post border. This article presents dichotomous and polytomous keys to the eight species of hard tick that occur in New Zealand. These keys have been digitised using Lucid® and Phoenix® software and are deployed at http://keys.lucidcentral.org/keys/v3/hard_ticks/Ixodidae genera.html in a form that allows use by non-experts. By enabling non-experts to carry out basic identifications, it is hoped that professionals in the health and agricultural industries in New Zealand can play a greater role in surveillance for exotic ticks.
    [Show full text]
  • Tick [Genome Mapping]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Public Health Resources Public Health Resources 2008 Tick [Genome Mapping] Amy J. Ullmann Centers for Disease Control and Prevention, Fort Collins, CO Jeffrey J. Stuart Purdue University, [email protected] Catherine A. Hill Purdue University Follow this and additional works at: https://digitalcommons.unl.edu/publichealthresources Part of the Public Health Commons Ullmann, Amy J.; Stuart, Jeffrey J.; and Hill, Catherine A., "Tick [Genome Mapping]" (2008). Public Health Resources. 108. https://digitalcommons.unl.edu/publichealthresources/108 This Article is brought to you for free and open access by the Public Health Resources at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Public Health Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 8 Tick Amy J. Ullmannl, Jeffrey J. stuart2, and Catherine A. Hill2 Division of Vector Borne-Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA Department of Entomology, Purdue University, 901 West State Street, West Lafayette, IN 47907, USA e-mail:[email protected] 8.1 8.1 .I Introduction Phylogeny and Evolution of the lxodida Ticks and mites are members of the subclass Acari Ticks (subphylum Chelicerata: class Arachnida: sub- within the subphylum Chelicerata. The chelicerate lin- class Acari: superorder Parasitiformes: order Ixodi- eage is thought to be ancient, having diverged from dae) are obligate blood-feeding ectoparasites of global Trilobites during the Cambrian explosion (Brusca and medical and veterinary importance. Ticks live on all Brusca 1990). It is estimated that is has been ap- continents of the world (Steen et al.
    [Show full text]