TICKS in RELATION to HUMAN DISEASES CAUSED by <I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Much Do You Know About Fleas, Ticks, Mites and Other Biters? by Vet Glen Cousquer C Norris
Artful arthropods How much do you know about fleas, ticks, mites and other biters? By vet Glen Cousquer C Norris robably the most historically significant and well known arthropod-borne disease was the “Black Death”. This scourge of the Middle Ages, also known as the Bubonic Plague, killed Pbetween 30 and 60 per cent of Europe’s human population during the 14th Century. This bacterial disease was carried by black rats (Rattus rattus) and transmitted from the rat to humans by the Oriental rat flea (Xenopsylla cheopis). The flea was able to pick up the disease when feeding on rats and then transfer Cheyletiella mites result in the appearance the disease when feeding again on humans. At the time, the of scurf and bald patches in the fur various contributing causes of this devastating disease remained G Cousquer obscure. Our ancestors were largely ignorant of the role played transmit diseases to rabbits. Many of the most important rabbit by the rat, the flea, poor hygiene and inadequate sanitation and diseases are transmitted in this way and we need a detailed this severely hampered their attempts to deal with outbreaks. understanding of the process involved if we are to protect our Today, it is this understanding of how disease can be carried rabbits’ health and welfare. by reservoirs and then transmitted by vectors that allows us to mount more effective responses to such disease threats. So, what are the common arthropod parasites found feeding on rabbits? This feature will look at how certain arthropods play key roles in the transmission of diseases to rabbits. -
Identification of Ixodes Ricinus Female Salivary Glands Factors Involved in Bartonella Henselae Transmission
UNIVERSITÉ PARIS-EST École Doctorale Agriculture, Biologie, Environnement, Santé T H È S E Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PARIS-EST Spécialité : Sciences du vivant Présentée et soutenue publiquement par Xiangye LIU Le 15 Novembre 2013 Identification of Ixodes ricinus female salivary glands factors involved in Bartonella henselae transmission Directrice de thèse : Dr. Sarah I. Bonnet USC INRA Bartonella-Tiques, UMR 956 BIPAR, Maisons-Alfort, France Jury Dr. Catherine Bourgouin, Chef de laboratoire, Institut Pasteur Rapporteur Dr. Karen D. McCoy, Chargée de recherches, CNRS Rapporteur Dr. Patrick Mavingui, Directeur de recherches, CNRS Examinateur Dr. Karine Huber, Chargée de recherches, INRA Examinateur ACKNOWLEDGEMENTS To everyone who helped me to complete my PhD studies, thank you. Here are the acknowledgements for all those people. Foremost, I express my deepest gratitude to all the members of the jury, Dr. Catherine Bourgouin, Dr. Karen D. McCoy, Dr. Patrick Mavingui, Dr. Karine Huber, thanks for their carefully reviewing of my thesis. I would like to thank my supervisor Dr. Sarah I. Bonnet for supporting me during the past four years. Sarah is someone who is very kind and cheerful, and it is a happiness to work with her. She has given me a lot of help for both living and studying in France. Thanks for having prepared essential stuff for daily use when I arrived at Paris; it was greatly helpful for a foreigner who only knew “Bonjour” as French vocabulary. And I also express my profound gratitude for her constant guidance, support, motivation and untiring help during my doctoral program. -
Dermacentor Rhinocerinus (Denny 1843) (Acari : Lxodida: Ixodidae): Rede Scription of the Male, Female and Nymph and First Description of the Larva
Onderstepoort J. Vet. Res., 60:59-68 (1993) ABSTRACT KEIRANS, JAMES E. 1993. Dermacentor rhinocerinus (Denny 1843) (Acari : lxodida: Ixodidae): rede scription of the male, female and nymph and first description of the larva. Onderstepoort Journal of Veterinary Research, 60:59-68 (1993) Presented is a diagnosis of the male, female and nymph of Dermacentor rhinocerinus, and the 1st description of the larval stage. Adult Dermacentor rhinocerinus paras1tize both the black rhinoceros, Diceros bicornis, and the white rhinoceros, Ceratotherium simum. Although various other large mammals have been recorded as hosts for D. rhinocerinus, only the 2 species of rhinoceros are primary hosts for adults in various areas of east, central and southern Africa. Adults collected from vegetation in the Kruger National Park, Transvaal, South Africa were reared on rabbits at the Onderstepoort Veterinary Institute, where larvae were obtained for the 1st time. INTRODUCTION longs to the rhinoceros tick with the binomen Am blyomma rhinocerotis (De Geer, 1778). Although the genus Dermacentor is represented throughout the world by approximately 30 species, Schulze (1932) erected the genus Amblyocentorfor only 2 occur in the Afrotropical region. These are D. D. rhinocerinus. Present day workers have ignored circumguttatus Neumann, 1897, whose adults pa this genus since it is morphologically unnecessary, rasitize elephants, and D. rhinocerinus (Denny, but a few have relegated Amblyocentor to a sub 1843), whose adults parasitize both the black or genus of Dermacentor. hook-lipped rhinoceros, Diceros bicornis (Lin Two subspecific names have been attached to naeus, 1758), and the white or square-lipped rhino D. rhinocerinus. Neumann (191 0) erected D. -
WHAT IS MYXOMATOSIS? After Its Introduction to the UK in the Early 1950’S Myxomatosis Was So Virulent That an Estimated 95% of Wild and Pet Rabbits Had Died by 1955
WHAT IS MYXOMATOSIS? After its introduction to the UK in the early 1950’s myxomatosis was so virulent that an estimated 95% of wild and pet rabbits had died by 1955. In the year 2000 we again experienced one of the worst outbreaks of Myxomatosis ever recorded, and this disease is still affecting rabbits, particularly during the late summer/ autumn season. Below: edited extracts from an article written by Dr Linda Dykes, published in Fur & Feather’s November 2000 issue. yxomatosis is a rabbit will be a pitiful sight. Severe viral disease which conjunctivitis causes blindness and decimated the wild is accompanied by swelling of the Mrabbit population when it head and genital region plus lumps arrived in Britain nearly seventy on the body. years ago. The number and The rabbit can take a fortnight to severity of outbreaks varies over die and treatment of the “classic” time as the myxomatosis virus form of myxomatosis is usually is notorious for its ability to futile. mutate from year to year, and the background immunity in There are also two atypical forms the wild rabbit population also of myxomatosis: one causes varies. pneumonia and a snuffles-like illness; the other (“nodular Be especially careful if you have a being a bit “off colour” with a few Rabbits at myxomatosis”) mainly affects skin Greatest Risk dog or cat that hunts wild rabbits, skin lesions. and carries a better prognosis. Domestic rabbits do not have as they could bring rabbit fleas Treatment is usually successful any genetically based immunity If a vaccinated rabbit does develop home or into the rabbitry on their in the vaccinated rabbit with a against myxomatosis. -
1.1.1.2 Tick-Borne Encephalitis Virus
This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Transcriptomic and proteomic analysis of arbovirus-infected tick cells Sabine Weisheit Thesis submitted for the degree of Doctor of Philosophy The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh 2014 Declaration .................................................................................................... i Acknowledgements ..................................................................................... ii Abstract of Thesis ....................................................................................... iii List of Figures .............................................................................................. v List -
Bitten Enhance.Pdf
bitten. Copyright © 2019 by Kris Newby. All rights reserved. Printed in the United States of America. No part of this book may be used or reproduced in any manner whatsoever without written permission except in the case of brief quotations embodied in critical articles and reviews. For information, address HarperCollins Publishers, 195 Broadway, New York, NY 10007. HarperCollins books may be purchased for educational, business, or sales pro- motional use. For information, please email the Special Markets Department at [email protected]. first edition Frontispiece: Tick research at Rocky Mountain Laboratories, in Hamilton, Mon- tana (Courtesy of Gary Hettrick, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases [NIAID], National Institutes of Health [NIH]) Maps by Nick Springer, Springer Cartographics Designed by William Ruoto Library of Congress Cataloging- in- Publication Data Names: Newby, Kris, author. Title: Bitten: the secret history of lyme disease and biological weapons / Kris Newby. Description: New York, NY: Harper Wave, [2019] Identifiers: LCCN 2019006357 | ISBN 9780062896278 (hardback) Subjects: LCSH: Lyme disease— History. | Lyme disease— Diagnosis. | Lyme Disease— Treatment. | BISAC: HEALTH & FITNESS / Diseases / Nervous System (incl. Brain). | MEDICAL / Diseases. | MEDICAL / Infectious Diseases. Classification: LCC RC155.5.N49 2019 | DDC 616.9/246—dc23 LC record available at https://lccn.loc.gov/2019006357 19 20 21 22 23 lsc 10 9 8 7 6 5 4 3 2 1 Appendix I: Ticks and Human Disease Agents -
CHAPTER ONE General Introduction, Background/Literature Review
CHAPTER ONE General introduction, Background/Literature Review, Hypotheses and Objectives 1.1 General Introduction Ticks are haematophagous ectoparasites, capable of transmitting diseases to vertebrates and therefore represent a threat to human, domestic and wildlife health (Norval, 1994). Tick and tick-borne diseases have impacted negatively on development of the livestock industry in Africa (Walker et al. 2003). Ixodid ticks such as Amblyomma variegatum Fabriscius and Rhipicephalus appendiculatus Neumann (Acari: Ixodidae) in particular, are among the most economically important parasites in the tropics and subtropics (Bram, 1983). Another hard tick that is gaining recognition as an important vector of tick-borne pathogens is Rhipicephalus pulchellus Gerstäcker (Acari: Ixodidae) (Walker et al., 2003). Control of this pest largely depends on synthetic acaricides including chlorinated hydrocarbons, pyrethroids, organophosphates and formamidines (amitraz) (Davey et al., 1998; Rodríguez-Vivas and Domínguez-Alpizar, 1998; George et al., 2004). However, extensive use of these chemicals has favoured acaricide resistance in ticks (Baker and Shaw, 1965; Solomon et al., 1979; Alonso-Díaz et al., 2006) and led to heightened concerns over health and environmental impact (Dipeolu and Ndungu, 1991; Gassner et al., 1997). Furthermore, synthetic acaricides are expensive to livestock farmers in Africa who mainly practice subsistence farming. These setbacks have motivated the search for alternative tick control strategies that are more environmentally benign. These strategies include the use of entomopathogenic fungi and nematodes, predators, parasitic hymenoptera, tick vaccines, plant extracts, tick pheromones and host kairomones, and integrated use of semiochemicals and acaricides (Mwangi et al., 1991; Kaaya, 2000a; Samish et al., 2004; Maranga et al., 2006). There is particular interest in microbial control agents, especially entomopathogenic fungi Isolates of Metarhizium anisopliae (Metschnik.) Sorok. -
Ehrlichiosis and Anaplasmosis Are Tick-Borne Diseases Caused by Obligate Anaplasmosis: Intracellular Bacteria in the Genera Ehrlichia and Anaplasma
Ehrlichiosis and Importance Ehrlichiosis and anaplasmosis are tick-borne diseases caused by obligate Anaplasmosis: intracellular bacteria in the genera Ehrlichia and Anaplasma. These organisms are widespread in nature; the reservoir hosts include numerous wild animals, as well as Zoonotic Species some domesticated species. For many years, Ehrlichia and Anaplasma species have been known to cause illness in pets and livestock. The consequences of exposure vary Canine Monocytic Ehrlichiosis, from asymptomatic infections to severe, potentially fatal illness. Some organisms Canine Hemorrhagic Fever, have also been recognized as human pathogens since the 1980s and 1990s. Tropical Canine Pancytopenia, Etiology Tracker Dog Disease, Ehrlichiosis and anaplasmosis are caused by members of the genera Ehrlichia Canine Tick Typhus, and Anaplasma, respectively. Both genera contain small, pleomorphic, Gram negative, Nairobi Bleeding Disorder, obligate intracellular organisms, and belong to the family Anaplasmataceae, order Canine Granulocytic Ehrlichiosis, Rickettsiales. They are classified as α-proteobacteria. A number of Ehrlichia and Canine Granulocytic Anaplasmosis, Anaplasma species affect animals. A limited number of these organisms have also Equine Granulocytic Ehrlichiosis, been identified in people. Equine Granulocytic Anaplasmosis, Recent changes in taxonomy can make the nomenclature of the Anaplasmataceae Tick-borne Fever, and their diseases somewhat confusing. At one time, ehrlichiosis was a group of Pasture Fever, diseases caused by organisms that mostly replicated in membrane-bound cytoplasmic Human Monocytic Ehrlichiosis, vacuoles of leukocytes, and belonged to the genus Ehrlichia, tribe Ehrlichieae and Human Granulocytic Anaplasmosis, family Rickettsiaceae. The names of the diseases were often based on the host Human Granulocytic Ehrlichiosis, species, together with type of leukocyte most often infected. -
An Insight Into the Ecobiology, Vector Significance and Control of Hyalomma Ticks (Acari: Ixodidae): a Review
Accepted Manuscript Title: AN INSIGHT INTO THE ECOBIOLOGY, VECTOR SIGNIFICANCE AND CONTROL OF HYALOMMA TICKS (ACARI: IXODIDAE): A REVIEW Authors: M.S. Sajid, A. Kausar, A. Iqbal, H. Abbas, Z. Iqbal, M.K. Jones PII: S0001-706X(18)30862-3 DOI: https://doi.org/10.1016/j.actatropica.2018.08.016 Reference: ACTROP 4752 To appear in: Acta Tropica Received date: 6-7-2018 Revised date: 10-8-2018 Accepted date: 12-8-2018 Please cite this article as: Sajid MS, Kausar A, Iqbal A, Abbas H, Iqbal Z, Jones MK, AN INSIGHT INTO THE ECOBIOLOGY, VECTOR SIGNIFICANCE AND CONTROL OF HYALOMMA TICKS (ACARI: IXODIDAE): A REVIEW, Acta Tropica (2018), https://doi.org/10.1016/j.actatropica.2018.08.016 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. AN INSIGHT INTO THE ECOBIOLOGY, VECTOR SIGNIFICANCE AND CONTROL OF HYALOMMA TICKS (ACARI: IXODIDAE): A REVIEW M. S. SAJID 1 2 *, A. KAUSAR 3, A. IQBAL 4, H. ABBAS 5, Z. IQBAL 1, M. K. JONES 6 1. Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad-38040, Pakistan. 2. One Health Laboratory, Center for Advanced Studies in Agriculture and Food Security (CAS-AFS) University of Agriculture, Faisalabad-38040, Pakistan. -
Wildlife Disease Monitor 2014
WILDLIFE DISEASE MONITORING IN SWEDEN 2014 Editors: Jonas Malmsten, Erik Ågren Authors: Caroline Bröjer, Gete Hestvik, Aleksija Neimanis, Jonas Malmsten, Torsten Mörner, Henrik Uhlhorn, Erik Ågren Photo, front page: Jim Hallander Layout: Gun-Britt Rydén, Jonas Malmsten Suggested citation: Wildlife disease monitoring in Sweden 2014. National Veterinary Institute, SVA, Uppsala, Sweden. SVA´s report series 33, ISSN 1654-7098 Address: Ulls väg 2 B, 751 89 Uppsala telephone. +46 18 67 40 00 fax. +46 18 30 91 62 e-mail. [email protected] webb. www.sva.se Table of contents Foreword ....................................................... 1 Wild boar as carriers of pathogenic Wildlife disease surveillance in Sweden ......... 2 agents ..................................................... 13 Staff working with Wildlife disease Bird flu monitoring ................................... 13 investigations in 2014 ................................ 2 Investigation of moose calf mortality on Wildlife diseases and increased mortality Öland ...................................................... 14 events of interest 2014 .................................. 3 Pasteurellosis in fallow deer .................... 14 Bird flu virus in harbour seals .................... 3 PCR diagnosis of trichomonas infection in Fox tapeworm – EchinococcosIS .............. 3 wild birds ................................................. 14 Mortality event in fallow deer ..................... 3 Salmonella in hedgehogs ........................ 15 Trichomoniasis in Greenfinches ............... -
Genetic Structure of Amblyomma Cajennense (Acari: Ixodidae) Populations Based on Mitochondrial Gene Sequences
Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Spring 2009 Genetic Structure of Amblyomma Cajennense (Acari: Ixodidae) Populations Based on Mitochondrial Gene Sequences Erica Janelle Burkman Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Recommended Citation Burkman, Erica Janelle, "Genetic Structure of Amblyomma Cajennense (Acari: Ixodidae) Populations Based on Mitochondrial Gene Sequences" (2009). Electronic Theses and Dissertations. 704. https://digitalcommons.georgiasouthern.edu/etd/704 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. GENETIC STRUCTURE OF AMBLYOMMA CAJENNENSE (ACARI: IXODIDAE) POPULATIONS BASED ON MITOCHONDRIAL GENE SEQUENCES by ERICA JANELLE BURKMAN (Under the Direction of Dr. Lorenza Beati) ABSTRACT Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae) is a common tick species that has a large geographic distribution from the southern regions of the United States (Texas), to the Caribbean Islands, Central, and South America. This tick is a vector of the agent of Brazilian spotted fever, an often fatal disease in South America. Throughout its geographic range, populations of A. cajennense have shown differences in ecological adaptation while feeding on a variety of hosts ranging from livestock, birds, and humans. In order to examine the taxonomic status and phylogeographic evolution of this species, we analyzed mitochondrial 12S rDNA, control region (d-loop), and cytochrome oxidase II gene sequences of A. -
Annual Meeting
Volume 97 | Number 5 Volume VOLUME 97 NOVEMBER 2017 NUMBER 5 SUPPLEMENT SIXTY-SIXTH ANNUAL MEETING November 5–9, 2017 The Baltimore Convention Center | Baltimore, Maryland USA The American Journal of Tropical Medicine and Hygiene The American Journal of Tropical astmh.org ajtmh.org #TropMed17 Supplement to The American Journal of Tropical Medicine and Hygiene ASTMH FP Cover 17.indd 1-3 10/11/17 1:48 PM Welcome to TropMed17, our yearly assembly for stimulating research, clinical advances, special lectures, guests and bonus events. Our keynote speaker this year is Dr. Paul Farmer, Co-founder and Chief Strategist of Partners In Health (PIH). In addition, Dr. Anthony Fauci, Director of the National Institute of Allergy and Infectious Diseases, will deliver a plenary session Thursday, November 9. Other highlighted speakers include Dr. Scott O’Neill, who will deliver the Fred L. Soper Lecture; Dr. Claudio F. Lanata, the Vincenzo Marcolongo Memorial Lecture; and Dr. Jane Cardosa, the Commemorative Fund Lecture. We are pleased to announce that this year’s offerings extend beyond communicating top-rated science to direct service to the global community and a number of novel events: • Get a Shot. Give a Shot.® Through Walgreens’ Get a Shot. Give a Shot.® campaign, you can not only receive your free flu shot, but also provide a lifesaving vaccine to a child in need via the UN Foundation’s Shot@Life campaign. • Under the Net. Walk in the shoes of a young girl living in a refugee camp through the virtual reality experience presented by UN Foundation’s Nothing But Nets campaign.