Ticks and Tick-Borne Pathogens at the Interplay of Game and Livestock

Total Page:16

File Type:pdf, Size:1020Kb

Ticks and Tick-Borne Pathogens at the Interplay of Game and Livestock University of Neuchâtel Faculty of Sciences Institute of Biology Laboratory of Eco-Epidemiology Ticks and tick-borne pathogens at the interplay of game and livestock animals in South Africa Thesis presented to the Faculty of Sciences of the University of Neuchâtel for the Degree of Doctor of Sciences by Mirko Berggoetz Members of the Jury: Prof. Lise Gern (Thesis Director); Prof. Patrick Guerin (University of Neuchâtel); Prof. Lorenza Beati (Southern University, Georgia); Prof. Kurt Pfister (University of Munich); Dr Heinz Sager (Novartis Saint-Aubin) Index 1 Abstract .............................................................................................................................. 9 2 Introduction ...................................................................................................................... 13 2.1 Tick biology ................................................................................................................ 13 2.1.1 Rhipicephalus species ......................................................................................... 16 2.1.2 Amblyomma species........................................................................................... 18 2.1.3 Hyalomma species ............................................................................................. 19 2.1.4 Haemaphysalis species ....................................................................................... 19 2.1.5 Ixodes species ..................................................................................................... 20 2.1.6 Margaropus species ........................................................................................... 21 2.1.7 Argasidae species ............................................................................................... 21 2.2 Protozoan pathogens ................................................................................................ 22 2.2.1 Life-cycle of Babesia species .............................................................................. 22 2.2.2 Life-cycle of Theileria species ............................................................................. 24 2.2.3 Clinical manifestations of Babesia and Theileria species ................................... 25 2.2.4 Piroplasm species ............................................................................................... 25 2.3 Bacterial pathogens ................................................................................................... 36 2.3.1 Life cycle of Anaplasma species ......................................................................... 37 2.3.2 Life cycle of Ehrlichia species ............................................................................. 38 2.3.3 Clinical manifestations of Anaplasma and Ehrlichia species ............................. 40 2.3.4 Rickettsiales species ........................................................................................... 40 2.4 Tick-borne pathogen circulation between livestock and game animals ................... 45 2.5 Objectives .................................................................................................................. 49 3 Materials and methods .................................................................................................... 51 3.1 Study areas ................................................................................................................ 51 3.1.1 Free State provincial nature reserves and surrounding farms .......................... 52 5 3.1.2 Farms in the Bethal area, Mpumalanga Province .............................................. 60 3.1.3 Farms in the Thabazimbi and Lephalale areas, Limpopo Province .................... 61 3.2 Tick and blood sampling on wild and domestic ruminants ....................................... 63 3.2.1 Game capture and culling in the Free State Provincial Nature Reserves .......... 63 3.2.2 Game capture and hunting in the Mpumalanga and Limpopo Provinces: ........ 64 3.2.3 Domestic ruminants ........................................................................................... 65 3.2.4 Tick and blood collection .................................................................................... 65 3.3 Tick dissection and DNA extraction of salivary glands and blood samples ............... 66 3.3.1 Tick dissection .................................................................................................... 66 3.3.2 DNA extraction of the salivary glands ................................................................ 66 3.3.3 DNA purification of blood samples .................................................................... 67 3.4 Amplification of tick-borne pathogen DNA ............................................................... 67 3.5 Reverse line blot (RLB) Hybridisation ........................................................................ 69 3.6 Gene sequencing ....................................................................................................... 73 3.7 Data analysis .............................................................................................................. 73 3.7.1 Pathogens in host blood ..................................................................................... 73 3.7.2 Pathogens in tick salivary glands ........................................................................ 74 4 Results .............................................................................................................................. 75 4.1 Paper 1………………………………………………………………………………………………………………….75 4.2 Paper 2 ..................................................................................................................... 115 5 Discussion ....................................................................................................................... 145 6 Conclusion ...................................................................................................................... 153 7 Appendix ......................................................................................................................... 155 7.1 Appendix A: Geographic distribution of tick species ............................................... 155 7.2 Appendix B: Phylogenetic relationships of Babesia and Theileria spp. ................... 159 7.3 Appendix C: Phylogenetic relationships of Anaplasma and Ehrlichia spp. ............. 160 6 7.4 Appendix D: Novel pathogen-host and pathogen-vector combinations. .................... 161 7.5 Appendix E: Exposure of host species to pathogen species. ....................................... 162 8 References ...................................................................................................................... 165 9 Acknowledgements ........................................................................................................ 187 Photographer: VW: Virginie Wyss; MS: Melody Schmid; DS: Daniel Ston; MB: Mirko Berggoetz. 7 1 Abstract To evaluate the exposure of wild and domestic ungulates to tick borne-pathogens, and hence to study the pathogen exchange at the wildlife-livestock interface, blood from 181 individual hosts assigned to 18 species and 7364 ticks belonging to 13 species were collected. Samples originated from nine localities in four South African Provinces (Free State, Mpumalanga, Gauteng and Limpopo). Polymerase chain reaction followed by reverse line blotting and sequencing was used to screen host blood and tick salivary glands for protozoan pathogens of the genera Babesia and Theileria as well as for bacterial pathogens of the genera Anaplasma and Ehrlichia. From each individual infested host, a maximum of ten males and ten females of each tick species were dissected to isolate the salivary glands, this led to 2117 analysed ticks. Three hundred twenty nine ticks (15.5%), belonging to eight species, were infected and harboured 397 infections among which 57.7% were identified to species level and were assigned to 23 pathogen species. While, 110 / 181 individual hosts were infected and harboured 210 infections and 163 were identified to species level and belonged to 16 pathogen species. Screening such a large variety of host and tick species allowed describing 30 new host-pathogen combinations, involving ten pathogen species, and 23 new vector-pathogen combination which involved 14 pathogen species. Principal component analysis (PCA) assigned the 163 infections, identified to species level in host blood, to four groups. Three groups were associated to sheep, cattle and horses and their respective wild counterparts. Each group was characterized by high homogeneity in pathogen assemblage and host phylogenetic status. These groups characterized the most privileged transmission routes between and among wild and domestic ungulates. Within six localities, we sampled an equal number of wild and domestic animals (n = 128). On this dataset, once having controlled for the significant variation among localities, the infection prevalence and intensity of infection did not differ significantly between wild and domestic hosts. Interestingly, salivary glands from ticks infesting wild ruminants displayed significantly higher infection prevalence and pathogen mean density than salivary glands from ticks infesting livestock animals. This suggests that wild ungulates are more refractory to tick- borne pathogen infections than domestic ones, given that the infection prevalence and intensity of infection displayed similar values in
Recommended publications
  • Anaplasma Species of Veterinary Importance in Japan
    Veterinary World, EISSN: 2231-0916 REVIEW ARTICLE Available at www.veterinaryworld.org/Vol.9/November-2016/4.pdf Open Access Anaplasma species of veterinary importance in Japan Adrian Patalinghug Ybañez1 and Hisashi Inokuma2 1. Biology and Environmental Studies Program, Sciences Cluster, University of the Philippines Cebu, Lahug, Cebu City 6000, Philippines; 2. Department of Veterinary Clinical Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Inada Cho, Hokkaido 080-8555, Japan. Corresponding author: Adrian Patalinghug Ybañez, e-mail: [email protected], HI: [email protected] Received: 14-06-2016, Accepted: 28-09-2016, Published online: 04-11-2016 doi: 10.14202/vetworld.2016.1190-1196 How to cite this article: Ybañez AP, Inokuma H (2016) Anaplasma species of veterinary importance in Japan, Veterinary World, 9(11): 1190-1196. Abstract Anaplasma species of the family Anaplasmataceae, order Rickettsiales are tick-borne organisms that can cause disease in animals and humans. In Japan, all recognized species of Anaplasma (except for Anaplasma ovis) and a potentially novel Anaplasma sp. closely related to Anaplasma phagocytophilum have been reported. Most of these detected tick- borne pathogens are believed to be lowly pathogenic in animals in Japan although the zoonotic A. phagocytophilum has recently been reported to cause clinical signs in a dog and in humans. This review documents the studies and reports about Anaplasma spp. in Japan. Keywords: Anaplasma spp., Japan, tick-borne pathogen. Introduction A. phagocytophilum sequences [10-15]. Phylogenetic Anaplasma species are Gram-negative, obligate inferences have suggested that 2 clades exist within intracellular bacteria of the order Rickettsiales, fam- the genus Anaplasma: (1) Erythrocytic (A.
    [Show full text]
  • Distribution, Utilization and Management of the Extra-Limital Common Warthog (Phacochoerus Africanus) in South Africa
    Distribution, utilization and management of the extra-limital common warthog (Phacochoerus africanus) in South Africa Monlee Swanepoel Dissertation presented for the degree of Doctor of Philosophy (Conservation Ecology and Entomology) in the Faculty of AgriSciences, Stellenbosch University Promoter: Prof Louwrens C. Hoffman Co-Promoter: Dr. Alison J. Leslie March 2016 Stellenbosch University https://scholar.sun.ac.za Stellenbosch University http://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained herein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously submitted it, in its entirety or in part, for obtaining any qualification. Date: March 2016 Copyright © 2016 Stellenbosch University All rights reserved ii Stellenbosch University https://scholar.sun.ac.za Stellenbosch University http://scholar.sun.ac.za Acknowledgements I wish to express my sincere gratitude and appreciation to the following persons and institutions: My supervisors, Dr. Alison J. Leslie and Prof. Louwrens C. Hoffman for invaluable assistance, expertise, contribution and support and patience. The Meat Science team of Department of Animal Sciences at Stellenbosch University, including the technical and support staff for their extensive assistance, support and encouragement Academics, staff and colleagues of this institution and others for their contribution and assistance. An especial thank you to Prof. Martin Kidd, Marieta van der Rijst, Nina Muller, Erika Moelich, Lisa Uys, Gail Jordaan, Greta Geldenhuys, Michael Mlambo, Janine Booyse, Cheryl Muller, John Achilles, Dr.
    [Show full text]
  • Identification of Ixodes Ricinus Female Salivary Glands Factors Involved in Bartonella Henselae Transmission
    UNIVERSITÉ PARIS-EST École Doctorale Agriculture, Biologie, Environnement, Santé T H È S E Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PARIS-EST Spécialité : Sciences du vivant Présentée et soutenue publiquement par Xiangye LIU Le 15 Novembre 2013 Identification of Ixodes ricinus female salivary glands factors involved in Bartonella henselae transmission Directrice de thèse : Dr. Sarah I. Bonnet USC INRA Bartonella-Tiques, UMR 956 BIPAR, Maisons-Alfort, France Jury Dr. Catherine Bourgouin, Chef de laboratoire, Institut Pasteur Rapporteur Dr. Karen D. McCoy, Chargée de recherches, CNRS Rapporteur Dr. Patrick Mavingui, Directeur de recherches, CNRS Examinateur Dr. Karine Huber, Chargée de recherches, INRA Examinateur ACKNOWLEDGEMENTS To everyone who helped me to complete my PhD studies, thank you. Here are the acknowledgements for all those people. Foremost, I express my deepest gratitude to all the members of the jury, Dr. Catherine Bourgouin, Dr. Karen D. McCoy, Dr. Patrick Mavingui, Dr. Karine Huber, thanks for their carefully reviewing of my thesis. I would like to thank my supervisor Dr. Sarah I. Bonnet for supporting me during the past four years. Sarah is someone who is very kind and cheerful, and it is a happiness to work with her. She has given me a lot of help for both living and studying in France. Thanks for having prepared essential stuff for daily use when I arrived at Paris; it was greatly helpful for a foreigner who only knew “Bonjour” as French vocabulary. And I also express my profound gratitude for her constant guidance, support, motivation and untiring help during my doctoral program.
    [Show full text]
  • Genus Boophilus Curtice Genus Rhipicentor Nuttall & Warburton
    3 CONTENTS General remarks 4 Genus Amblyomma Koch 5 Genus Anomalohimalaya Hoogstraal, Kaiser & Mitchell 46 Genus Aponomma Neumann 47 Genus Boophilus Curtice 58 Genus Hyalomma Koch. 63 Genus Margaropus Karsch 82 Genus Palpoboophilus Minning 84 Genus Rhipicentor Nuttall & Warburton 84 Genus Uroboophilus Minning. 84 References 86 SUMMARI A list of species and subspecies currently included in the tick genera Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus, and Rhipicentor, as well as in the unaccepted genera Palpoboophilus and Uroboophilus is given in this paper. The published synonymies and authors of each spécifie or subspecific name are also included. Remaining tick genera have been reviewed in part in a previous paper of this series, and will be finished in a future third part. Key-words: Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus, Rhipicentor, Uroboophilus, Palpoboophilus, species, synonymies. RESUMEN Se proporciona una lista de las especies y subespecies actualmente incluidas en los géneros Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus y Rhipicentor, asi como en los géneros no aceptados Palpoboophilus and Uroboophilus. Se incluyen también las sinonimias publicadas y los autores de cada nombre especifico o subespecifico. Los restantes géneros de garrapatas han sido revisados en parte en un volumen previo de esta serie, y serân terminados en una futura tercera parte. Palabras claves Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus, Rhipicentor, Uroboophilus, Palpoboophilus, especies, sinonimias. 4 GENERAL REMARKS Following is a list of species and subspecies of ticks d~e scribed in the genera Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalorma, Margaropus, and Rhipicentor, as well as in the unaccepted genera Palpoboophilus and Uroboophilus. The first volume (Estrada- Pena, 1991) included data for Haemaphysalis, Anocentor, Dermacentor, and Cosmiomma.
    [Show full text]
  • Phylogeny and Evolution of Theileria and Babesia Parasites in Selected Wild Herbivores of Kenya
    PHYLOGENY AND EVOLUTION OF THEILERIA AND BABESIA PARASITES IN SELECTED WILD HERBIVORES OF KENYA LUCY WAMUYU WAHOME MASTER OF SCIENCE (Bioinformatics and Molecular Biology) JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY 2016 Phylogeny and Evolution of Theileria and Babesia Parasites in Selected Wild Herbivores of Kenya Lucy Wamuyu Wahome A Thesis Submitted in partial fulfillment for the Degree of Master of Science in Bioinformatics and Molecular Biology in the Jomo Kenyatta University of Agriculture and Technology. 2016 DECLARATION This thesis is my original work and has not been presented for a degree in any other University. Signature………………………. Date…………………………… Wahome Lucy Wamuyu This thesis has been submitted for examination with our approval as university supervisors. Signature……………………… Date…………………………… Prof. Daniel Kariuki JKUAT, Kenya Signature……………………… Date…………………………… Dr.Sheila Ommeh JKUAT, Kenya Signature……………………… Date………………………… Dr. Francis Gakuya Kenya Wildlife Service, Kenya ii DEDICATION This work is dedicated to my beloved parents Mr. Godfrey, Mrs. Naomi and my only beloved sister Caroline for their tireless support throughout my academic journey. "I can do everything through Christ who gives me strength." iii ACKNOWLEDGEMENTS Foremost I would like to acknowledge and thank the Almighty God for blessing, protecting and guiding me throughout this period. I am most grateful to the department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, for according me the opportunity to pursue my postgraduate studies. I would like to express my sincere gratitude to my supervisors Prof. Daniel Kariuki, Dr. Sheila Ommeh and Dr. Francis Gakuya for the useful comments, remarks and engagement through out this project. My deepest gratitude goes to Dr.
    [Show full text]
  • Climate Change and the Genus Rhipicephalus (Acari: Ixodidae) in Africa
    Onderstepoort Journal of Veterinary Research, 74:45–72 (2007) Climate change and the genus Rhipicephalus (Acari: Ixodidae) in Africa J.M. OLWOCH1*, A.S. VAN JAARSVELD2, C.H. SCHOLTZ3 and I.G. HORAK4 ABSTRACT OLWOCH, J.M., VAN JAARSVELD, A.S., SCHOLTZ, C.H. & HORAK, I.G. 2007. Climate change and the genus Rhipicephalus (Acari: Ixodidae) in Africa. Onderstepoort Journal of Veterinary Research, 74:45–72 The suitability of present and future climates for 30 Rhipicephalus species in Africa are predicted us- ing a simple climate envelope model as well as a Division of Atmospheric Research Limited-Area Model (DARLAM). DARLAM’s predictions are compared with the mean outcome from two global cir- culation models. East Africa and South Africa are considered the most vulnerable regions on the continent to climate-induced changes in tick distributions and tick-borne diseases. More than 50 % of the species examined show potential range expansion and more than 70 % of this range expansion is found in economically important tick species. More than 20 % of the species experienced range shifts of between 50 and 100 %. There is also an increase in tick species richness in the south-western re- gions of the sub-continent. Actual range alterations due to climate change may be even greater since factors like land degradation and human population increase have not been included in this modelling process. However, these predictions are also subject to the effect that climate change may have on the hosts of the ticks, particularly those that favour a restricted range of hosts. Where possible, the anticipated biological implications of the predicted changes are explored.
    [Show full text]
  • Running Title: Bacterial Community Profiling Highlights Complex Diversity and Novel Organisms in Wildlife Ticks. Authors: Siobho
    bioRxiv preprint doi: https://doi.org/10.1101/807131; this version posted October 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Running title: Bacterial community profiling highlights complex diversity and novel 2 organisms in wildlife ticks. 3 4 Authors: Siobhon L. Egan1, Siew-May Loh1, Peter B. Banks2, Amber Gillett3, Liisa A. 5 Ahlstrom4, Una M. Ryan1, Peter J. Irwin1 and Charlotte L. Oskam1,* 6 7 1 Vector and Waterborne Pathogens Research Group, College of Science, Health, 8 Engineering and Education, Murdoch University, Perth, Western Australia, Australia 9 2 School of Life and Environmental Sciences, The University of Sydney, Sydney, New South 10 Wales, Australia 11 3 Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia 12 4 Bayer Australia Ltd, Animal Health, Pymble, New South Wales, Australia 13 * Corresponding author 14 15 S.L.E [email protected]; https://orcid.org/0000-0003-4395-4069 16 S-M.L. [email protected] 17 P.B.B. [email protected]; https://orcid.org/0000-0002-4340-6495 18 A.G. [email protected] 19 L.A.A [email protected] 20 U.M.R. [email protected]; https://orcid.org/0000-0003-2710-9324 21 P.J.I. [email protected]; https://orcid.org/0000-0002-0006-8262 22 C.L.O. c.o [email protected] ; https://orcid.org/0000-0001-8886-2120 23 24 Abstract 25 Ticks (Acari: Ixodida) transmit a greater variety of pathogens than any other blood-feeding 1 bioRxiv preprint doi: https://doi.org/10.1101/807131; this version posted October 17, 2019.
    [Show full text]
  • Electronic Polytomous and Dichotomous Keys to the Genera and Species of Hard Ticks (Acari: Ixodidae) Present in New Zealand
    Systematic & Applied Acarology (2010) 15, 163–183. ISSN 1362-1971 Electronic polytomous and dichotomous keys to the genera and species of hard ticks (Acari: Ixodidae) present in New Zealand SCOTT HARDWICK AgResearch, Lincoln Research Centre, Private Bag 4749, Christchurch 8140, New Zealand Email: [email protected] Abstract New Zealand has a relatively small tick fauna, with nine described and one undescribed species belonging to the genera Ornithodoros, Amblyomma, Haemaphysalis and Ixodes. Although exotic hard ticks (Ixodidae) are intercepted in New Zealand on a regular basis, the country has largely remained free of these organisms and the significant diseases that they can vector. However, professionals in the biosecurity, health and agricultural industries in New Zealand have little access to user-friendly identification tools that would enable them to accurately identify the ticks that are already established in the country or to allow recognition of newly arrived exotics. The lack of access to these materials has the potential to lead to delays in the identification of exotic tick species. This is of concern as 40-60% of exotic ticks submitted for identification by biosecurity staff in New Zealand are intercepted post border. This article presents dichotomous and polytomous keys to the eight species of hard tick that occur in New Zealand. These keys have been digitised using Lucid® and Phoenix® software and are deployed at http://keys.lucidcentral.org/keys/v3/hard_ticks/Ixodidae genera.html in a form that allows use by non-experts. By enabling non-experts to carry out basic identifications, it is hoped that professionals in the health and agricultural industries in New Zealand can play a greater role in surveillance for exotic ticks.
    [Show full text]
  • Ticks Associated with the Three Largest Wild Ruminant Species in Southern Africa
    Onderstepoort Journal of Veterinary Research, 74:231–242 (2007) Ticks associated with the three largest wild ruminant species in southern Africa I.G. HORAK1*, H. GOLEZARDY2 and A.C. UYS2 ABSTRACT HORAK, I.G., GOLEZARDY, H. & UYS, A.C. 2007. Ticks associated with the three largest wild rumi- nant species in southern Africa. Onderstepoort Journal of Veterinary Research, 74:231–242 The objective of this study was to assess the host status of the three largest southern African wild ruminants, namely giraffes, Giraffa camelopardalis, African buffaloes, Syncerus caffer, and eland, Taurotragus oryx for ixodid ticks. To this end recently acquired unpublished data are added here to already published findings on the tick burdens of these animals, and the total numbers and species of ticks recorded on 12 giraffes, 18 buffaloes and 36 eland are summarized and discussed. Twenty-eight ixodid tick species were recovered. All stages of development of ten species, namely Amblyomma hebraeum, Rhipicephalus (Boophilus) decoloratus, Haemaphysalis silacea, Ixodes pilosus group, Margaropus winthemi, Rhipicephalus appendiculatus, Rhipicephalus evertsi evertsi, Rhipicephalus glabroscutatum, Rhipicephalus maculatus and Rhipicephalus muehlensi were collected. The adults of 13 species, of which the immature stages use small mammals as hosts, namely Haemaphysalis aciculifer, Hyalomma glabrum, Hyalomma marginatum rufipes, Hyalomma truncatum, Ixodes rubi- cundus, Rhipicephalus capensis, Rhipicephalus exophthalmos, Rhipicephalus follis, Rhipicephalus gertrudae, Rhipicephalus
    [Show full text]
  • Molecular Detection and Phylogenetic Analyses of Anaplasma Spp. in Haemaphysalis Longicornis from Goats in Four Provinces Of
    www.nature.com/scientificreports OPEN Molecular detection and phylogenetic analyses of Anaplasma spp. in Haemaphysalis longicornis from goats in four provinces of China Yaqun Yan1,3, Kunlun Wang1,3, Yanyan Cui2, Yongchun Zhou1, Shanshan Zhao1, Yajun Zhang1, Fuchun Jian1, Rongjun Wang1, Longxian Zhang1 & Changshen Ning1* Anaplasma species, which are distributed worldwide, are gram-negative obligate intracellular tick-borne bacteria that pose a threat to human and animal health. Haemaphysalis longicornis ticks play a vital role as vectors in the transmission of Anaplasma pathogens. However, the Anaplasma species carried by H. longicornis in China are yet to be characterized. In this study, 1074 H. longicornis specimens were collected from goats in four provinces of China from 2018 to 2019 and divided into 371 sample pools. All tick sample pools were examined for the presence of Anaplasma species via nested PCR amplifcation of 16S ribosomal RNA, major surface protein 4 (msp4), or citric acid synthase (gltA) genes, which were sequenced to determine the molecular and phylogenetic characteristics of the isolates. The overall Anaplasma spp-positive rate of H. longicornis was determined to be 26.68% (99/371). The percentage prevalence of A. phagocytophilum-like1, A. bovis, A. ovis, A. marginale, and A. capra were 1.08% (4/371), 13.21% (49/371), 13.21% (49/371), 1.35% (5/371), and 10.24% (38/371), respectively, and the co-infection rate of two or more types of Anaplasma was 6.47% (24/371). Phylogenetic analyses led to the classifcation of A. phagocytophilum into an A. phagocytophilum-like1 (Anaplasma sp. Japan) group. Anaplasma bovis sequences obtained in this study were 99.8–100% identical to those of an earlier strain isolated from a Chinese tick (GenBank accession no.
    [Show full text]
  • Equine Piroplasmosis
    EAZWV Transmissible Disease Fact Sheet Sheet No. 119 EQUINE PIROPLASMOSIS ANIMAL TRANS- CLINICAL SIGNS FATAL TREATMENT PREVENTION GROUP MISSION DISEASE ? & CONTROL AFFECTED Equines Tick-borne Acute, subacute Sometimes Babesiosis: In houses or chronic disease fatal, in Imidocarb Tick control characterised by particular in (Imizol, erythrolysis: fever, acute T.equi Carbesia, in zoos progressive infections. Forray) Tick control anaemia, icterus, When Dimenazene haemoglobinuria haemoglobinuria diaceturate (in advanced develops, (Berenil) stages). prognosis is Theileriosis: poor. Buparvaquone (Butalex) Fact sheet compiled by Last update J. Brandt, Royal Zoological Society of Antwerp, February 2009 Belgium Fact sheet reviewed by D. Geysen, Animal Health, Institute of Tropical Medicine, Antwerp, Belgium F. Vercammen, Royal Zoological Society of Antwerp, Belgium Susceptible animal groups Horse (Equus caballus), donkey (Equus asinus), mule, zebra (Equus zebra) and Przewalski (Equus przewalskii), likely all Equus spp. are susceptible to equine piroplasmosis or biliary fever. Causative organism Babesia caballi: belonging to the phylum of the Apicomplexa, order Piroplasmida, family Babesiidae; Theileria equi, formerly known as Babesia equi or Nutallia equi, apicomplexa, order Piroplasmida, family Theileriidae. Babesia canis has been demonstrated by molecular diagnosis in apparently asymptomatic horses. A single case of Babesia bovis and two cases of Babesia bigemina have been detected in horses by a quantitative PCR. Zoonotic potential Equine piroplasmoses are specific for Equus spp. yet there are some reports of T.equi in asymptomatic dogs. Distribution Widespread: B.caballi occurs in southern Europe, Russia, Asia, Africa, South and Central America and the southern states of the US. T.equi has a more extended geographical distribution and even in tropical regions it occurs more frequent than B.caballi, also in the Mediterranean basin, Switzerland and the SW of France.
    [Show full text]
  • First Case of Autochthonous Equine Theileriosis in Austria
    pathogens Case Report First Case of Autochthonous Equine Theileriosis in Austria Esther Dirks 1, Phebe de Heus 1, Anja Joachim 2, Jessika-M. V. Cavalleri 1 , Ilse Schwendenwein 3, Maria Melchert 4 and Hans-Peter Fuehrer 2,* 1 Clinical Unit of Equine Internal Medicine, Department Hospital for Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] (E.D.); [email protected] (P.d.H.); [email protected] (J.-M.V.C.) 2 Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] 3 Clinical Pathology Platform, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] 4 Centre for Insemination and Embryo transfer Platform, Department Hospital for Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] * Correspondence: [email protected]; Tel.: +43-125-077-2205 Abstract: A 23-year-old pregnant warmblood mare from Güssing, Eastern Austria, presented with apathy, anemia, fever, tachycardia and tachypnoea, and a severely elevated serum amyloid A concentration. The horse had a poor body condition and showed thoracic and pericardial effusions, and later dependent edema and icteric mucous membranes. Blood smear and molecular analyses revealed an infection with Theileria equi. Upon treatment with imidocarb diproprionate, the mare improved clinically, parasites were undetectable in blood smears, and 19 days after hospitalization the horse was discharged from hospital. However, 89 days after first hospitalization, the mare again presented to the hospital with an abortion, and the spleen of the aborted fetus was also PCR-positive Citation: Dirks, E.; de Heus, P.; for T.
    [Show full text]