Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Parasitisation with Nymphal Dermacentor Auratus Supino, 1897 (Acari: Ixodoiidea: Ixodidae)
Veterinary Practitioner Vol. 20 No. 2 December 2019 HUMAN PARASITISATION WITH NYMPHAL DERMACENTOR AURATUS SUPINO, 1897 (ACARI: IXODOIIDEA: IXODIDAE) Saidul Islam1, Prabhat Chandra Sarmah2 and Kanta Bhattacharjee3 Department of Parasitology, College of Veterinary Science Assam Agricultural University, Khanapara, Guwahati- 781 022, Assam, India Received on: 29.09.2019 ABSTRACT Accepted on: 03.11.2019 Human parasitisation with nymphal tick and its morhphology has been described. First author accidentally acquired with three nymphal tick infestation from wilderness. Nymphs were attached in hand and both the arm pits leading to intense itching, oedematous swelling and pinkish skin discolouration at the site of attachment. On sixth day of infestation there was mild pyrexia, the differential leukocytic count showed polymorphs 68%, lymphocytes 27%, monocytes 2% and eosinophils 3%. Though the conditions were ameliorated after steroid therapy, yet, the site of attachment was indurated for 8 months which gradually resolved. A nymph replete with blood meal was put in a desiccator with sufficient humidity at room temperature of 170C for moulting that transformed into adult female in 43 days measuring 5.0 X 5.5 mm in size. Detail morphological study confirmed the species as Dermacentor auratus Supino, 1897. Significance of human tick parasitisation has been reviewed and warranted for transmission of possible vector borne pathogens. Key words: Dermacentor auratus, nymph, human, India Introduction Result and Discussion Ticks form a major group of ectoparasites of animals, Tick species and morphology birds and reptiles to cause different types of direct injuries The partially fed nymphs were brown coloured measuring and transmit infectious diseases. Human parasitisation 2.0 X 2.5 mm in size with deep cervical groove, nearly circular by tick, although not common as compared to the animals, small scutum broadest in the middle and 3/3 dentition in the has been recorded in different parts of the world (Wassef hypostome. -
(Acari: Ixodidae) Attachment to Tick-Bite Victims
Determining the Duration of Ixodes scapularis (Acari: Ixodidae) Attachment to Tick-Bite Victims MIN-TSUNG YEH, JASON M. BAK, RENJIE HU, MATTHEW C. NICHOLSON, COLLEEN KELLY, AND THOMAS N. MATHER Center for Vector-Borne Disease, 240 Woodward Hall, University of Rhode Island, Kingston, RI 02881-0804 J. Med. Entomol. 32(6): 853-858 (1995) ABSTRACT The duration of tick attachment is one factor associated with risk for human infection caused by several tick-borne pathogens. We measured tick engorgement indices at known time intervals after tick attachment and used these indices to determine the length of time that ticks were attached to tick-bite victims in selected Rhode Island and Pennsylvania communities where the agents of Lyme disease and human babesiosis occur. The total body length and width as well as the length and width of the scutum were measured on nymphal and adult female Ixodes scapularis Say removed from laboratory animals at 0, 12, 24, 36, 48, 60, and 72 h after their attachment. Three engorgement indices were calculated at each time interval. In addition, engorgement indices measurements were recorded for 504 ticks sub- mitted to a commercial laboratory for pathogen detection testing between 1990 and 1992. No detectable change was observed in the average engorgement indices for either nymphal or adult ticks between 0 and 24 h of attachment using any of the engorgement indices. After 24 h of tick attachment, all engorgement indices continuously increased; average indices for nymphs attached 36, 48, and 60 h were significantly different from those attached S24 h and from each other. -
Community Structure of Mites (Acari: Acariformes and Parasitiformes) in Nests of the Semi-Collared Flycatcher (Ficedula Semitorquata) R
International Research Journal of Natural Sciences Vol.3, No.3, pp.48-53, December 2015 ___Published by European Centre for Research Training and Development UK (www.eajournals.org) COMMUNITY STRUCTURE OF MITES (ACARI: ACARIFORMES AND PARASITIFORMES) IN NESTS OF THE SEMI-COLLARED FLYCATCHER (FICEDULA SEMITORQUATA) R. Davidova, V. Vasilev, N. Ali, J. Bakalova Konstantin Preslavsky University of Shumen, 115, Universitetska Str., Shumen, 9700, Bulgaria. ABSTRACT: The aims of the present paper are to establish the specific structure of communities of prostigmatic and mesostigmatic mites in nests of the semi-collared flycatcher (Ficedula semitorquata) and to compare the fauna with the mites in nests of two other European flycatchers. For analysis of community structure of mites were used the indices: prevalence, relative density, mean intensity and dominance. Mite communities are strongly dominated by the species Dermanyssus gallinae and Ornithonyssus sylviarum, which were found with the highest frequency and dominance. The mite communities are characterized by a large number of subrecedent species. KEYWORDS: Acariformes, Parasitiformes, Nest of Bird, Community Structure INTRODUCTION The nests of different species of birds are an example of a fairly unstable and isolated habitat, with its own dependent on it specific fauna which involves different groups of invertebrate animals. One of the components of this fauna which demonstrates particular abundance is the arthropods, and more specifically, the mites. The studies of Parasitiformes show that mesostigmatic mites living in birds' nests vary both in terms of their species affiliation and the structure of their communities [4, 8]. Highly important with respect to veterinary science and medicine are a number of species, such as Ornithonyssus bursa, Ornithonyssus sylviarum, Dermanyssus gallinae harboured by birds, Ornithonyssus bacoti, harboured by rodents, etc. -
Mesostigmata No
16 (1) · 2016 Christian, A. & K. Franke Mesostigmata No. 27 ............................................................................................................................................................................. 1 – 41 Acarological literature .................................................................................................................................................... 1 Publications 2016 ........................................................................................................................................................................................... 1 Publications 2015 ........................................................................................................................................................................................... 9 Publications, additions 2014 ....................................................................................................................................................................... 17 Publications, additions 2013 ....................................................................................................................................................................... 18 Publications, additions 2012 ....................................................................................................................................................................... 20 Publications, additions 2011 ...................................................................................................................................................................... -
Seven New Larval Mites (Acari, Prostigmata, Erythraeidae) from Iran
Miscel.lania Zoologica 19.2 (1996) 117 Seven new larval mites (Acari, Prostigmata, Erythraeidae) from Iran R. Haitlinger & A. Saboori Haitlinger, R. & Saboori, A,, 1996. Seven new larval mites (Acari, Prostigmata, Erythraeidae) from Iran. Misc. Zool., 19.2: 117-1 31. Seven new larva1 mites (Acari, Prostlgmata, Erythraeidae) from 1ran.- Seven new larval mites are described: Hauptmannia ostovani n. sp. obtained from undetermined Aphididae (Homoptera), a species with thick and sharptipped accessory claw on palptibia and without pectinala on palptarsus; H. iranican. sp. from plants, without pectinala on palptarsus and bearing numerous setae on dorsal and ventral surfaces (NDV over 170); H. khanjaniin. sp. from plants, with pectinala on palptarsus and has shorter L, W and ISD than the other species of this group; Leptus fathipeurin. sp. from plants with two palpgenualae; Erythraeus(E.)akbarianin.sp. from unidentified Aphididae; it has very short ASE; E. (E.) sabrinae n. sp. from undetermined Aphididae; this species is similar to E. adrasatus, E. kresnensisand E. akbariani, differing mainly in number of dorsal and ventral setae and E.@aracarus) tehranicusn. sp. from plants; one of the three species of this subgenus, differs mainly from the other two by shorter tarsi and tibiae l. Key words: Acari, Erythraeidae, Iran, New species. (Rebut: 20 Vil/ 95; Acceptaci6 condiconal: 72 1V 96; Acc. definitiva: 70 lX 96) Ryszard Haitlinger, Dept. o fzoology, AgriculturalAcademy, 50-205 Wroclaw, Cybulskiego20, Polska (Poland).- Alireza Saboori, Dept. of Entomology, Tarbiat Modarres Univ., Teheran, lran Oran). lntroduction Saudi Arabia (HAITLINGER,1994a) and L. guus Haitlinger described from Turkmenia (HAIT- Only a few erythraeid mites are known from LINGER, 1990~).Larval species of the genus lran and neighbouring countries. -
Brown Dog Tick, Rhipicephalus Sanguineus Latreille (Arachnida: Acari: Ixodidae)1 Yuexun Tian, Cynthia C
EENY-221 Brown Dog Tick, Rhipicephalus sanguineus Latreille (Arachnida: Acari: Ixodidae)1 Yuexun Tian, Cynthia C. Lord, and Phillip E. Kaufman2 Introduction and already-infested residences. The infestation can reach high levels, seemingly very quickly. However, the early The brown dog tick, Rhipicephalus sanguineus Latreille, has stages of the infestation, when only a few individuals are been found around the world. Many tick species can be present, are often missed completely. The first indication carried indoors on animals, but most cannot complete their the dog owner has that there is a problem is when they start entire life cycle indoors. The brown dog tick is unusual noticing ticks crawling up the walls or on curtains. among ticks, in that it can complete its entire life cycle both indoors and outdoors. Because of this, brown dog tick infestations can develop in dog kennels and residences, as well as establish populations in colder climates (Dantas- Torres 2008). Although brown dog ticks will feed on a wide variety of mammals, dogs are the preferred host in the United States and appear to be a necessary condition for maintaining a large tick populations (Dantas-Torres 2008). Brown dog tick management is important as they are a vector of several pathogens that cause canine and human diseases. Brown dog tick populations can be managed with habitat modification and pesticide applications. The taxonomy of the brown dog tick is currently under review Figure 1. Life stages of the brown dog tick, Rhipicephalus sanguineus and ultimately it may be determined that there are more Latreille. Clockwise from bottom right: engorged larva, engorged than one species causing residential infestations world-wide nymph, female, and male. -
Fauna of Nakai District, Khammouane Province, Laos
Systematic & Applied Acarology 21(2): 166–180 (2016) ISSN 1362-1971 (print) http://doi.org/10.11158/saa.21.2.2 ISSN 2056-6069 (online) Article First survey of the hard tick (Acari: Ixodidae) fauna of Nakai Dis- trict, Khammouane Province, Laos, and an updated checklist of the ticks of Laos KHAMSING VONGPHAYLOTH1,4, PAUL T. BREY1, RICHARD G. ROBBINS2 & IAN W. SUTHERLAND3 1Institut Pasteur du Laos, Laboratory of Vector-Borne Diseases, Samsenthai Road, Ban Kao-Gnot, Sisattanak District, P.O Box 3560, Vientiane, Lao PDR. 2Armed Forces Pest Management Board, Office of the Assistant Secretary of Defense for Energy, Installations and Environ- ment, Silver Spring, MD 20910-1202. 3Chief of Entomological Sciences, U.S. Naval Medical Research Center - Asia, Sembawang, Singapore. 4Corresponding author: [email protected] Abstract From 2012 to 2014, tick collections for tick and tick-borne pathogen surveillance were carried out in two areas of Nakai District, Khammouane Province, Laos: the Watershed Management and Protection Authority (WMPA) area and Phou Hin Poun National Protected Area (PHP NPA). Throughout Laos, ticks and tick- associated pathogens are poorly known. Fifteen thousand and seventy-three ticks representing larval (60.72%), nymphal (37.86%) and adult (1.42%) life stages were collected. Five genera comprising at least 11 species, including three suspected species that could not be readily determined, were identified from 215 adult specimens: Amblyomma testudinarium Koch (10; 4.65%), Dermacentor auratus Supino (17; 7.91%), D. steini (Schulze) (7; 3.26%), Haemaphysalis colasbelcouri (Santos Dias) (1; 0.47%), H. hystricis Supino (59; 27.44%), H. sp. near aborensis Warburton (91; 42.33%), H. -
Annotated List of the Hard Ticks (Acari: Ixodida: Ixodidae) of New Jersey
applyparastyle "fig//caption/p[1]" parastyle "FigCapt" applyparastyle "fig" parastyle "Figure" Journal of Medical Entomology, 2019, 1–10 doi: 10.1093/jme/tjz010 Review Review Downloaded from https://academic.oup.com/jme/advance-article-abstract/doi/10.1093/jme/tjz010/5310395 by Rutgers University Libraries user on 09 February 2019 Annotated List of the Hard Ticks (Acari: Ixodida: Ixodidae) of New Jersey James L. Occi,1,4 Andrea M. Egizi,1,2 Richard G. Robbins,3 and Dina M. Fonseca1 1Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901-8536, 2Tick- borne Diseases Laboratory, Monmouth County Mosquito Control Division, 1901 Wayside Road, Tinton Falls, NJ 07724, 3 Walter Reed Biosystematics Unit, Department of Entomology, Smithsonian Institution, MSC, MRC 534, 4210 Silver Hill Road, Suitland, MD 20746-2863 and 4Corresponding author, e-mail: [email protected] Subject Editor: Rebecca Eisen Received 1 November 2018; Editorial decision 8 January 2019 Abstract Standardized tick surveillance requires an understanding of which species may be present. After a thorough review of the scientific literature, as well as government documents, and careful evaluation of existing accessioned tick collections (vouchers) in museums and other repositories, we have determined that the verifiable hard tick fauna of New Jersey (NJ) currently comprises 11 species. Nine are indigenous to North America and two are invasive, including the recently identified Asian longhorned tick,Haemaphysalis longicornis (Neumann, 1901). For each of the 11 species, we summarize NJ collection details and review their known public health and veterinary importance and available information on seasonality. Separately considered are seven additional species that may be present in the state or become established in the future but whose presence is not currently confirmed with NJ vouchers. -
Artificial Feeding of All Consecutive Life Stages of Ixodes Ricinus
Article Artificial Feeding of All Consecutive Life Stages of Ixodes ricinus Nina Militzer 1, Alexander Bartel 2 , Peter-Henning Clausen 1, Peggy Hoffmann-Köhler 1 and Ard M. Nijhof 1,* 1 Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; [email protected] (N.M.); [email protected] (P.-H.C.); [email protected] (P.H.-K.) 2 Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, 14163 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-30-838-62326 Abstract: The hard tick Ixodes ricinus is an obligate hematophagous arthropod and the main vector for several zoonotic diseases. The life cycle of this three-host tick species was completed for the first time in vitro by feeding all consecutive life stages using an artificial tick feeding system (ATFS) on heparinized bovine blood supplemented with glucose, adenosine triphosphate, and gentamicin. Relevant physiological parameters were compared to ticks fed on cattle (in vivo). All in vitro feedings lasted significantly longer and the mean engorgement weight of F0 adults and F1 larvae and nymphs was significantly lower compared to ticks fed in vivo. The proportions of engorged ticks were significantly lower for in vitro fed adults and nymphs as well, but higher for in vitro fed larvae. F1-females fed on blood supplemented with vitamin B had a higher detachment proportion and engorgement weight compared to F1-females fed on blood without vitamin B, suggesting that vitamin B supplementation is essential in the artificial feeding of I. -
Colorado Ticks and Tick-Borne Diseases Fact Sheet No
Colorado Ticks and Tick-Borne Diseases Fact Sheet No. 5.593 Insect Series|Trees and Shrubs by W.S. Cranshaw, F.B. Peairs and B.C. Kondratieff* Ticks are blood-feeding parasites of Quick Facts animals found throughout Colorado. They are particularly common at higher elevations. • The most common tick that Problems related to blood loss do occur bites humans and dogs among wildlife and livestock, but they are in Colorado is the Rocky rare. Presently 27 species of ticks are known Mountain wood tick. to occur in Colorado and Table 1 lists the more common ones. Almost all human • Rocky Mountain wood tick is encounters with ticks in Colorado involve most active and does most the Rocky Mountain wood tick. Fortunately, biting in spring, becoming some of the most important tick species dormant with warm weather in present elsewhere in the United States are summer. Figure 1: Adult Rocky Mountain wood tick prior either rare (lone star tick) or completely to feeding. Rocky Mountain wood tick is the most • Colorado tick fever is by far absent from the state (blacklegged tick). common tick that is found on humans and pets in Ticks most affect humans by their ability Colorado. the most common tick- to transmit pathogens that produce several transmitted disease of the important diseases. Diseases spread by ticks region. Despite its name, in Colorado include Colorado tick fever, Rocky Mountain spotted fever Rocky Mountain spotted fever, tularemia and is quite rare here. relapsing fever. • Several repellents are recommended for ticks Life Cycle of Ticks including DEET, picaridin, Two families of ticks occur in Colorado, Figure 2: Adult female and male of the Rocky IR3535, and oil of lemon hard ticks (Ixodidae family) and soft ticks Mountain wood tick. -
Natural Enemies of Spider Mites (Acari: Tetranychidae) on Cotton: Density Regulation Or Casual Association?
Natural Enemies of Spider Mites (Acari: Tetranychidae) on Cotton: Density Regulation or Casual Association? L. T. WILSON,' P. J. TRICHILO,' AND D. GONZALEZ2 Department of Entomology, Texas A&M University, College Station, Texas 77843 Environ. Entomol. 20(3): 849-856 (1991) ABSTRACT This study addresses the potential impact of natural enemies on the abundance of spider mites, Tetranychus spy., on cotton in the San Joaquin Valley of California. These natural enemies are omnivorous predators, and include the big-eyed bug, Geocoris pallens StAl and G. punctipes (Say), the minute pirate bug, Orius trfsticolor (White),and the western flower thrips, Frankliniella occidentalis (Pergande). Simple linear regression suggested that omnivorous predators were potentially effective in delaying the buildup of spider mites, with the highest rz (0.65) recorded for adult F. occidentalis. Geocoris showed the potential to suppress the rate of spider mite population increase (rl = 0.73). All three tested predator species exhibited the capacity to suppress early season spider mite abundance, with the highest r2 (0.62) recorded for Ceocoris and Orius. Predators were also potentially able to suppress mid- to late-season spider mite populations. Multiple regression analysis indicated a significant negative correlation between mid- to late-season spider mite abundance and early season predators. Results from a second year were less conclusive, suggesting that the reduced range of spider mite abundance limited our ability to discern potentially significant interactions during that year. KEY WORDS Insecta, Cossypium, Tetranychus, predators SPIDERMITES, Tetranychus spp. can cause serious Several mechanisms have been suggested to ex- economic injury to cotton, Gossypium hirsutum plain the spider mite-insecticide phenomenon. -
Geological History and Phylogeny of Chelicerata
Arthropod Structure & Development 39 (2010) 124–142 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Review Article Geological history and phylogeny of Chelicerata Jason A. Dunlop* Museum fu¨r Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany article info abstract Article history: Chelicerata probably appeared during the Cambrian period. Their precise origins remain unclear, but may Received 1 December 2009 lie among the so-called great appendage arthropods. By the late Cambrian there is evidence for both Accepted 13 January 2010 Pycnogonida and Euchelicerata. Relationships between the principal euchelicerate lineages are unre- solved, but Xiphosura, Eurypterida and Chasmataspidida (the last two extinct), are all known as body Keywords: fossils from the Ordovician. The fourth group, Arachnida, was found monophyletic in most recent studies. Arachnida Arachnids are known unequivocally from the Silurian (a putative Ordovician mite remains controversial), Fossil record and the balance of evidence favours a common, terrestrial ancestor. Recent work recognises four prin- Phylogeny Evolutionary tree cipal arachnid clades: Stethostomata, Haplocnemata, Acaromorpha and Pantetrapulmonata, of which the pantetrapulmonates (spiders and their relatives) are probably the most robust grouping. Stethostomata includes Scorpiones (Silurian–Recent) and Opiliones (Devonian–Recent), while