Fauna of Nakai District, Khammouane Province, Laos
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Parasitisation with Nymphal Dermacentor Auratus Supino, 1897 (Acari: Ixodoiidea: Ixodidae)
Veterinary Practitioner Vol. 20 No. 2 December 2019 HUMAN PARASITISATION WITH NYMPHAL DERMACENTOR AURATUS SUPINO, 1897 (ACARI: IXODOIIDEA: IXODIDAE) Saidul Islam1, Prabhat Chandra Sarmah2 and Kanta Bhattacharjee3 Department of Parasitology, College of Veterinary Science Assam Agricultural University, Khanapara, Guwahati- 781 022, Assam, India Received on: 29.09.2019 ABSTRACT Accepted on: 03.11.2019 Human parasitisation with nymphal tick and its morhphology has been described. First author accidentally acquired with three nymphal tick infestation from wilderness. Nymphs were attached in hand and both the arm pits leading to intense itching, oedematous swelling and pinkish skin discolouration at the site of attachment. On sixth day of infestation there was mild pyrexia, the differential leukocytic count showed polymorphs 68%, lymphocytes 27%, monocytes 2% and eosinophils 3%. Though the conditions were ameliorated after steroid therapy, yet, the site of attachment was indurated for 8 months which gradually resolved. A nymph replete with blood meal was put in a desiccator with sufficient humidity at room temperature of 170C for moulting that transformed into adult female in 43 days measuring 5.0 X 5.5 mm in size. Detail morphological study confirmed the species as Dermacentor auratus Supino, 1897. Significance of human tick parasitisation has been reviewed and warranted for transmission of possible vector borne pathogens. Key words: Dermacentor auratus, nymph, human, India Introduction Result and Discussion Ticks form a major group of ectoparasites of animals, Tick species and morphology birds and reptiles to cause different types of direct injuries The partially fed nymphs were brown coloured measuring and transmit infectious diseases. Human parasitisation 2.0 X 2.5 mm in size with deep cervical groove, nearly circular by tick, although not common as compared to the animals, small scutum broadest in the middle and 3/3 dentition in the has been recorded in different parts of the world (Wassef hypostome. -
Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York
SUNY College of Environmental Science and Forestry Digital Commons @ ESF Honors Theses 5-2016 Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York Brigitte Wierzbicki Follow this and additional works at: https://digitalcommons.esf.edu/honors Part of the Entomology Commons Recommended Citation Wierzbicki, Brigitte, "Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York" (2016). Honors Theses. 106. https://digitalcommons.esf.edu/honors/106 This Thesis is brought to you for free and open access by Digital Commons @ ESF. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ ESF. For more information, please contact [email protected], [email protected]. HABITAT ASSOCIATIONS OF IXODES SCAPULARIS (ACARI: IXODIDAE) IN SYRACUSE, NEW YORK By Brigitte Wierzbicki Candidate for Bachelor of Science Environmental and Forest Biology With Honors May,2016 APPROVED Thesis Project Advisor: Af ak Ck M issa K. Fierke, Ph.D. Second Reader: ~~ Nicholas Piedmonte, M.S. Honors Director: w44~~d. William M. Shields, Ph.D. Date: ~ / b / I & r I II © 2016 Copyright B. R. K. Wierzbicki All rights reserved. 111 ABSTRACT Habitat associations of Jxodes scapularis Say were described at six public use sites within Syracuse, New York. Adult, host-seeking blacklegged ticks were collected using tick flags in October and November, 2015 along two 264 m transects at each site, each within a distinct forest patch. We examined the association of basal area, leaf litter depth, and percent understory cover with tick abundance using negative binomial regression models. Models indicated tick abundance was negatively associated with percent understory cover, but was not associated with particular canopy or understory species. -
(Acari: Ixodidae) Attachment to Tick-Bite Victims
Determining the Duration of Ixodes scapularis (Acari: Ixodidae) Attachment to Tick-Bite Victims MIN-TSUNG YEH, JASON M. BAK, RENJIE HU, MATTHEW C. NICHOLSON, COLLEEN KELLY, AND THOMAS N. MATHER Center for Vector-Borne Disease, 240 Woodward Hall, University of Rhode Island, Kingston, RI 02881-0804 J. Med. Entomol. 32(6): 853-858 (1995) ABSTRACT The duration of tick attachment is one factor associated with risk for human infection caused by several tick-borne pathogens. We measured tick engorgement indices at known time intervals after tick attachment and used these indices to determine the length of time that ticks were attached to tick-bite victims in selected Rhode Island and Pennsylvania communities where the agents of Lyme disease and human babesiosis occur. The total body length and width as well as the length and width of the scutum were measured on nymphal and adult female Ixodes scapularis Say removed from laboratory animals at 0, 12, 24, 36, 48, 60, and 72 h after their attachment. Three engorgement indices were calculated at each time interval. In addition, engorgement indices measurements were recorded for 504 ticks sub- mitted to a commercial laboratory for pathogen detection testing between 1990 and 1992. No detectable change was observed in the average engorgement indices for either nymphal or adult ticks between 0 and 24 h of attachment using any of the engorgement indices. After 24 h of tick attachment, all engorgement indices continuously increased; average indices for nymphs attached 36, 48, and 60 h were significantly different from those attached S24 h and from each other. -
Community Structure of Mites (Acari: Acariformes and Parasitiformes) in Nests of the Semi-Collared Flycatcher (Ficedula Semitorquata) R
International Research Journal of Natural Sciences Vol.3, No.3, pp.48-53, December 2015 ___Published by European Centre for Research Training and Development UK (www.eajournals.org) COMMUNITY STRUCTURE OF MITES (ACARI: ACARIFORMES AND PARASITIFORMES) IN NESTS OF THE SEMI-COLLARED FLYCATCHER (FICEDULA SEMITORQUATA) R. Davidova, V. Vasilev, N. Ali, J. Bakalova Konstantin Preslavsky University of Shumen, 115, Universitetska Str., Shumen, 9700, Bulgaria. ABSTRACT: The aims of the present paper are to establish the specific structure of communities of prostigmatic and mesostigmatic mites in nests of the semi-collared flycatcher (Ficedula semitorquata) and to compare the fauna with the mites in nests of two other European flycatchers. For analysis of community structure of mites were used the indices: prevalence, relative density, mean intensity and dominance. Mite communities are strongly dominated by the species Dermanyssus gallinae and Ornithonyssus sylviarum, which were found with the highest frequency and dominance. The mite communities are characterized by a large number of subrecedent species. KEYWORDS: Acariformes, Parasitiformes, Nest of Bird, Community Structure INTRODUCTION The nests of different species of birds are an example of a fairly unstable and isolated habitat, with its own dependent on it specific fauna which involves different groups of invertebrate animals. One of the components of this fauna which demonstrates particular abundance is the arthropods, and more specifically, the mites. The studies of Parasitiformes show that mesostigmatic mites living in birds' nests vary both in terms of their species affiliation and the structure of their communities [4, 8]. Highly important with respect to veterinary science and medicine are a number of species, such as Ornithonyssus bursa, Ornithonyssus sylviarum, Dermanyssus gallinae harboured by birds, Ornithonyssus bacoti, harboured by rodents, etc. -
Introduction to Arthropod Groups What Is Entomology?
Entomology 340 Introduction to Arthropod Groups What is Entomology? The study of insects (and their near relatives). Species Diversity PLANTS INSECTS OTHER ANIMALS OTHER ARTHROPODS How many kinds of insects are there in the world? • 1,000,0001,000,000 speciesspecies knownknown Possibly 3,000,000 unidentified species Insects & Relatives 100,000 species in N America 1,000 in a typical backyard Mostly beneficial or harmless Pollination Food for birds and fish Produce honey, wax, shellac, silk Less than 3% are pests Destroy food crops, ornamentals Attack humans and pets Transmit disease Classification of Japanese Beetle Kingdom Animalia Phylum Arthropoda Class Insecta Order Coleoptera Family Scarabaeidae Genus Popillia Species japonica Arthropoda (jointed foot) Arachnida -Spiders, Ticks, Mites, Scorpions Xiphosura -Horseshoe crabs Crustacea -Sowbugs, Pillbugs, Crabs, Shrimp Diplopoda - Millipedes Chilopoda - Centipedes Symphyla - Symphylans Insecta - Insects Shared Characteristics of Phylum Arthropoda - Segmented bodies are arranged into regions, called tagmata (in insects = head, thorax, abdomen). - Paired appendages (e.g., legs, antennae) are jointed. - Posess chitinous exoskeletion that must be shed during growth. - Have bilateral symmetry. - Nervous system is ventral (belly) and the circulatory system is open and dorsal (back). Arthropod Groups Mouthpart characteristics are divided arthropods into two large groups •Chelicerates (Scissors-like) •Mandibulates (Pliers-like) Arthropod Groups Chelicerate Arachnida -Spiders, -
Crimean-Congo Hemorrhagic Fever
Crimean-Congo Importance Crimean-Congo hemorrhagic fever (CCHF) is caused by a zoonotic virus that Hemorrhagic seems to be carried asymptomatically in animals but can be a serious threat to humans. This disease typically begins as a nonspecific flu-like illness, but some cases Fever progress to a severe, life-threatening hemorrhagic syndrome. Intensive supportive care is required in serious cases, and the value of antiviral agents such as ribavirin is Congo Fever, still unclear. Crimean-Congo hemorrhagic fever virus (CCHFV) is widely distributed Central Asian Hemorrhagic Fever, in the Eastern Hemisphere. However, it can circulate for years without being Uzbekistan hemorrhagic fever recognized, as subclinical infections and mild cases seem to be relatively common, and sporadic severe cases can be misdiagnosed as hemorrhagic illnesses caused by Hungribta (blood taking), other organisms. In recent years, the presence of CCHFV has been recognized in a Khunymuny (nose bleeding), number of countries for the first time. Karakhalak (black death) Etiology Crimean-Congo hemorrhagic fever is caused by Crimean-Congo hemorrhagic Last Updated: March 2019 fever virus (CCHFV), a member of the genus Orthonairovirus in the family Nairoviridae and order Bunyavirales. CCHFV belongs to the CCHF serogroup, which also includes viruses such as Tofla virus and Hazara virus. Six or seven major genetic clades of CCHFV have been recognized. Some strains, such as the AP92 strain in Greece and related viruses in Turkey, might be less virulent than others. Species Affected CCHFV has been isolated from domesticated and wild mammals including cattle, sheep, goats, water buffalo, hares (e.g., the European hare, Lepus europaeus), African hedgehogs (Erinaceus albiventris) and multimammate mice (Mastomys spp.). -
Seven New Larval Mites (Acari, Prostigmata, Erythraeidae) from Iran
Miscel.lania Zoologica 19.2 (1996) 117 Seven new larval mites (Acari, Prostigmata, Erythraeidae) from Iran R. Haitlinger & A. Saboori Haitlinger, R. & Saboori, A,, 1996. Seven new larval mites (Acari, Prostigmata, Erythraeidae) from Iran. Misc. Zool., 19.2: 117-1 31. Seven new larva1 mites (Acari, Prostlgmata, Erythraeidae) from 1ran.- Seven new larval mites are described: Hauptmannia ostovani n. sp. obtained from undetermined Aphididae (Homoptera), a species with thick and sharptipped accessory claw on palptibia and without pectinala on palptarsus; H. iranican. sp. from plants, without pectinala on palptarsus and bearing numerous setae on dorsal and ventral surfaces (NDV over 170); H. khanjaniin. sp. from plants, with pectinala on palptarsus and has shorter L, W and ISD than the other species of this group; Leptus fathipeurin. sp. from plants with two palpgenualae; Erythraeus(E.)akbarianin.sp. from unidentified Aphididae; it has very short ASE; E. (E.) sabrinae n. sp. from undetermined Aphididae; this species is similar to E. adrasatus, E. kresnensisand E. akbariani, differing mainly in number of dorsal and ventral setae and E.@aracarus) tehranicusn. sp. from plants; one of the three species of this subgenus, differs mainly from the other two by shorter tarsi and tibiae l. Key words: Acari, Erythraeidae, Iran, New species. (Rebut: 20 Vil/ 95; Acceptaci6 condiconal: 72 1V 96; Acc. definitiva: 70 lX 96) Ryszard Haitlinger, Dept. o fzoology, AgriculturalAcademy, 50-205 Wroclaw, Cybulskiego20, Polska (Poland).- Alireza Saboori, Dept. of Entomology, Tarbiat Modarres Univ., Teheran, lran Oran). lntroduction Saudi Arabia (HAITLINGER,1994a) and L. guus Haitlinger described from Turkmenia (HAIT- Only a few erythraeid mites are known from LINGER, 1990~).Larval species of the genus lran and neighbouring countries. -
Tick ID Card
tick removal Remove ticks immediately. They usually need to attach for 24 hours to transmit Lyme disease. tickknow them. prevent ID them. Consult a physician if you remove an engorged deer tick. Using a tick spoon: Deer Tick (Black-Legged Tick) • Place the wide part of the notch on the skin near the tick (hold skin taut if necessary) • Applying slight pressure downward on the nymph adult male adult female skin, slide the remover forward so the small part of the notch is framing the tick • Continuous sliding motion of the remover (actual size) detaches the tick nymph adult engorged adult Using tweezers: (1/32"–1/16") (1/8") (up to 1/2") • Grasp the tick close to the skin with tweezers • Pull gently until the tick lets go Dog Tick 1-800-821-5821 www.mainepublichealth.gov adult male adult female (examples are not actual size, dog tick nymphs are rarely found on humans or their pets) 0" 2" just the facts lyme disease Deer Ticks Ticks usually need to attach for 24 hours • Deer ticks may transmit the agents that to transmit Lyme disease. cause Lyme disease, anaplasmosis, and Often, people see an expanding red babesiosis rash (or bull’s-eye rash) more than • What bites: nymphs and adult females 2 inches across at the site of the • When: anytime temperatures are above tick bite, which may occur within a freezing, greatest risk is spring through fall few days or a few weeks. Dog Ticks Other symptoms include: • • Dog ticks do not transmit the agent that fatigue causes Lyme disease • muscle and joint pain • What bites: adult females • headache • When: April–August • fever and chills • facial paralysis Deer ticks may also transmit the agents prevent the bite that cause other diseases such as babesia • Wear light-colored protective clothing and anaplasmosis. -
Brown Dog Tick, Rhipicephalus Sanguineus Latreille (Arachnida: Acari: Ixodidae)1 Yuexun Tian, Cynthia C
EENY-221 Brown Dog Tick, Rhipicephalus sanguineus Latreille (Arachnida: Acari: Ixodidae)1 Yuexun Tian, Cynthia C. Lord, and Phillip E. Kaufman2 Introduction and already-infested residences. The infestation can reach high levels, seemingly very quickly. However, the early The brown dog tick, Rhipicephalus sanguineus Latreille, has stages of the infestation, when only a few individuals are been found around the world. Many tick species can be present, are often missed completely. The first indication carried indoors on animals, but most cannot complete their the dog owner has that there is a problem is when they start entire life cycle indoors. The brown dog tick is unusual noticing ticks crawling up the walls or on curtains. among ticks, in that it can complete its entire life cycle both indoors and outdoors. Because of this, brown dog tick infestations can develop in dog kennels and residences, as well as establish populations in colder climates (Dantas- Torres 2008). Although brown dog ticks will feed on a wide variety of mammals, dogs are the preferred host in the United States and appear to be a necessary condition for maintaining a large tick populations (Dantas-Torres 2008). Brown dog tick management is important as they are a vector of several pathogens that cause canine and human diseases. Brown dog tick populations can be managed with habitat modification and pesticide applications. The taxonomy of the brown dog tick is currently under review Figure 1. Life stages of the brown dog tick, Rhipicephalus sanguineus and ultimately it may be determined that there are more Latreille. Clockwise from bottom right: engorged larva, engorged than one species causing residential infestations world-wide nymph, female, and male. -
Australian Paralysis Tick (Ixodes Holocyclus)
Australian Paralysis Tick (Ixodes holocyclus) By Dr Janette O’Keefe BscBVMS The Australian paralysis tick (Ixodes holocyclus ) is a very dangerous parasite that affects dogs in Australia; specifically on the east coast from North Queensland to Northern Victoria. The main area of distribution is a narrow area running, (roughly confined to a 20-kilometre band), along the coastal areas as indicated in Figure 1 . In northern parts of Australia, ticks can be found all year around. In the cooler southern areas, tick season is generally from spring through to late autumn (Figure 2) . Fig: 2 – Seasonal distribution of 3 stages of Ixodes holocyclus The Life Cycle of the Paralysis Tick The natural hosts of Ixodes holocyclus include bandicoots, wallabies, kangaroos, and other marsupials – basically immune to the effects of the tick's toxin. Other species affected are human, cattle, sheep, horses, dogs, cats, poultry, and other animals. The Ixodes tick goes through the three stages of Larva (6 legs) , Nymph (8 legs) , and Adult (8 legs) , attaching to and feeding on one host during each stage, then falling off and moulting before re-attaching to the same or more often a different host for the next stage. If no host is available, the adult can survive up to 77 days without feeding. The Female Adult feeds and engorges for 6 (cool weather) to 21 days Fig: 1 – distribution of Ixodes holocyclus (warmer weather), before she drops to the ground to lay eggs, thus beginning the cycle again. It is important to note that the adult female does not inject detectable amounts of toxin until the 3rd day of attachment to the host , with peak amounts being injected on days 5 and 6. -
Annotated List of the Hard Ticks (Acari: Ixodida: Ixodidae) of New Jersey
applyparastyle "fig//caption/p[1]" parastyle "FigCapt" applyparastyle "fig" parastyle "Figure" Journal of Medical Entomology, 2019, 1–10 doi: 10.1093/jme/tjz010 Review Review Downloaded from https://academic.oup.com/jme/advance-article-abstract/doi/10.1093/jme/tjz010/5310395 by Rutgers University Libraries user on 09 February 2019 Annotated List of the Hard Ticks (Acari: Ixodida: Ixodidae) of New Jersey James L. Occi,1,4 Andrea M. Egizi,1,2 Richard G. Robbins,3 and Dina M. Fonseca1 1Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901-8536, 2Tick- borne Diseases Laboratory, Monmouth County Mosquito Control Division, 1901 Wayside Road, Tinton Falls, NJ 07724, 3 Walter Reed Biosystematics Unit, Department of Entomology, Smithsonian Institution, MSC, MRC 534, 4210 Silver Hill Road, Suitland, MD 20746-2863 and 4Corresponding author, e-mail: [email protected] Subject Editor: Rebecca Eisen Received 1 November 2018; Editorial decision 8 January 2019 Abstract Standardized tick surveillance requires an understanding of which species may be present. After a thorough review of the scientific literature, as well as government documents, and careful evaluation of existing accessioned tick collections (vouchers) in museums and other repositories, we have determined that the verifiable hard tick fauna of New Jersey (NJ) currently comprises 11 species. Nine are indigenous to North America and two are invasive, including the recently identified Asian longhorned tick,Haemaphysalis longicornis (Neumann, 1901). For each of the 11 species, we summarize NJ collection details and review their known public health and veterinary importance and available information on seasonality. Separately considered are seven additional species that may be present in the state or become established in the future but whose presence is not currently confirmed with NJ vouchers. -
Natural Enemies of Spider Mites (Acari: Tetranychidae) on Cotton: Density Regulation Or Casual Association?
Natural Enemies of Spider Mites (Acari: Tetranychidae) on Cotton: Density Regulation or Casual Association? L. T. WILSON,' P. J. TRICHILO,' AND D. GONZALEZ2 Department of Entomology, Texas A&M University, College Station, Texas 77843 Environ. Entomol. 20(3): 849-856 (1991) ABSTRACT This study addresses the potential impact of natural enemies on the abundance of spider mites, Tetranychus spy., on cotton in the San Joaquin Valley of California. These natural enemies are omnivorous predators, and include the big-eyed bug, Geocoris pallens StAl and G. punctipes (Say), the minute pirate bug, Orius trfsticolor (White),and the western flower thrips, Frankliniella occidentalis (Pergande). Simple linear regression suggested that omnivorous predators were potentially effective in delaying the buildup of spider mites, with the highest rz (0.65) recorded for adult F. occidentalis. Geocoris showed the potential to suppress the rate of spider mite population increase (rl = 0.73). All three tested predator species exhibited the capacity to suppress early season spider mite abundance, with the highest r2 (0.62) recorded for Ceocoris and Orius. Predators were also potentially able to suppress mid- to late-season spider mite populations. Multiple regression analysis indicated a significant negative correlation between mid- to late-season spider mite abundance and early season predators. Results from a second year were less conclusive, suggesting that the reduced range of spider mite abundance limited our ability to discern potentially significant interactions during that year. KEY WORDS Insecta, Cossypium, Tetranychus, predators SPIDERMITES, Tetranychus spp. can cause serious Several mechanisms have been suggested to ex- economic injury to cotton, Gossypium hirsutum plain the spider mite-insecticide phenomenon.