Lauren Maestas M.S

Total Page:16

File Type:pdf, Size:1020Kb

Lauren Maestas M.S 11/5/12 Lauren Maestas M.S. Candidate University of Tennessee Department of Forestry, Wildlife and Fisheries Photo Credits: Robyn Nadolny, Chelsea Wright Wayne Hynes, Daniel Sonenshine, Holly Gaff Old Dominion University Dept. of Biology } Introduction and Justification } Objectives } Methods } Anticipated Results } Future Directions 1 11/5/12 Bridging Vector • Ticks carry and transmit a I. scapularis greater variety of pathogens to domestic animals than any Sylvaticother type cycle of biting arthropod • Ticks are a close second to mosquitos worldwide in human disease transmission I. affinis Photo Credit: Robyn Nadolny, Chelsea Wright Wayne Hynes, Daniel Sonenshine, Holly Gaff Old Dominion University Dept. of Biology Maria Duik-Wasser Ixodes affinis Ixodes scapularis •Both have a 1-2 year life cycle •Both feed on multiple wildlife hosts http://www.humanillnesses.com/Infectious-Diseases-He-My/Lyme-Disease.html 0% Bbsl 40% Bbsl Maggi 2009 Bbss? Photo Credit: Robyn Nadolny, Chelsea Wright Wayne Hynes, Daniel Sonenshine, Holly Gaff Old Dominion University Dept. of Biology A. Causey personal communication http://www.fishing-nc.com/nc-fishing-regulations.php 2 11/5/12 18 Species of Borrelia currently recognized in the Bbsl complex Rudenko et al. 2011 1. To test for North- South latitudinal trends in Ixodes spp. genotype, and Bbsl prevalence and strain type. 2. In South Carolina, to compare the prevalence of Bbsl and Ixodid tick species collected from wild mesomammals with those from a) vegetation, and b) domestic dogs (Sentinels). 3 11/5/12 Methods 1. Research Sites 4 11/5/12 •Morphological •16s Primers •Screening •Outer & •16s ID [Kierans and published for Bbsl Inner IGS Mitochondrial PCR ID Litwak 1989, by Norris PCR •23 S rRNA Primers DNA Field Cooley 1944] (1996) published •Haplotype •DNA •Sequenced by: variation by Extraction by: UTK Courtney : Genetics region [Norris (Qiagen) [Beati Molecular (2004) 1996] 2001] Biology •Sequencing Bbsl •Minimum of Resource Real-Time Facility 50 samples Ticks:Molecular Sample from from each •100 Tick & Bbsl: region (of both randomly Bbsl: Nested IGS spp)[Beebee selected 2008) samples to be molecularly identified www.invitrogen.com http://laikaspoetnik.wordpress.com/tag/add-new-tag/ jeanapettus.webs.com High Prevalence of Bbss N Cl B a b d s e s I.scapularis I. affinis S B C b l s a l d e Low prevalence Low to no of prevalence primarily of Bbsl primarily Bbsl • Test genetic differences in ticks and Borrelia between states using AMOVA (Norris et al. 1996) • Test for an association between Borrelia prevalence and latitude using Correlation Analysis • Test for differences in Ixodes species composition among states using Chi-Square Tests of Association 5 11/5/12 1. Investigation of genetic variation among Ixodes populations using Next- Generation molecular tools. 2. Genetic markers may be useful for tracking geographic shifts in Borrelia- infected tick populations. 3. Confirmation of Borrelia in domestic dogs? outreach to veterinary practices in the Southeast. References Aguirre, A.A.. 2009. Wild canids as sentinels of ecological health: a conservation medicine perspective. Parasites and vectors. 2: S7. Bacon, R. M., Kugler, K. J., AND Mead, P. S. 2008. Surveillance for Lyme disease United States, 1992–2006. MMWR Surveillance Summaries. 57: 1–9.Banerjee, S.N., M. Banerjee, J.A. Smith, and K, Fernando. 1994. Lyme disease in British Columbia an update. British Columbia Journal of Medicine 36: 540-541. Barbour, A.G., D. Fish. 1993. The biological and social phenomenon of Lyme disease. Science. 260: 1610-1616. Beati, L., and Kierans, J.E. 2001. Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters. Journal of Parasitology. 87: 32-48. Bloemer, S.R., and R.H. Zimmerman. 1988. Ixodid ticks on the coyote and gray fox at Land Between the Lakes, Kentucky-Tennessee, and implications for tick dispersal. Journal of Medical Entomology. 25: 5-8. Beebee and Rowe. 2008. An introduction to Molecular Ecology. Oxford University press. New York, USA. Brillhart, D.B., L.B. Fox, and S.J. Upton. 1994. Ticks (Acari: Ixodidae) collected from small and medium-sized Kansas mammals. Journal of Medical Entomology. 3: 500-504. Brown, R.N., and R.S. Lane. 1992. Lyme disease in California: a novel enzootic transmission cycle of Borrelia burgdorferi. Science. 256: 1439-1442. Bowman, A. S., AND P. Nuttall. 2008. Ticks: biology, disease, and control. Cambridge University Press. New York, USA. Clark, K.L.,J.H. Oliver, J.H. Grego, A.M. James, L.A. Durden, and C.W. Banks. 2001. Host associations of ticks parasitizing rodents at Borrelia burgdorferi enzootic sites in South Carolina. Journal of Parasitology. 87:1379-1386. Clark, K.L.,J.H. Oliver, A.M. James, L.A. Durden, and C.W. Banks. 2002. Prevalence of Borrelia burgdorferi sensu lato infection among rodents and host-seeking ticks in South Carolina. Journal of Medical Entomology. 39: 198-206. Clifford, C.M., G. Anastos, and A. Elbl. 1961. The Larval Ixodid ticks of the Eastern United States (Acarina-Ixodidae). Miscelaneous Publications of the Entomological Society of America. 2:213-237.Cooley, R. A., and G.M. Kohls. 1944. The genus Amblyomma (Ixodidae) in the United States. The American Society of Parasitologists. 30: 77-111. Cooley, R. A., AND G. M. Kohls. 1945. The genus Ixodes in North America. National Institute of Health Bulletin. 184: 1-246. Cooley, R.A., and G. M. Kohls. 1968. Ixodes pacificus Cooly and Kohls, 1943: its life history and occurrence. Parasitology. 1968. 58: 893-906. Courtney, J.W., L.M. Kostelnik, N.S. Zeidner, and R.S. Massung. 2004. Multiplex real-time PCR for detection of Anaplasma phagocytophylum, and Borrelia burgdorferi. Journal of Clinical Microbiology. 42: 3164-3168. Damrow, T, H. Freedman, R.S. Lane, and K.L. Preston. 1989. Is Ixodes (Ixodiopsis) angustus a vector of Lyme disease in Washington State? Western Journal of Medicine. 150: 580-582. De Meeus, T., L. Beati, C. Delaye, A. Aeschlimann, and F. Renaud. 2002. Sex-biased genetic structure in the vector of Lyme disease, Ixodes ricinus. Evolution International Journal of Organic Evolution. 56: 1802-1807. M, Duik-Waser, B. Brei, and D. Fish. 2006. Epidemic spread of Lyme Borreliosis, Northern United States. Emerging Infectious Diseases. 12: 604-611. Harrison, B.A., K.L., CLARK, J.H., Oliver, J.M. Grego, A.M., James, L.A. Durden, and C.W. Banks. 2001. Host associations of ticks parasitizing rodents at Borrelia burgdorferi enzootic sites in South Carolina. Journal of Parasitology. 87:1379-1386. Harrison, B.A., W.H. Rayburn,M. Toliver, E.E. Powell, B.R. Engber, L.A. Durden, R.G. Robbins, B.F. Prendergast, and P.B. Whitt. 2010. Recent widespread Ixodes affinis (Acari: Ixodidae) distribution in North Carolina with implications for Lyme disease studies. Journal of Vector Ecology. 35:174-179. Durden, L.A.,R.G. Mclean, J.H., Oliver, S.R. Ubico, and A.M. James. 1997. Ticks, Lyme disease spirochetes, trypanosomes, and antibody to encephalitis virus in wild birds from coastal Georgia and South Carolina. Journal of Parasitology. 83: 1178-1182. Durden, L.A., J.E. Kierans. 1996. Nymphs of the Genus Ixodes (Acari:Ixodidae) of the United States: Taxonomy, identification key, distribution, hosts, and medical/veterinary importance. Monographs Thomas Say publications in Entemology, Maryland, USA. Farlow, J., D. Postic, K.L. Smith, Z, Jay, G, Baranton, and P. Keim. 2002. Strain typing of Borrelia burgdorferi, and Borrelia garinii by using multiple locus variable number tandem repeat analysis. Journal of Clinical Microbiology. 40: 4612-4618. Felz, M.W., L.A. Durden, and J.H. Oliver. Ticks parasitizing humans in Georgia and South Carolina. Journal of Parasitology. 82: 505-508. Furman. D. P., AND E. C., Loomis, 1984. The ticks of California (Acari: Ixodidae). Bulletin of the California Insect Survey 25: 1-239. Gabriel, M.W. 2006. Exposure to Anaplasma phagocytophylum and ticks in Gray Fox (Urocyon cinereoargentius) in Northern Humboldt County, California. Thesis, Humboldt State University, Arcata, USA. Girard, Y.A., N. Fedorova, and R.S. Lane. 2011. Genetic diversity of Borrelia burgdorferi and detection of B. bissettii-like DNA in serum of North-coastal California residents. Journal of Clinical Microbiology. 49: 945-954. Guzman, C.N., R,G, Robbins, and T.M. Perez. 2007. The Ixodes (Acari: Ixodidae) of Mexico: parasite-host and host-parasite checklists. Zootaxa. 1553: 47-58. Hamer, S.A., G.J. Hickling, J.L. Sidge, M.E. Rosen, E.D. Walker, and J.I. Tsao. 2011. Applied and Environmental Microbiology. 77: 1999-2007. Hamer, S.A., J.I. Tsao, E.D. Walker, L.S. Mansfield, E.S. Foster, G.J. Hickling. 2009. Use of tick surveys and serosurveys to evaluate pet dogs as a sentinel species for emerging Lyme disease. American Journal of Veterinary Research. 70:49-56. Hanincova, K, K, Kurtenbach, M, Duik-Waser, B. Brei, and D. Fish. 2006. Epidemic spread of Lyme Borreliosis, Northern United States. Emerging Infectious Diseases. 12: 604-611. Harrison, B.A., K.L., CLARK, J.H., Oliver, J.M. Grego, A.M., James, L.A. Durden, and C.W. Banks. 2001. Host associations of ticks parasitizing rodents at Borrelia burgdorferi enzootic sites in South Carolina. Journal of Parasitology. 87:1379-1386. Harrison, B.A., W.H. Rayburn,M. Toliver, E.E. Powell, B.R. Engber, L.A. Durden, R.G. Robbins, B.F. Prendergast, and P.B. Whitt. 2010. Recent widespread Ixodes affinis (Acari: Ixodidae) distribution in North Carolina with implications for Lyme disease studies. Journal of Vector Ecology. 35:174-179. Hayes, E.B., and J. Piesman. 2003. How can we prevent Lyme disease? New England Journal of Medicine. 348: 2424-2430. Hillyer, E.G.. 2005. Trends in Canine Lyme disease on the Eastern shore of Virginia, 2000-2005.
Recommended publications
  • Trends in Borrelia Spp. Prevalence in Ixodes Spp. Ticks from the Southeastern Coastal United States
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2013 TRENDS IN BORRELIA SPP. PREVALENCE IN IXODES SPP. TICKS FROM THE SOUTHEASTERN COASTAL UNITED STATES Lauren Paul Maestas University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Biodiversity Commons, Biology Commons, Entomology Commons, Molecular Genetics Commons, Parasitology Commons, and the Population Biology Commons Recommended Citation Maestas, Lauren Paul, "TRENDS IN BORRELIA SPP. PREVALENCE IN IXODES SPP. TICKS FROM THE SOUTHEASTERN COASTAL UNITED STATES. " Master's Thesis, University of Tennessee, 2013. https://trace.tennessee.edu/utk_gradthes/2433 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Lauren Paul Maestas entitled "TRENDS IN BORRELIA SPP. PREVALENCE IN IXODES SPP. TICKS FROM THE SOUTHEASTERN COASTAL UNITED STATES." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Wildlife and Fisheries Science. Graham J. Hickling, Major Professor We have read this thesis and recommend its acceptance: Debra L. Miller, Rebecca T. Trout Fryxell Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) TRENDS IN BORRELIA SPP.
    [Show full text]
  • Dog Ticks Have Been Introduced and Are Establishing in Alaska: Protect Yourself and Your Dogs from Disease
    1300 College Road Fairbanks, Alaska 99701-1551 Main: 907.328.8354 Fax: 907.459.7332 American Dog tick, Dermacentor variablis Dog ticks have been introduced and are establishing in Alaska: Protect yourself and your dogs from disease Most Alaskans, including dog owners, are under the mistaken impression that there are no ticks in Alaska. This is has always been incorrect as ticks on small mammals and birds are endemic to Alaska (meaning part of our native fauna), it was just that the typical ‘dog’ ticks found in the Lower 48 were not surviving, reproducing and spread here. The squirrel tick, Ixodes angustus, for example, although normally feasting on lemmings, hares and squirrels is the most common tick found incidentally on dogs and cats in Alaska. However, recently the Alaska Dept. of Fish & Game along with the Office of the State Veterinarian have detected an increasing incidence of dog ticks that are exotic to Alaska (that is Alaska is not part of the reported geographic range). These alarming trends lead to an article on the ADFG webpage several years ago http://www.adfg.alaska.gov/index.cfm?adfg=wildlifenews.main&issue_id=111. We’ve coauthored a research paper documenting eight species of ticks collected on dogs in Alaska and six found on people. Of additional concern is that many of these ticks are potential vectors of serious zoonotic (diseases transmitted from animals to humans) as well as animal diseases and are being found on dogs that have never let the state. Wildlife disease specialists expect there to be profound impacts of climate change on animal and parasite distributions, and with the introduction of ticks to Alaska, we should expect some of these species will become established.
    [Show full text]
  • Annotated List of the Hard Ticks (Acari: Ixodida: Ixodidae) of New Jersey
    applyparastyle "fig//caption/p[1]" parastyle "FigCapt" applyparastyle "fig" parastyle "Figure" Journal of Medical Entomology, 2019, 1–10 doi: 10.1093/jme/tjz010 Review Review Downloaded from https://academic.oup.com/jme/advance-article-abstract/doi/10.1093/jme/tjz010/5310395 by Rutgers University Libraries user on 09 February 2019 Annotated List of the Hard Ticks (Acari: Ixodida: Ixodidae) of New Jersey James L. Occi,1,4 Andrea M. Egizi,1,2 Richard G. Robbins,3 and Dina M. Fonseca1 1Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901-8536, 2Tick- borne Diseases Laboratory, Monmouth County Mosquito Control Division, 1901 Wayside Road, Tinton Falls, NJ 07724, 3 Walter Reed Biosystematics Unit, Department of Entomology, Smithsonian Institution, MSC, MRC 534, 4210 Silver Hill Road, Suitland, MD 20746-2863 and 4Corresponding author, e-mail: [email protected] Subject Editor: Rebecca Eisen Received 1 November 2018; Editorial decision 8 January 2019 Abstract Standardized tick surveillance requires an understanding of which species may be present. After a thorough review of the scientific literature, as well as government documents, and careful evaluation of existing accessioned tick collections (vouchers) in museums and other repositories, we have determined that the verifiable hard tick fauna of New Jersey (NJ) currently comprises 11 species. Nine are indigenous to North America and two are invasive, including the recently identified Asian longhorned tick,Haemaphysalis longicornis (Neumann, 1901). For each of the 11 species, we summarize NJ collection details and review their known public health and veterinary importance and available information on seasonality. Separately considered are seven additional species that may be present in the state or become established in the future but whose presence is not currently confirmed with NJ vouchers.
    [Show full text]
  • Ticks of Japan, Korea, and the Ryukyu Islands Noboru Yamaguti Department of Parasitology, Tokyo Women's Medical College, Tokyo, Japan
    Brigham Young University Science Bulletin, Biological Series Volume 15 | Number 1 Article 1 8-1971 Ticks of Japan, Korea, and the Ryukyu Islands Noboru Yamaguti Department of Parasitology, Tokyo Women's Medical College, Tokyo, Japan Vernon J. Tipton Department of Zoology, Brigham Young University, Provo, Utah Hugh L. Keegan Department of Preventative Medicine, School of Medicine, University of Mississippi, Jackson, Mississippi Seiichi Toshioka Department of Entomology, 406th Medical Laboratory, U.S. Army Medical Command, APO San Francisco, 96343, USA Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Yamaguti, Noboru; Tipton, Vernon J.; Keegan, Hugh L.; and Toshioka, Seiichi (1971) "Ticks of Japan, Korea, and the Ryukyu Islands," Brigham Young University Science Bulletin, Biological Series: Vol. 15 : No. 1 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol15/iss1/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. MUS. CO MP. zooi_: c~- LIBRARY OCT 2 9 1971 HARVARD Brigham Young University UNIVERSITY Science Bulletin TICKS Of JAPAN, KOREA, AND THE RYUKYU ISLANDS by Noboru Yamaguti Vernon J. Tipton Hugh L. Keegan Seiichi Toshioka BIOLOGICAL SERIES — VOLUME XV, NUMBER 1 AUGUST 1971 BRIGHAM YOUNG UNIVERSITY SCIENCE BULLETIN BIOLOGICAL SERIES Editor: Stanley L. Welsh, Department of Botany, Brigham Young University, Prove, Utah Members of the Editorial Board: Vernon J.
    [Show full text]
  • Focus Stacking Images of Morphological Character States for Differentiating the Adults of Ixodes Affinis and Ixodes Scapularis (Acari: Ixodidae) in Areas of Sympatry
    Old Dominion University ODU Digital Commons Biological Sciences Faculty Publications Biological Sciences 2021 Focus Stacking Images of Morphological Character States for Differentiating the Adults of Ixodes affinis and Ixodes scapularis (Acari: Ixodidae) in Areas of Sympatry Robyn M. Nadolny Marcée Toliver Holly D. Gaff Old Dominion University, [email protected] John G. Snodgrass Richard G. Robbins Follow this and additional works at: https://digitalcommons.odu.edu/biology_fac_pubs Part of the Biology Commons, Forest Biology Commons, and the Parasitology Commons Original Publication Citation Nadolny, R. M., Toliver, M., Gaff, H. D., Snodgrass, J. G., & Robbins, R. G. (2021). Focus stacking images of morphological character states for differentiating the adults of Ixodes affinis and Ixodes scapularis (Acari: Ixodidae) in areas of sympatry. Journal of medical entomology, 1-7, Article tjab058. https://doi.org/10.1093/jme/tjab058 This Article is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. applyparastyle "fig//caption/p[1]" parastyle "FigCapt" applyparastyle "fig" parastyle "Figure" Journal of Medical Entomology, XX(X), 2021, 1–7 doi: 10.1093/jme/tjab058 Short Communication Morphology, Systematics, Evolution Focus Stacking Images of Morphological Character Downloaded from https://academic.oup.com/jme/advance-article/doi/10.1093/jme/tjab058/6231888 by guest on 31 May 2021 States for Differentiating the Adults of Ixodes affinis and Ixodes scapularis (Acari: Ixodidae) in Areas of XX Sympatry Robyn M. Nadolny,1,7, Marcée Toliver,2 Holly D.
    [Show full text]
  • Human Bartonellosis: an Underappreciated Public Health Problem?
    Tropical Medicine and Infectious Disease Review Human Bartonellosis: An Underappreciated Public Health Problem? Mercedes A. Cheslock and Monica E. Embers * Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA; [email protected] * Correspondence: [email protected]; Tel.: +(985)-871-6607 Received: 24 March 2019; Accepted: 16 April 2019; Published: 19 April 2019 Abstract: Bartonella spp. bacteria can be found around the globe and are the causative agents of multiple human diseases. The most well-known infection is called cat-scratch disease, which causes mild lymphadenopathy and fever. As our knowledge of these bacteria grows, new presentations of the disease have been recognized, with serious manifestations. Not only has more severe disease been associated with these bacteria but also Bartonella species have been discovered in a wide range of mammals, and the pathogens’ DNA can be found in multiple vectors. This review will focus on some common mammalian reservoirs as well as the suspected vectors in relation to the disease transmission and prevalence. Understanding the complex interactions between these bacteria, their vectors, and their reservoirs, as well as the breadth of infection by Bartonella around the world will help to assess the impact of Bartonellosis on public health. Keywords: Bartonella; vector; bartonellosis; ticks; fleas; domestic animals; human 1. Introduction Several Bartonella spp. have been linked to emerging and reemerging human diseases (Table1)[ 1–5]. These fastidious, gram-negative bacteria cause the clinically complex disease known as Bartonellosis. Historically, the most common causative agents for human disease have been Bartonella bacilliformis, Bartonella quintana, and Bartonella henselae.
    [Show full text]
  • Mammalian Diversity in Nineteen Southeast Coast Network Parks
    National Park Service U.S. Department of the Interior Natural Resource Program Center Mammalian Diversity in Nineteen Southeast Coast Network Parks Natural Resource Report NPS/SECN/NRR—2010/263 ON THE COVER Northern raccoon (Procyon lotot) Photograph by: James F. Parnell Mammalian Diversity in Nineteen Southeast Coast Network Parks Natural Resource Report NPS/SECN/NRR—2010/263 William. David Webster Department of Biology and Marine Biology University of North Carolina – Wilmington Wilmington, NC 28403 November 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received formal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data, and whose background and expertise put them on par technically and scientifically with the authors of the information. Views, statements, findings, conclusions, recommendations, and data in this report do not necessarily reflect views and policies of the National Park Service, U.S.
    [Show full text]
  • Prevalencija Zaraženosti Krpelja Vrste Ixodes Ricinus Uzroċnikom Borrelia
    UNIVERZITET U NOVOM SADU POLJOPRIVREDNI FAKULTET Departman za fitomedicinu i zaštitu ţivotne sredine Kandidat: Mentor: Ivana Ivanović doc. dr Aleksandar Jurišić PREVALENCIJA ZARAŢENOSTI KRPELJA VRSTE IXODES RICINUS UZROČNIKOM BORRELIA BURGDORFERI U ŠUMSKIM EKOSISTEMIMA MASTER RAD Novi Sad, 2014. Prevalencija zaraženosti krpelja vrste Ixodes ricinus uzročnikom Borrelia burgdorferi u šumskim ekosistemima SADRŢAJ SAŢETAK ............................................................................................................................ 4 ABSTRACT ......................................................................................................................... 5 1. UVOD............................................................................................................................... 6 1.1. Zadatak i cilj istraţivanja ........................................................................................... 7 2. PREGLED LITERATURE ................................................................................................ 9 2.1. Istorijat istraţivanja krpelja i vektorske uloge Ixodes ricinus u širenju Borrelia burgdorferi u Srbiji i Evropi ............................................................................................. 9 2.2. Sistematika krpelja ................................................................................................... 12 2.3. Geografska distribucija i stanište vrste Ixodes ricinus ............................................... 13 2.4. Morfološke i anatomske karakteristike
    [Show full text]
  • Ectoparasites and Other Arthropod Associates of Some Voles and Shrews from the Catskill Mountains of New York
    The Great Lakes Entomologist Volume 21 Number 1 - Spring 1988 Number 1 - Spring 1988 Article 9 April 1988 Ectoparasites and Other Arthropod Associates of Some Voles and Shrews From the Catskill Mountains of New York John O. Whitaker Jr. Indiana State University Thomas W. French Massachusetts Division of Fisheries and Wildlife Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Whitaker, John O. Jr. and French, Thomas W. 1988. "Ectoparasites and Other Arthropod Associates of Some Voles and Shrews From the Catskill Mountains of New York," The Great Lakes Entomologist, vol 21 (1) Available at: https://scholar.valpo.edu/tgle/vol21/iss1/9 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Whitaker and French: Ectoparasites and Other Arthropod Associates of Some Voles and Sh 1988 THE GREAT LAKES ENTOMOLOGIST 43 ECTOPARASITES AND OTHER ARTHROPOD ASSOCIATES OF SOME VOLES AND SHREWS FROM THE CATSKILL MOUNTAINS OF NEW YORK John O. Whitaker, Jr. l and Thomas W. French2 ABSTRACT Reported here from the Catskill Mountains of New York are 30 ectoparasites and other associates from 39 smoky shrews, Sorex !umeus, J7 from 11 masked shrews, Sorex cinereus, II from eight long-tailed shrews, Sorex dispar, and 31 from 44 rock voles, Microtus chrotorrhinus. There is relatively little information on ectoparasites of the long-tailed shrew, Sorex dispar, and the rock vole, Microtus chrotorrhinus (Whitaker and Wilson 1974).
    [Show full text]
  • 24 1048 Sherrill 5.Indd
    2012 SOUTHEASTERN NATURALIST 11(3):529–533 Survey of Zoonotic Pathogens in White-tailed Deer on Bald Head Island, North Carolina Brandon L. Sherrill1,*, Anthony G. Snider2, Suzanne Kennedy-Stoskopf 3, and Christopher S. DePerno1 Abstract - Odocoileus virginianus (White-tailed Deer) have become overabundant in many urban and suburban areas, which can cause concern about exposure of humans and pets to zoonotic pathogens. Bald Head Island, NC is a small barrier island that has experienced ongoing residential development since the mid-1980s and has a relatively high deer density (15–17 deer/km2). To address concerns expressed by residents, we screened ≈13% of the White-tailed Deer population for potential zoonotic pathogens. We collected blood from 8 deer in January through March 2008 and 5 deer in January 2009. We tested sera for antibodies to Anaplasma phagocytophilum, Borrelia burgdorferi, and six serovars of Leptospira interrogans; and whole blood samples for Bartonella spp. and B. burgdorferi DNA. All sera were negative for antibodies to L. interrogans; two samples were seropositive for A. phagocytophilum, and one was seropositive for B. burgdorferi. Whole blood PCR results were negative for Bartonella spp. and B. burgdorferi. Con- tinued surveillance for wildlife diseases on Bald Head Island is necessary to determine prevalence of specifi c pathogens, their impacts on the White-tailed Deer population, and the risk of exposure to humans and pets. Introduction Odocoileus virginianus Zimmerman (White-tailed Deer; hereafter also “Deer”) are overabundant in many areas throughout their range and can often negatively impact human populations (e.g., property damage, vehicle collisions, exposure to zoonotic pathogens), particularly in suburban areas with expanding residential development (Butfi loski et al.
    [Show full text]
  • Extensive Distribution of the Lyme Disease Bacterium, Borrelia Burgdorferi Sensu Lato, in Multiple Tick Species Parasitizing Avian and Mammalian Hosts Across Canada
    UC Davis UC Davis Previously Published Works Title Extensive Distribution of the Lyme Disease Bacterium, Borrelia burgdorferi Sensu Lato, in Multiple Tick Species Parasitizing Avian and Mammalian Hosts across Canada. Permalink https://escholarship.org/uc/item/7950629h Journal Healthcare (Basel, Switzerland), 6(4) ISSN 2227-9032 Authors Scott, John D Clark, Kerry L Foley, Janet E et al. Publication Date 2018-11-12 DOI 10.3390/healthcare6040131 Peer reviewed eScholarship.org Powered by the California Digital Library University of California healthcare Article Extensive Distribution of the Lyme Disease Bacterium, Borrelia burgdorferi Sensu Lato, in Multiple Tick Species Parasitizing Avian and Mammalian Hosts across Canada John D. Scott 1,*, Kerry L. Clark 2, Janet E. Foley 3, John F. Anderson 4, Bradley C. Bierman 2 and Lance A. Durden 5 1 International Lyme and Associated Diseases Society, Bethesda, MD 20827, USA 2 Environmental Epidemiology Research Laboratory, Department of Public Health, University of North Florida, Jacksonville, FL 32224, USA; [email protected] (K.L.C.); [email protected] (B.C.B.) 3 Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; [email protected] 4 Department of Entomology, Center for Vector Ecology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA; [email protected] 5 Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-519-843-3646 Received: 13 September 2018; Accepted: 2 November 2018; Published: 12 November 2018 Abstract: Lyme disease, caused by the spirochetal bacterium, Borrelia burgdorferi sensu lato (Bbsl), is typically transmitted by hard-bodied ticks (Acari: Ixodidae).
    [Show full text]
  • F. /9JV
    An analysis of certain Arachnids and Myriapods in the Department of Entomology, University of Arizona Item Type text; Thesis-Reproduction (electronic) Authors Hayden, David Lowell, 1926- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 05/10/2021 09:40:20 Link to Item http://hdl.handle.net/10150/553832 AN ANALYSIS OF CERTAIN ARACHNIDS AND MYRIAPODS IN THE COLLECTION OF THE DEPARTMENT OF ENTOMOLOGY, UNIVERSITY OF ARIZONA b y David L. Hayden A T h e s i s submitted to the faculty of the Department of Entomology In partial fulfillm ent of the requirements for the degree of MASTER OF SCIENCE In the Graduate College, University of Arizona 1951 A p p ro v e d : Z f. /9JV r e c t o r o f ’Th e s i s b a t e 4 E<?7Q I / 9 S' l YX. Table of Contents Introduction The Phylum Arthropoda ' Classification of Arthropods in This Thesis Class Arachnida Order Acarina: Superfamily Ixodoldea Argasidae Ixodldae Economic Importance of Ticks in Arizona 30 Control of Ticks 36 Order Scorpionida 39 Scorpionidae Ho Vejovidae h i Chactidae # Buthldae 45’ Medical Importance of Scorpions U Control of Scorpions 46 Order Solpuglda 4? Eremobatidae 49 Importance of the Solpuglda 50 Order Pedipalpida 51 Thelyphonldae 52 Tarantulldae 52 Importance of the Pedipalpida ^31135
    [Show full text]