Colorado Ticks and Tick-Borne Diseases Fact Sheet No

Total Page:16

File Type:pdf, Size:1020Kb

Colorado Ticks and Tick-Borne Diseases Fact Sheet No Colorado Ticks and Tick-Borne Diseases Fact Sheet No. 5.593 Insect Series|Trees and Shrubs by W.S. Cranshaw, F.B. Peairs and B.C. Kondratieff* Ticks are blood-feeding parasites of Quick Facts animals found throughout Colorado. They are particularly common at higher elevations. • The most common tick that Problems related to blood loss do occur bites humans and dogs among wildlife and livestock, but they are in Colorado is the Rocky rare. Presently 27 species of ticks are known Mountain wood tick. to occur in Colorado and Table 1 lists the more common ones. Almost all human • Rocky Mountain wood tick is encounters with ticks in Colorado involve most active and does most the Rocky Mountain wood tick. Fortunately, biting in spring, becoming some of the most important tick species dormant with warm weather in present elsewhere in the United States are summer. Figure 1: Adult Rocky Mountain wood tick prior either rare (lone star tick) or completely to feeding. Rocky Mountain wood tick is the most • Colorado tick fever is by far absent from the state (blacklegged tick). common tick that is found on humans and pets in Ticks most affect humans by their ability Colorado. the most common tick- to transmit pathogens that produce several transmitted disease of the important diseases. Diseases spread by ticks region. Despite its name, in Colorado include Colorado tick fever, Rocky Mountain spotted fever Rocky Mountain spotted fever, tularemia and is quite rare here. relapsing fever. • Several repellents are recommended for ticks Life Cycle of Ticks including DEET, picaridin, Two families of ticks occur in Colorado, Figure 2: Adult female and male of the Rocky IR3535, and oil of lemon hard ticks (Ixodidae family) and soft ticks Mountain wood tick. Photograph courtesy of the eucalyptus. CDC Photo Image Library. (Argasidae family). Hard ticks can be distinguished by the presence of a plate • To remove a tick, grasp it with (scutellum) on the back behind the head. The larva, nymph and adult ticks are tweezers, as close to the skin They also have mouthparts that are directed active and feed on blood. When fully as possible and pull it straight forward and are easily visible. The soft ticks engorged with blood their body becomes out. lack the plate, have a less regularly rounded greatly distended to the shape of a pea. body and have mouthparts that are directed With some species, the entire life cycle of a beneath the tick, so they are not visible from tick may be completed within a single year. above. The more commonly encountered ticks in Ticks go through four life stages as they Colorado usually require two or three years develop. Eggs are laid in large masses that to complete development. often total thousands of eggs. At hatch, there Hard Ticks. Most hard ticks are three is a tiny larva (“seed tick”) that is six legged. host ticks. With this life cycle pattern each After it has fed and developed it will molt to feeding stage occurs often on a different an eight-legged nymph. When this has fed animal. For example, the larva of the and developed it will molt to the final stage Rocky Mountain wood tick (Dermacentor adult. Both male and female ticks occur, andersoni) feeds on small mammals, often © Colorado State University with males usually smaller than females. a rodent. When it has completed feeding Extension. 5/00. Revised 2/19. it drops from the animal, later molts to a extension.colostate.edu *Whitney Cranshaw, Frank Peairs and Boris Kondratieff nymph stage and the nymph seeks a new are all professors of entomology in the Department of Bioagricultural Sciences and Pest Management at host. In the case of the Rocky Mountain Colorado State University. 5/00. Revised 2/19. wood tick, the nymph also feeds on small only develops only on dogs, reinfesting an animal at each stage in its development. Brown dog ticks are more abundant in warmer areas, and in Colorado are found where dogs are present continuously and are kept together in enclosed areas, such as kennels and homes. A different pattern occurs with the winter tick (Dermacentor albipictus), which is a one host tick, and the Figure 3: Life stages of a hard tick (Ixodidae). Image courtesy of the CDC Photo Image Library. only one-host tick in Colorado. All feeding stages of winter tick remain on their host – large mammals such as elk, moose, or horses. The engorged adults drop from the animal sometime in spring and lay their eggs, which hatch in late summer and early autumn. Figure 6: An adult female of the American dog tick before and after a blood meal. Photograph Soft Ticks. Soft ticks are more courtesy of David Shetlar, The Ohio State continuously associated with their host University. animal and feed more frequently than do hard ticks. Most, are usually live next to areas where their mammal host Figure 4: First stage larvae of the winter tick. (often rodents) will nest or rest for long Tick larvae are extremely small and have only 3 periods. Periodically the tick will move pairs of legs. Photograph courtesy of the Ken to feed on the host, usually at night, then Gray Collection, Oregon State University. return. Feeding times are brief and each mammals, including dogs, then drops to stage (larva, nymph adult) will feed several the ground later transforming to the adult. times as they develop. This is the habit Adults of the Rocky Mountain tick feed of Ornithodoros hermsi, the tick that is on larger mammals such deer, including associated with tick-borne relapsing fever humans. During each stage the tick may in Colorado. Figure 8: Top and bottom view of a male brown The “ear ticks” (Otobius species) have dog tick. Photograph courtesy of Jim Kalisch, feed for days, sometimes weeks, before The University of Nebraska. it becomes completely engorged blood. a somewhat different habit. They develop TheAmerican dog tick (Dermacentor as a one host tick and remain on the host variabilis), which is a common tick in animal continuously, dropping off only Tick-borne Diseases that the eastern plains areas of the state, has a when the adult is ready to lay eggs. Two Occur in Colorado species of these ticks occur in Colorado, similar life history. By far, the most common disease that When seeking a host, hard ticks will one that develops on rabbits and jackrabbits (O. lagophilus) the other (O. megnini) on is spread by ticks in Colorado is Colorado climb onto vegetation. There the tick will tick fever. This is caused by a virus and in remain immobile until a passing mammal various hooved mammals, particularly pronghorn. most people produces symptoms similar signals its presence through vibrations, to flu: headaches, fever/chills, and a feeling the warmth of the animal, and the carbon of fatigue. In about half the cases there dioxide it exhales. The tick will then will be a few days of symptoms, followed actively extend its front legs (questing) to by recovery and then a second round of latch onto the animal as it brushes against symptoms (biphasic fever). Normally it. recovery is complete, and symptoms Hard ticks can be very resistant to disappear within a few days or weeks. In starvation and nymphs and adults may rare cases, serious complications can occur survive a year without feeding. Survival when the virus infects the central nervous is shorter under warm, dry conditions system. The Rocky Mountain wood tick and many ticks will go dormant with high is the vector of Colorado tick fever and temperatures in late spring and summer. symptoms usually develop between three Most cases of ticks biting humans in Figure 5: Adult male of the Rocky Mountain and seven days after the tick bite. wood tick questing on a plant stem. This is a Colorado occur in spring and end in Rocky Mountain spotted fever summer. position the ticks take when a potential host is detected. Photograph courtesy of the Ken Gray (Rickettsia rickettsii) is caused by a Some hard ticks have slightly Collection, Oregon State University. type of bacterium. It can be a serious different life cycles. The brown dog tick disease, potentially life threatening. Early (Rhipicephalus sanguineous) is also three- symptoms include headaches and upset host tick, dropping from the host after stomach, and a rash often develops a each blood meal. However, brown dog tick few days after fever symptoms. Rocky rodents are present behind walls, from which the ticks may emerge at night to feed. also affect cattle, dogs and some other Cases of this disease in Colorado are rare, mammals. usually less than a couple per year, but can Fortunately, the most important tick- occur year-round. borne disease in North America, Lyme Tularemia (Francisella tularensis) is also disease, is not present in wild animal a bacterial disease. It can be widespread populations in Colorado (i.e., not endemic). among many wild mammals, notably There has never been a confirmed case of rabbits, prairie dogs, and muskrats. Cats Lyme disease originating from a tick-bite can also become infected. Human cases in Colorado. There are a small number most often result from contact with the of cases of Coloradoans that have been blood of an infected animal but can also diagnosed as having Lyme disease (seven Figure 8: Winter tick collected near Salida in recorded cases between 2007-2017) but March laying a mass of eggs. occur from bites of Rocky Mountain wood tick or American dog tick. In most years all of these are thought to have originated there are very few human cases of tularemia from exposure to infected ticks in states in Colorado, but in 2014-2016 there was a where this disease is present.
Recommended publications
  • Blood Smear Analysis in Babesiosis, Ehrlichiosis, Relapsing Fever, Malaria, and Chagas Disease
    REVIEW STEVE M. BLEVINS, MD RONALD A. GREENFIELD, MD* MICHAEL S. BRONZE, MD CME Assistant Professor of Medicine, Section Professor of Medicine, Section of Infectious Professor of Medicine, Section of Infectious CREDIT of General Internal Medicine, Department Diseases, Department of Medicine, University Diseases, Chair of Department of Medicine, of Medicine, University of Oklahoma of Oklahoma Health Sciences Center and the University of Oklahoma Health Sciences Center Health Sciences Center, Oklahoma City Oklahoma City Veterans Administration and the Oklahoma City Veterans Administration Medical Center Medical Center Blood smear analysis in babesiosis, ehrlichiosis, relapsing fever, malaria, and Chagas disease ■ ABSTRACT LOOD SMEAR ANALYSIS, while commonly B used to evaluate hematologic condi- Blood smear analysis is especially useful for diagnosing tions, is infrequently used to diagnose infec- five infectious diseases: babesiosis, ehrlichiosis, relapsing tious diseases. This is because of the rarity of fever due to Borrelia infection, malaria, and American diseases for which blood smear analysis is indi- trypanosomiasis (Chagas disease). It should be performed cated. Consequently, such testing is often in patients with persistent or recurring fever or in those overlooked when it is diagnostically impor- who have traveled to the developing world or who have tant. a history of tick exposure, especially if accompanied by Nonspecific changes may include mor- hemolytic anemia, thrombocytopenia, or phologic changes in leukocytes and erythro- 1 hepatosplenomegaly. cytes (eg, toxic granulations, macrocytosis). And with certain pathogens, identifying ■ KEY POINTS organisms in a peripheral blood smear allows for a rapid diagnosis. In the United States, malaria and American This paper discusses the epidemiology, trypanosomiasis principally affect travelers from the clinical manifestations, laboratory findings, developing world.
    [Show full text]
  • Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York
    SUNY College of Environmental Science and Forestry Digital Commons @ ESF Honors Theses 5-2016 Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York Brigitte Wierzbicki Follow this and additional works at: https://digitalcommons.esf.edu/honors Part of the Entomology Commons Recommended Citation Wierzbicki, Brigitte, "Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York" (2016). Honors Theses. 106. https://digitalcommons.esf.edu/honors/106 This Thesis is brought to you for free and open access by Digital Commons @ ESF. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ ESF. For more information, please contact [email protected], [email protected]. HABITAT ASSOCIATIONS OF IXODES SCAPULARIS (ACARI: IXODIDAE) IN SYRACUSE, NEW YORK By Brigitte Wierzbicki Candidate for Bachelor of Science Environmental and Forest Biology With Honors May,2016 APPROVED Thesis Project Advisor: Af ak Ck M issa K. Fierke, Ph.D. Second Reader: ~~ Nicholas Piedmonte, M.S. Honors Director: w44~~d. William M. Shields, Ph.D. Date: ~ / b / I & r I II © 2016 Copyright B. R. K. Wierzbicki All rights reserved. 111 ABSTRACT Habitat associations of Jxodes scapularis Say were described at six public­ use sites within Syracuse, New York. Adult, host-seeking blacklegged ticks were collected using tick flags in October and November, 2015 along two 264 m transects at each site, each within a distinct forest patch. We examined the association of basal area, leaf litter depth, and percent understory cover with tick abundance using negative binomial regression models. Models indicated tick abundance was negatively associated with percent understory cover, but was not associated with particular canopy or understory species.
    [Show full text]
  • Otobius Megnini Infestations in Race Horses Rupika S
    We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 4,800 122,000 135M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter Spinose Ear Tick Otobius megnini Infestations in Race Horses Rupika S. Rajakaruna and Chulantha Prasanga Diyes Abstract Spinose ear tick, Otobius megnini, has a worldwide distribution causing otoaca- riasis or parasitic otitis in animals and humans. It mainly infests horses and cattle. It is a nidicolous, one-host soft tick spread from the New World to the Old World and is now distributed across all the continents. Only the larvae and nymphs are parasitic, feeding inside the ear canal of the host for a long period. Adult males and females are free-living and nonfeeding, and mating occurs off the host. Being inside the ear canal of the host allows the tick to be distributed over a vast geographic region through the distribution of the host animals. The presence of infectious agents Coxiella burnetii, the agent of Q fever, spotted fever rickettsia, Ehrlichia canis, Borrelia burgdorferi, and Babesia in O. megnini has been reported, but its role as a vector has not been confirmed.
    [Show full text]
  • Entomopathogenic Fungi and Bacteria in a Veterinary Perspective
    biology Review Entomopathogenic Fungi and Bacteria in a Veterinary Perspective Valentina Virginia Ebani 1,2,* and Francesca Mancianti 1,2 1 Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy; [email protected] 2 Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy * Correspondence: [email protected]; Tel.: +39-050-221-6968 Simple Summary: Several fungal species are well suited to control arthropods, being able to cause epizootic infection among them and most of them infect their host by direct penetration through the arthropod’s tegument. Most of organisms are related to the biological control of crop pests, but, more recently, have been applied to combat some livestock ectoparasites. Among the entomopathogenic bacteria, Bacillus thuringiensis, innocuous for humans, animals, and plants and isolated from different environments, showed the most relevant activity against arthropods. Its entomopathogenic property is related to the production of highly biodegradable proteins. Entomopathogenic fungi and bacteria are usually employed against agricultural pests, and some studies have focused on their use to control animal arthropods. However, risks of infections in animals and humans are possible; thus, further studies about their activity are necessary. Abstract: The present study aimed to review the papers dealing with the biological activity of fungi and bacteria against some mites and ticks of veterinary interest. In particular, the attention was turned to the research regarding acarid species, Dermanyssus gallinae and Psoroptes sp., which are the cause of severe threat in farm animals and, regarding ticks, also pets.
    [Show full text]
  • Occurrence of Ticks on Mule Deer in Central Utah
    Great Basin Naturalist Volume 37 Number 3 Article 7 9-30-1977 Occurrence of ticks on mule deer in central Utah Jordan C. Pederson Utah Division of Wildlife Resources, Environmental Studies, Springville, Utah Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Pederson, Jordan C. (1977) "Occurrence of ticks on mule deer in central Utah," Great Basin Naturalist: Vol. 37 : No. 3 , Article 7. Available at: https://scholarsarchive.byu.edu/gbn/vol37/iss3/7 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. OCCURRENCE OF TICKS ON MULE DEER IN CENTRAL UTAH Jordan C. Pederson' Abstract.— Two species of ticks were collected from mule deer and identified as Dertnacentor alhipictus (Packard) and Ixodes sp. The rate of occurrence of these ticks was found to be 99.6 percent and 0.4 percent, re- spectively. The infestation rate increased from 18.2 percent in January, to 87.5 percent in February, to 100.0 per- cent in March. From January through March 1976, a ens (1967) found this parasite on mule deer mule deer {Odocoileus hemionus Rafi- in Daggett County, Utah, where the pro- nescjue) trapping operation was conducted portion of deer infested with this tick rose by Utah State University, the Cooperative from 37 percent in January to 92 percent in Wildhfe Research Unit, and the Utah State March of 1960.
    [Show full text]
  • (Acari: Ixodidae and Argasidae) Associated with Odocoileus
    https://doi.org/10.22319/rmcp.v12i1.5283 Article Body distribution of ticks (Acari: Ixodidae and Argasidae) associated with Odocoileus virginianus (Artiodactyla: Cervidae) and Ovis canadensis (Artiodactyla: Bovidae) in three northern Mexican states Mariana Cuesy León a Zinnia Judith Molina Garza a* Roberto Mercado Hernández a Lucio Galaviz Silva a a Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Ave. Universidad S/N, Ciudad Universitaria. 66455 San Nicolás de los Garza, Nuevo León. México. *Corresponding author: [email protected]; [email protected] Abstract: Ticks are important vectors of medical and veterinary importance pathogens in Mexico; however, the taxonomic studies of abundance, prevalence, intensity, and body distribution in white-tailed deer (Odocoileus virginianus) and bighorn sheep (Ovis canadensis) are limited. This study aimed to fill this knowledge gap in the Mexican states of Sonora, Nuevo León, and Tamaulipas. The area of study included authorized game farms where hunting is practiced. A total of 372 ticks [21 nymphs (5.65 %) and 351 adults (94.35 %); 41% female and 59 % male] were collected from 233 O. virginianus and four O. canadensis. The ticks collected from O. virginianus were identified as Otobius megnini, Rhipicephalus (Boophilus) microplus, and Dermacentor (Anocentor) nitens. Dermacentor hunteri was the only species collected from O. canadensis. Ears were the most infested region (83 females, 70 males, and 21 nymphs, 46.77 %), and the least infested body parts were the legs (10 males and nine females, 5.1 %). This study reports for the first time the abundance, intensity, and prevalence of ticks in O. virginianus in northern Mexico, particularly in the states of Tamaulipas and 177 Rev Mex Cienc Pecu 2021;12(1):177-193 Nuevo León, since the O.
    [Show full text]
  • Tick-Borne Relapsing Fever CLAY ROSCOE, M.D., and TED EPPERLY, M.D., Family Medicine Residency of Idaho, Boise, Idaho
    Tick-Borne Relapsing Fever CLAY ROSCOE, M.D., and TED EPPERLY, M.D., Family Medicine Residency of Idaho, Boise, Idaho Tick-borne relapsing fever is characterized by recurring fevers separated by afebrile periods and is accompanied by nonspecific constitutional symptoms. It occurs after a patient has been bitten by a tick infected with a Borrelia spirochete. The diagnosis of tick-borne relapsing fever requires an accurate characterization of the fever and a thorough medical, social, and travel history of the patient. Findings on physical examination are variable; abdominal pain, vomiting, and altered sensorium are the most common symptoms. Laboratory confirmation of tick-borne relapsing fever is made by detection of spirochetes in thin or thick blood smears obtained during a febrile episode. Treatment with a tetracycline or macrolide antibiotic is effective, and antibiotic resistance is rare. Patients treated for tick-borne relapsing fever should be monitored closely for Jarisch- Herxheimer reactions. Fatalities from tick-borne relapsing fever are rare in treated patients, as are subsequent Jarisch-Herxheimer reactions. Persons in endemic regions should avoid rodent- and tick-infested areas and use insect repellents and protective clothing to prevent tick bites. (Am Fam Physician 2005;72:2039-44, 2046. Copyright © 2005 American Academy of Family Physicians.) S Patient information: ick-borne relapsing fever (TBRF) develop with TBRF, with long-term sequelae A handout on tick-borne is transmitted by Ornithodoros that may be permanent. Reviewing a broad relapsing fever, written by 1,3-6 the authors of this article, ticks infected with one of sev- differential diagnosis (Table 1 ) for fever is provided on page 2046.
    [Show full text]
  • Lyme Disease and Tick-Borne Infections User Manual
    SCOTTISH MICROBIOLOGY REFERENCE LABORATORY, INVERNESS: LYME DISEASE AND TICK-BORNE INFECTIONS USER MANUAL 1 Amended 23 September 2020 CONTENTS Section Page 1 Introduction 3 2 Contact details and key personnel 3 3 Opening hours 4 4 Service provided 4 4.1 Samples and turnaround times 4 4.2 Laboratory tests 5 4.3 Specialist advice 5 5 Clinical Information 6 6 Referral criteria 6 7 Specimen and request form labelling 7 8 Specimen transportation 8 9 Charges 8 10 Results 8 11 Treatment 8 12 Prevention 8 13 SLDTRL request form 8 (Form MF023) 14 SLDTRL developments 9 15 References 9 16 Laboratory diagnosis of Lyme borreliosis algorithm Appendix 2 Amended 23 September 2020 1.0 Introduction The newly established Scottish Lyme Disease and Tick-borne Infections Reference Laboratory (SLDTRL) is provided by NHS Highland at Raigmore Hospital, Inverness. The aim of SLDTRL is to provide more comprehensive and standardised testing for Lyme disease and other tick-borne infections and to improve the epidemiological data provided to Health Protection Scotland (HPS). Lyme disease is caused by bacteria from the Borrelia burgdorferi sensu lato complex. In the UK the bacteria is transmitted to humans through the bite of infected, hard bodied, Ixodes ricinus ticks. Borrelia miyamotoi disease, which presents as a relapsing fever, can also be transmitted by Ixodes ricinus ticks. It is an emerging disease caused by B. miyamotoi bacteria, which are from the relapsing fever group of borrelia, genetically distinct from those that cause Lyme disease. Human granulocytic anaplasmosis (HGA), also an acute febrile illness transmitted by Ixodid ticks, is an infection caused by the bacterium Anaplasma phagocytophilum.
    [Show full text]
  • Diapause and Quiescence As Two Main Kinds of Dormancy and Their Significance in Life Cycles of Mites and Ticks (Chelicerata: Arachnida: Acari)
    Acarina 17 (1): 3–32 © Acarina 2009 DIAPAUSE AND QUIESCENCE AS TWO MAIN KINDS OF DORMANCY AND THEIR SIGNIFICANCE IN LIFE CYCLES OF MITES AND TICKS (CHELICERATA: ARACHNIDA: ACARI). PART 2. PARASITIFORMES V. N. Belozerov Biological Research Institute, St. Petersburg State University, Peterhof 198504, Russia; e-mail: [email protected] ABSTRACT: Concerning the problem of life history and such an important its aspect as seasonality of life cycles and their control enabled by dormant stages, the parasitiform mites reveal the obvious similarity with the acariform mites. This concerns the pres- ence of both main kinds of dormancy (diapause and quiescence). The great importance in the seasonal control of life cycles in some parasitiform mites, like in acariform mites, belongs also for combinations of diapause with non-diapause arrests, particularly with the post-diapause quiescence (PDQ). This type of quiescence evoked after termination of diapause and enabling more accu- rate time-adjustment in recommencement of active development, is characteristic of both lineages of the Parasitiformes — Ixodida and Mesostigmata (particularly Gamasida). The available data show that in ixodid ticks the PDQ may be resulted similarly after developmental and behavioral diapause. Reproductive diapause combined with the PDQ is characteristic of some gamasid mites (particularly the family Phytoseiidae), while most gamasid and uropodid mites with phoretic dispersal reveal the dormant state (apparently of diapause nature) at the deutonymphal stage. The uncertainty between diapause and non-diapause dormancy is retained in some many cases (even in ixodid ticks and phytoseiid mites), and the necessity of further thorough study of different forms of diapause and non-diapause arrests in representatives of the Acari is noted therefore.
    [Show full text]
  • Brown Dog Tick, Rhipicephalus Sanguineus Latreille (Arachnida: Acari: Ixodidae)1 Yuexun Tian, Cynthia C
    EENY-221 Brown Dog Tick, Rhipicephalus sanguineus Latreille (Arachnida: Acari: Ixodidae)1 Yuexun Tian, Cynthia C. Lord, and Phillip E. Kaufman2 Introduction and already-infested residences. The infestation can reach high levels, seemingly very quickly. However, the early The brown dog tick, Rhipicephalus sanguineus Latreille, has stages of the infestation, when only a few individuals are been found around the world. Many tick species can be present, are often missed completely. The first indication carried indoors on animals, but most cannot complete their the dog owner has that there is a problem is when they start entire life cycle indoors. The brown dog tick is unusual noticing ticks crawling up the walls or on curtains. among ticks, in that it can complete its entire life cycle both indoors and outdoors. Because of this, brown dog tick infestations can develop in dog kennels and residences, as well as establish populations in colder climates (Dantas- Torres 2008). Although brown dog ticks will feed on a wide variety of mammals, dogs are the preferred host in the United States and appear to be a necessary condition for maintaining a large tick populations (Dantas-Torres 2008). Brown dog tick management is important as they are a vector of several pathogens that cause canine and human diseases. Brown dog tick populations can be managed with habitat modification and pesticide applications. The taxonomy of the brown dog tick is currently under review Figure 1. Life stages of the brown dog tick, Rhipicephalus sanguineus and ultimately it may be determined that there are more Latreille. Clockwise from bottom right: engorged larva, engorged than one species causing residential infestations world-wide nymph, female, and male.
    [Show full text]
  • Phylogeography in Sexual and Parthenogenetic European Oribatida
    GÖTTINGER ZENTRUM FÜR BIODIVERSITÄTSFORSCHUNG UND ÖKOLOGIE - GÖTTINGEN CENTRE FOR BIODIVERSITY AND ECOLOGY - Phylogeography in sexual and parthenogenetic European Oribatida Dissertation zur Erlangung des akademischen Grades eines Doctor rerum naturalium an der Georg-August Universität Göttingen vorgelegt von Dipl. Biol. Martin Julien Rosenberger aus Langen, Hessen Referent: Prof. Dr. Stefan Scheu Koreferent: PD Dr. Mark Maraun Tag der Einreichung: 21 Oktober 2010 Tag der mündlichen Prüfung: Curriculum Vitae Curriculum Vitae Personal data Name: Martin Julien Rosenberger Address: Brandenburgerstrasse 53, 63329 Egelsbach Date of Birth: October 31st 1980 Place of Birth: Langen (Hessen) Education 1987-1991 Wilhelm Leuschner Primary School, Egelsbach 1991-2000 Abitur at Dreieich-Schule, Langen 2000-2006 Study of Biology at Darmstadt University of Technology, Germany 2006-2007 Diploma thesis: “Postglaziale Kolonisation von Zentraleuropa durch parthenogenetische (Platynothrus peltifer) und sexuelle (Steganacarus magnus) Hornmilben (Oribatida)” at Darmstadt University of Technology, Germany under supervision of Dipl. Biol. Katja Domes and Prof. Dr. S. Scheu 2007-2008 Scientific assistant at Darmstadt University of Technology, Germany 2008-2009 Scientific officer Darmstadt University of Technology, Germany Since 2009 PhD student at the Georg August University, Göttingen, Germany at the J. F. Blumenbach Insitute of Zoology and Anthropology under supervision of Prof. Dr. S. Scheu 2009-2010 Scientific officer at the Georg August University, Göttingen,
    [Show full text]
  • Wildlife Ecology Provincial Resources
    MANITOBA ENVIROTHON WILDLIFE ECOLOGY PROVINCIAL RESOURCES !1 ACKNOWLEDGEMENTS We would like to thank: Olwyn Friesen (PhD Ecology) for compiling, writing, and editing this document. Subject Experts and Editors: Barbara Fuller (Project Editor, Chair of Test Writing and Education Committee) Lindsey Andronak (Soils, Research Technician, Agriculture and Agri-Food Canada) Jennifer Corvino (Wildlife Ecology, Senior Park Interpreter, Spruce Woods Provincial Park) Cary Hamel (Plant Ecology, Director of Conservation, Nature Conservancy Canada) Lee Hrenchuk (Aquatic Ecology, Biologist, IISD Experimental Lakes Area) Justin Reid (Integrated Watershed Management, Manager, La Salle Redboine Conservation District) Jacqueline Monteith (Climate Change in the North, Science Consultant, Frontier School Division) SPONSORS !2 Introduction to wildlife ...................................................................................7 Ecology ....................................................................................................................7 Habitat ...................................................................................................................................8 Carrying capacity.................................................................................................................... 9 Population dynamics ..............................................................................................................10 Basic groups of wildlife ................................................................................11
    [Show full text]