Comparative Functional Morphology of Attachment Devices in Arachnida

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Functional Morphology of Attachment Devices in Arachnida Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas. I thank all other present and former members of the ‗Functional Morphology and Biomechanics‘ group for their help and nice company, namely Dr. Philipp Bußhardt, Dr. Petra Ditsche, Dr. Elena Gorb, Dr. Alexander Kovalev, Dr. Constanze Grohmann, Dr. Yoko Matsumura, Dr. Henrik Peisker, Dr. Marlene Spinner, Dr. Wey-Lim Wong, Emre Kızılkan, Kai Deng, Hamed Rajabi, Theresa Gödel, Dennis Petersen, Philipp Hofmann and Mike Schindler. I like to express my gratitude to Siegfried Huber (Mühlhofen) for continuous support by supplying various arachnids both living and conserved, as well as great photographs. I thank Michael Seiter (Wien) for the fruitful collaboration and shared enthusiasm on whip-spiders. I am deeply grateful to Dr. Axel Schönhofer (Nackenheim) for his enthusiastic collaboration on harvestmen and the organization of a wonderful collection trip in the South-Western Alps. I thank Dr. Peter Jäger and Julia Altmann (Senckenberg Institute Frankfurt) and Dr. Peter Michalik (University of Greifswald) for the access to the arachnological collections and kind hospitality. I further thank Prof. Jochen Martens (Johannes Gutenberg University Mainz), Dr. Lucia Kuhn-Nentwig (University of Bern), Darrell Ubick (Californian Academy of Sciences), Prof. Jutta Schneider (University of Hamburg), Dr. Christopher Taylor (Curtin University Perth), Hay Wijnhoven (Nijmegen), Jürgen Guttenberger and Salvatore Canu (Usini) for providing animals or specimens. I thank Dr. Anja Klann (University of Greifswald), Prof. Glauco Machado and Solimary García (University of São Paulo) for their kind permission to cite the communication of their unpublished observations. Thanks to Melvyn Yeo, Arno Grabolle, Jörg Pageler, Hans-Jürgen Thorns, Jan van Duinen, Tobias Bellmann (on behalf of his deceased father Heiko Bellmann), Dr. Walter Pfliegler, Markus Gottlieb, Tobias Töpfer and Lennart Bendixen for their kind permission to use their great photographs. I like to thank the referees and the members of the examination board for taking the time. I am deeply grateful for the financial support of the German National Merit Foundation (Studienstiftung des Deutschen Volkes). This work would have not been possible without the ongoing support of my wife Lydia. Abstract Attachment is one of the major interactions between an organism and its environment. An enormous diversity of organs or secretory products has been evolved to enhance adhesion and friction with various substrates. The biological functions comprise maintenance of position, locomotion, prey capture, defence, reproduction or dispersal. There are numerous studies that deal with this issue in lizards, frogs, insects, barnacles, mussels and echinoderms, but the second largest class of arthropods, the Arachnida, are highly neglected. This work surveys the attachment organs and structures, and adhesive secretions occurring in this class and discusses the relationship between morphology and function, evolutionary trends, and biomimetic potential. The found diversity comprises interlocking and clamping devices (like claws, spines, hooks, pincer, locking piercer and raptorial legs), smooth and hairy adhesive pads, suckers, and hardening and viscid glue. Mechanical attachment is found in every arachnid order. The membrane based smooth adhesive pads occur in pseudoscorpions (Pseudoscorpiones), camel spiders (Solifugae), ticks (Ixodida and Holothyrida), mites (Opilioacarida, Mesostigmata, Sarcoptiformes and Trombidiformes), harvestmen nymphs (Opiliones), and prenymphs of scorpions (Scorpiones), whip spiders (Amblypygi) and whip scorpions (Thelyphonida). Hairy adhesive pads are found in spiders (Araneae), harvestmen (Opiliones), mites (Trombidiformes), and hooded tickspiders (Ricinulei). A unique micro-patterned adhesive pad (‗smooth‘ pad with spatulae) occurs in whip spiders (Amblypygi). Suckers are present in mites (Sarcoptiformes and Trombidiformes). Hardening glue is produced by spiders (Araneae), whip spiders (Amblypygi), whip scorpions (Thelyphonida), scorpions (Scorpiones), harvestmen (Opiliones), pseudoscorpions (Pseudoscorpiones), ticks (Ixodida), and mites (Mesostigmata, Sarcoptiformes and Trombidiformes). Viscid secretions for attachment purposes are produced by spiders (Araneae), harvestmen (Opiliones), and mites (Mesostigmata and Trombidiformes). The mechanical function and fine structure of selected attachment devices was studied, namely the arolia of whip spiders, whip scorpions, scorpions, pseudoscorpions and ticks, the tenent setae of some mites, the glandular setae and secretion of harvestmen, and the silken attachment discs of spiders. Further morphological examinations were performed on the scopulae of harvestmen and ricinuleids, the arolia of harvestmen and the secretions serving camouflage with soil particles in harvestmen and mites. Most structures and secretion properties have remarkable analogies among insects, lizards and tree frogs, which illustrate the optimal biological solutions for universal or specific attachment. This holds for the shape of claws, the spatulate or (rarer) mushroom-like shape of contact elements in adhesive hairs, the inner directed fibrillation of smooth adhesive pads, and the viscoelastic properties of prey capture adhesives. However, some of the described attachment devices are rather unique. In scorpion prenymphs the perhaps most simple type of an adhesive foot pad was found, represented by the non-sclerotized sac-like tip of the pretarsus that is hold in shape by the internal fluid pressure and can be invaginated by a muscle. An aroliar shape building a narrow, transverse contact has evolved in three different orders of arachnids. This structure presumably enhances the ability to switch quickly between a distribution and concentration of stress, which is of high importance for dynamic adhesion. In whip-spiders an arolium was found that exhibits hexagonal microstructures with spatulate tips, which have previously only known from hairy adhesive pads. These pads can generate a high adhesive strength, comparable to spiders and geckoes, even in the absence of fluids. The hexagonal order presumably permits a rapid drainage, enhancing the adhesion on wet surfaces, as known from tree frogs. The prehensile tarsi of harvestmen have dense pads of thin pointed setae, permitting a secure grip without the necessity of adhesive structures. The glandular setae of harvestmen exhibit special microstructures that arrest a droplet of viscid glue even at high pulling stresses. The silken attachment discs of spiders are secretory glue products with a unique hierarchical structure enhancing the flaw tolerance and attachment performance on anti-adhesive surfaces. The results may be of high relevance for our understanding of the function and evolution of attachment devices, as well as for the life history, behaviour, ecology and phylogeny of arachnids. The findings may also be a source of inspiration for biomimetic approaches and demonstrate that the high neglecting of arachnids in biomechanic research is unjustified. Kurzzusammenfassung Befestigung ist eine der wichtigsten Interaktionen zwischen einem Organismus und seiner Umwelt. Zu diesem Zweck entstand im Laufe der Evolution eine enorme Vielfalt an Klammer- und Haftorganen sowie klebrigen Sekreten. Ihre biologischen Funktionen umfassen Positions-Beibehaltung, Fortbewegung, Beutefang, Verteidigung, Reproduktion und Verbreitung. Zahlreiche Studien befassen sich mit dem Aufbau, der mechanischen Funktion und der stofflichen Zusammensetzung solcher Organe oder Sekrete bei Echsen, Fröschen, Insekten, Seepocken, Muscheln oder Stachelhäutern, aber die zweitgrößte Klasse der Gliederfüßer (Arthropoda), die Spinnentiere (Arachnida), sind bei dieser Forschung weitgehend ignoriert. Diese Arbeit gibt einen Überblick über Haftorgane, -strukturen, und -sekrete in dieser Tierklasse
Recommended publications
  • Arachnozoogeographical Analysis of the Boundary Between Eastern Palearctic and Indomalayan Region
    Historia naturalis bulgarica, 23: 5-36, 2016 Arachnozoogeographical analysis of the boundary between Eastern Palearctic and Indomalayan Region Petar Beron Abstract: This study aims to test how the distribution of various orders of Arachnida follows the classical subdivision of Asia and where the transitional zone between the Eastern Palearctic (Holarctic Kingdom) and the Indomalayan Region (Paleotropic) is situated. This boundary includes Thar Desert, Karakorum, Himalaya, a band in Central China, the line north of Taiwan and the Ryukyu Islands. The conclusion is that most families of Arachnida (90), excluding most of the representatives of Acari, are common for the Palearctic and Indomalayan Regions. There are no endemic orders or suborders in any of them. Regarding Arach- nida, their distribution does not justify the sharp difference between the two Kingdoms (Paleotropical and Holarctic) in Eastern Eurasia. The transitional zone (Sino-Japanese Realm) of Holt et al. (2013) also does not satisfy the criteria for outlining an area on the same footing as the Palearctic and Indomalayan Realms. Key words: Palearctic, Indomalayan, Arachnozoogeography, Arachnida According to the classical subdivision the region’s high mountains and plateaus. In southern Indomalayan Region is formed from the regions in Asia the boundary of the Palearctic is largely alti- Asia that are south of the Himalaya, and a zone in tudinal. The foothills of the Himalaya with average China. North of this “line” is the Palearctic (consist- altitude between about 2000 – 2500 m a.s.l. form the ing og different subregions). This “line” (transitional boundary between the Palearctic and Indomalaya zone) is separating two kingdoms, therefore the dif- Ecoregions.
    [Show full text]
  • Risk of Exposure of a Selected Rural Population in South Poland to Allergenic Mites
    Experimental and Applied Acarology https://doi.org/10.1007/s10493-019-00355-7 Risk of exposure of a selected rural population in South Poland to allergenic mites. Part II: acarofauna of farm buildings Krzysztof Solarz1 · Celina Pająk2 Received: 5 September 2018 / Accepted: 27 February 2019 © The Author(s) 2019 Abstract Exposure to mite allergens, especially from storage and dust mites, has been recognized as a risk factor for sensitization and allergy symptoms that could develop into asthma. The aim of this study was to investigate the occurrence of mites in debris and litter from selected farm buildings of the Małopolskie province, South Poland, with particular refer- ence to allergenic and/or parasitic species as a potential risk factor of diseases among farm- ers. Sixty samples of various materials (organic dust, litter, debris and residues) from farm buildings (cowsheds, barns, chaff-cutter buildings, pigsties and poultry houses) were sub- jected to acarological examination. The samples were collected in Lachowice and Kurów (Suski district, Małopolskie). A total of 16,719 mites were isolated including specimens from the cohort Astigmatina (27 species) which comprised species considered as allergenic (e.g., Acarus siro complex, Tyrophagus putrescentiae, Lepidoglyphus destructor, Glycy- phagus domesticus, Chortoglyphus arcuatus and Gymnoglyphus longior). Species of the families Acaridae (A. siro, A. farris and A. immobilis), Glycyphagidae (G. domesticus, L. destructor and L. michaeli) and Chortoglyphidae (C. arcuatus) have been found as numeri- cally dominant among astigmatid mites. The majority of mites were found in cowsheds (approx. 32%) and in pigsties (25.9%). The remaining mites were found in barns (19.6%), chaff-cutter buildings (13.9%) and poultry houses (8.8%).
    [Show full text]
  • 2017 AAS Abstracts
    2017 AAS Abstracts The American Arachnological Society 41st Annual Meeting July 24-28, 2017 Quéretaro, Juriquilla Fernando Álvarez Padilla Meeting Abstracts ( * denotes participation in student competition) Abstracts of keynote speakers are listed first in order of presentation, followed by other abstracts in alphabetical order by first author. Underlined indicates presenting author, *indicates presentation in student competition. Only students with an * are in the competition. MAPPING THE VARIATION IN SPIDER BODY COLOURATION FROM AN INSECT PERSPECTIVE Ajuria-Ibarra, H. 1 Tapia-McClung, H. 2 & D. Rao 1 1. INBIOTECA, Universidad Veracruzana, Xalapa, Veracruz, México. 2. Laboratorio Nacional de Informática Avanzada, A.C., Xalapa, Veracruz, México. Colour variation is frequently observed in orb web spiders. Such variation can impact fitness by affecting the way spiders are perceived by relevant observers such as prey (i.e. by resembling flower signals as visual lures) and predators (i.e. by disrupting search image formation). Verrucosa arenata is an orb-weaving spider that presents colour variation in a conspicuous triangular pattern on the dorsal part of the abdomen. This pattern has predominantly white or yellow colouration, but also reflects light in the UV part of the spectrum. We quantified colour variation in V. arenata from images obtained using a full spectrum digital camera. We obtained cone catch quanta and calculated chromatic and achromatic contrasts for the visual systems of Drosophila melanogaster and Apis mellifera. Cluster analyses of the colours of the triangular patch resulted in the formation of six and three statistically different groups in the colour space of D. melanogaster and A. mellifera, respectively. Thus, no continuous colour variation was found.
    [Show full text]
  • Estec Tecnologia
    Ann. Natal Mus. Vol. 33(2) Pages 271-336 Pietermaritzburg October, 1992 An annotated check-list of Afrotropical harvestmen, excluding the Phalangiidae (Opiliones) by Wojciech Staregal (Natal Museum, P. B. 9070, 3200 Pietermaritzburg, South Africa) ABSTRACT A check-list of all known Afrotropical harvestmen, with exception of the family Phalangiidae, is provided. The following taxonomic changes are made: 28 generic and 45 specific synonymies, 37 new combinations and 3 new names. Generic synonymies: Cryptobunus Lawrence, 1931 = Arnatola Lawrence, 1931; Flavonuncia Lawrence, 1959 = Hovanuncia Lawrence, 1959; Spinirnontia Roewer, 1914, Tanalaius Roewer, 1914 & Triacurnontia Roewer, 1914 = Acurnontia Loman, 1898 (all Triaenonychidae); Arnbolotsca Roewer, 1949 = Erecanana Strand, 1911 (Erecananidae); Argobba Roewer, 1935 & Harsadia Roewer, 1935 = Arnhara Pavesi, 1897; Assiniana Roewer, 1914 & Aburitius Roewer, 1935 = Sassandria Roewer, 1912; Coelobunus Loman, 1902 = Dicoryphus Loman, 1902; Faradjea Roewer, 1950 = Ereala Roewer, 1950; Gobabisia Roewer, 1940 = Narnutonia Lawrence, 1931; Monorhabdiurn Loman, 1902, Metachilon Roewer, 1923, Parachilon Roewer, 1923, Bindercola Roewer, 1935, Tsadsea Roewer, 1935, Acanfhocoryphus Roewer, 1953, Sangalkarnia Roewer, 1953, Villersiella Roewer, 1953 & Kobacoryphus Roewer, 1961 all = Chilon Sorensen, 1896; Othrnar Roewer, 1935 = Orsirnonia Roewer, 1935; Phezilbus Roewer, 1935 = Sidarna Pavesi, 1895; Pseudoacaca Caporiacco, 1949 = Acaca Roewer, 1935; Pungoiella Roewer, 1914 & Pygoselenca Roewer, 1953 = Pungoica
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9111799 Evolutionary morphology of the locomotor apparatus in Arachnida Shultz, Jeffrey Walden, Ph.D.
    [Show full text]
  • Arachnologische Mitteilungen 45: 40-44 Karlsruhe, Juni 2013
    Arachnologische Mitteilungen 45: 40-44 Karlsruhe, Juni 2013 A tropical invader, Coleosoma floridanum, spotted for the first time in Slovakia and the Czech Republic (Araneae, Theridiidae) Anna Šestáková, Jana Christophoryová & Stanislav Korenko doi: 10.5431/aramit4509 Abstract. The pantropical theridiid spider Coleosoma floridanum Banks, 1900 was recorded for the first time in Slo- vakia and in the Czech Republic. Both sexes and juveniles were collected in some numbers in heated greenhouses with high humidity. A description and photographs of the species are provided. Keywords: botanical garden, comb-footed spider, faunistics, first record, greenhouse, introduced species The small genus Coleosoma consists of nine tropical derside of plant leaves; some of them (ca. 10 %) were species distributed mostly in the Indo-Malayan eco- extracted from soil samples using Tullgren funnels. zone (Platnick 2012). Except for the largest species, They were identified using Nentwig et al. (2012) and C. matinikum Barrion & Litsinger, 1995 – known only compared to the original description (Banks 1900) from males, with a total length of ca. 4.8 mm – the re- and to the other species of the genus through the maining species are of small size (ca. 2 mm). They are detailed description and figures provided by several thus easily accidently imported to other countries on authors, e.g. Bryant (1940, 1944), Levi (1959), Bar- plants carried by ships. Despite this fact, only C. flori- rion & Litsinger (1995) and Saaristo (2006). danum has so far spread to Europe. This species is Microphotographs were made using EOS Utility commonly found in packages arriving from tropics, software and a digital camera (Canon EOS 1100D) thus it has been exported over the globe and may be connected to a Zeiss Stemi 2000-C stereomicroscope.
    [Show full text]
  • Weitere Weberknechte I. I. Ergänzung: Der: „Weberknechte Der Erde“ , 1923
    Weitere Weberknechte I. I. Ergänzung: der: „Weberknechte der Erde“ , 1923. Yon Prof. Dr. C. Fr. Roewer. Bremen 1926. Mit Textfigur 1—54 und 1 Tafel mit 5 Figuren. Unter diesem Titel beabsichtige ich all diejenigen Opilioniden zu besprechen und in die Tabellen meiner „Weberknechte der Erde“, die ich in Folge stets mit „ W. p. “ zitieren werde, einzustellen, welche in genannter Arbeit aus dort dargelegten Gründen nicht auf­ genommen werden konnten oder inzwischen als „neue Arten“ bekannt geworden sind. Es mögen also diese und folgende Abhandlungen in dieser Zeitschrift angesehen werden als Supplemente jener Monographie, welche ich dadurch auf dem Laufenden zu erhalten bemüht sein werde. Es sollen die Familien in derselben Reihenfolge genannt werden, wie sie in den „Weberknechten der Erde“ aufgestellt wurde. Als ich 1923 meine Monographie veröffentlichen konnte, schrieb ich im Vorwort, „daß ich, soweit es mir eben möglich war, auch die seit 1914 beschriebenen Arten berücksichtigt habe; doch was in den uns feindlichen Ländern seit Kriegsausbruch vielleicht veröffentlicht wurde, steht mir nicht zur Verfügung, auch weiß ich nicht, ob dort überhaupt Arbeiten über Weberknechte erschienen sind“. Dies ist, wie jetzt bekannt, doch der Fall gewesen, und ich zähle jene 1923 nicht berücksichtigten Arbeiten hier folgend auf: 1913 Hogg, M. A., Some Falkland Island Spiders; in: Proc. Zool. Soc. London 1913, p. 37— 50, Taf. 1 u. 2. 1914 Banks, N., Notes on Some Costarica Arachnida; in: Proc. Acad. Philadelph., vol. 65, p. 676—687, Taf. 28— 30. 1916 Chamberlin, R. V., Results of the Yale Peruvian Expedition of 1911; in: Bull. Mus. Harvard, vol. 60, Nr. 6, p.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • (Acari: Oribatida) in the Grassland Habitats of Eastern Mongolia Badamdorj Bayartogtokh National University of Mongolia, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Erforschung biologischer Ressourcen der Mongolei Institut für Biologie der Martin-Luther-Universität / Exploration into the Biological Resources of Halle-Wittenberg Mongolia, ISSN 0440-1298 2005 Biodiversity and Ecology of Soil Oribatid Mites (Acari: Oribatida) in the Grassland Habitats of Eastern Mongolia Badamdorj Bayartogtokh National University of Mongolia, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/biolmongol Part of the Asian Studies Commons, Biodiversity Commons, Desert Ecology Commons, Environmental Sciences Commons, Nature and Society Relations Commons, Other Animal Sciences Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Bayartogtokh, Badamdorj, "Biodiversity and Ecology of Soil Oribatid Mites (Acari: Oribatida) in the Grassland Habitats of Eastern Mongolia" (2005). Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298. 121. http://digitalcommons.unl.edu/biolmongol/121 This Article is brought to you for free and open access by the Institut für Biologie der Martin-Luther-Universität Halle-Wittenberg at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298 by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. In: Proceedings of the symposium ”Ecosystem Research in the Arid Environments of Central Asia: Results, Challenges, and Perspectives,” Ulaanbaatar, Mongolia, June 23-24, 2004. Erforschung biologischer Ressourcen der Mongolei (2005) 5. Copyright 2005, Martin-Luther-Universität. Used by permission. Erforsch. biol. Ress. Mongolei (Halle/Saale) 2005 (9): 59–70 Biodiversity and Ecology of Soil Oribatid Mites (Acari: Oribatida) in the Grassland Habitats of Eastern Mongolia B.
    [Show full text]
  • A Summary List of Fossil Spiders
    A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature.
    [Show full text]
  • (Banks) on Primocane-Fruiting Blackberries (Rubus L. Subgenus Rubus) in Arkansas Jessica Anne Lefors University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2018 Seasonal Phenology, Distribution and Treatments for Polyphagotarsonemus latus (Banks) on Primocane-fruiting Blackberries (Rubus L. subgenus Rubus) in Arkansas Jessica Anne LeFors University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Entomology Commons, Fruit Science Commons, Horticulture Commons, and the Plant Pathology Commons Recommended Citation LeFors, Jessica Anne, "Seasonal Phenology, Distribution and Treatments for Polyphagotarsonemus latus (Banks) on Primocane- fruiting Blackberries (Rubus L. subgenus Rubus) in Arkansas" (2018). Theses and Dissertations. 2730. http://scholarworks.uark.edu/etd/2730 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Seasonal Phenology, Distribution and Treatments for Polyphagotarsonemus latus (Banks) on Primocane-fruiting Blackberries (Rubus L. subgenus Rubus) in Arkansas A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology by Jessica Anne LeFors Texas Tech University Bachelor of Science in Horticulture, 2015 May 2018 University of Arkansas This thesis is approved for recommendation to the Graduate Council. _______________________________ Donn T. Johnson, Ph.D Thesis Director _______________________________ _______________________________ Oscar Alzate, Ph.D Terry Kirkpatrick, Ph.D Committee Member Committee Member _______________________________ Allen Szalanski, Ph.D Committee Member Abstract Worldwide, blackberries (Rubus L. subgenus Rubus) are an economically important crop. In 2007, Polyphagotarsonemus latus (Banks) (broad mites), were first reported damaging primocane-fruiting blackberries in Fayetteville, Arkansas.
    [Show full text]