Soil Resources of Croatia

Total Page:16

File Type:pdf, Size:1020Kb

Soil Resources of Croatia EUROPEAN SOIL BUREAU ⎯ RESEARCH REPORT NO. 9 Soil Resources of Croatia F. Bašić Faculty of Agriculture University of Zagreb Department of Agronomy ZAGREB Introduction Bearing in mind the Multifunctional Character of After the establishment of the Higher Royal Agriculture and Land (MFCAL) approach, Croatia Agricultural and Forestry School at Križevci in does not treat the development of agriculture and 1877, M. Kišpatić’s ‘Zemljoznanstvo’ (Earth- forestry merely as sources of food, timber and/or knowledge) was published, as the first textbook of profits and separate from other functions and roles. soil science in the Croatian language, and All the functions and roles of agriculture and generally one of the first in the world. In 1891, the agricultural land are inextricably linked and first laboratory for soil analysis was founded in equally important. In national parks and other Zagreb. Thereafter followed the establishment of protected and/or sensitive areas, the most the Department of Soil Science, Petrology and important function is the environmental. In others Mineralogy of the Forest Academy in Zagreb in it is the social function, providing profitable 1910, later integrated into the Faculty of employment and maintenance of a planned and Agriculture and Forestry of the Kingdom of desirable demographic balance, or shaping a Yugoslavia in 1919 in Zagreb. cultural landscape for recreation and tourism. The most important role in the development of soil Following this approach, all the roles of soil are sciences in Croatia has been our famous soil equally important because, after all, it is possible scientist, plant physiologist and plant ecologist to buy food and other goods on the global market, Mihovil Gračanin (1901-1981). The first but agricultural land, landscapes and plants in it are organisation of Croatian soil scientists was the not subject to the same market forces. Yugoslavian section of International Society of Soil Science, whose first president in the period Due to its varied climate, geological structure, 1931-1940 was M. Gračanin. So, we take 1931 as relief and vegetation, most of the common the year of establishment of Croatian Society of European soil types can be found in Croatia. Soil Science - CSSS. After World War II, CSSS continued its activities within the Yugoslavian Soil genesis depends primarily on the parent rock Society of Soil Science, as a member of ISSS (now and prevailing climate. A layer of soil 30cm thick IUSS). may form in 1,000 to 30,000 years on loose parent materials, such as sand, loess and marl. On Versions of several soil maps at smaller scale have limestone, a very common rock in Croatia, for a been prepared for the area of the former layer of soil 50cm thick to form (which is required Yugoslavia, mostly for educational purposes. The for a good and fertile soil for agriculture) may take work of Croatian authors Škorić and Bogunović is more than 1 million years. Due to such long noteworthy in the production of the Soil Map of formation time, Varallyay (1997) describes the soil Yugoslavia at 1:2,000,000 scale, based on a map as a ‘conditionally renewable’ resource, because prepared for the Soil Map of Europe (CEC, 1985). although it may be renewed, this will not be This latter project was initiated by FAO at a scale possible within the human time scale. of 1:1,000,000. Using the same maps and soil survey material, Bogunović (1997) prepared the Soil Map of Croatia at the scale 1:1,000,000, the Soil Survey first one produced after the independence of the Soil investigations have a long history in Croatia country. and have never lagged behind the rest of Europe. In the period 1964-1985, the General Soil Map of Croatia at scale 1:50,000 was prepared. This map was an epoch-making document, containing as it Soil Resources of Croatia. F. Bašić 89 EUROPEAN SOIL BUREAU ⎯ RESEARCH REPORT NO. 9 does data on physical, chemical and biological Detailed soil mapping has also been carried out in properties and the spatial distribution of soils of the past. Large scale maps, at 1:5,000 or 1:10,000 Croatia, collected with an observation density of scales, have been prepared for the needs of soil approximately one soil profile per 1,000ha. This reclamation - drainage and irrigation of the important document has analytical data for about agricultural land, as well as for afforestation. 6,000 soil profiles and is the basic document on the Silvicultural practices cover approximately 10- Croatian soils. It was made using modern methods, 15% of agricultural land and a somewhat lower with the application of aerial stereo-photographs, proportion of total forest soils. Detailed soil with the soils being depicted on sheets of a investigations, or interpretation of already topographic map. The maps were printed, but some completed research, were conducted for other, very sheets, with areas extending into neighbouring different purposes, such as environmental effects countries and those on the Adriatic islands, were in landscape planning, optimal silvicultural never printed due to lack of funds. It is now practices, establishment of fruit plantations and necessary to prepare a revised General Soil Map of vineyards, building of reservoirs for hydroelectric Croatia - RGSMC, using the modern techniques of generation, research in areas with degraded forest multispectral satellite images. Revision of GSMC vegetation, exploration of localities exposed to is also justified because new soil survey material strong erosion, assessment of soil pollution by and interpretations have been collected since the heavy metals and choice of most suitable highway first sheets were prepared (1964) and completed routes. (1985). All these investigations have had specific targets, It is also very important because environmental which have driven the research programme, protection needs soil maps and since its planning is methods of soil sampling and choice of analytical county based, the GSMC documentation should be methods. Another common characteristic is that used to prepare a separate soil map for each county their results have remained in manuscript form of Croatia. although they contain valuable and unique data and ideas. As part of regional soil studies, the preparation and printing of GSMC was accompanied by Thus, an imposing amount of diverse data and publication of regional monographs. Three information on the distribution and properties of monographs with maps have been published to the soils of Croatia has been collected by modern date: Soils of the Upper Sava Valley, Soils of methods since World War II. Slavonia and Baranja, and Pedosphere of Istria. The comprehensive GSMC documentation, that Soil Databases contains printed material and unique manuscripts, In some ways, Croatia is a natural ‘soil museum’. is kept at the Department of Soil Science, Faculty The highest unit in the Croatian classification is of Agriculture, which is the centre of cartographic the soil order, characterised by a specific type of activities in Croatia. The data, which are waiting drainage and genesis; automorphic, hydromorphic, for up-to-date computer processing, represent a halomorphic and subaqual soil order. The central solid and reliable basis for developing an and the most important unit of soil classification is information system on the soils of Croatia. soil type, characterised by the properties of the soil profile (number and sequence of soil horizons), The GSMC sheets, as well as other ‘purely’ genesis, evolution and main properties. The topographical documents, were designated as General Soil Map of Croatia at 1:50,000 scale is an ‘officially secret’ in the period prior to 1990 and, inventory of Croatian soils. as a consequence, were not accessible for public scrutiny, particularly for international exchanges of The data in Table 1 refer to areas covered by information. Thus, the knowledge and information different soil orders and the prevalent soil types. about Croatian soils circulated within a small- Useful information about soils in Croatia can be closed circle of professionals and remained found at the on-line journal of the Faculty of inaccessible to the general and wide professional Agriculture in Zagreb - ACS (Agriculturae public. One of the consequences is that the Conspectus Scientificus) with free access to the awareness of the importance of the soil, and the full text of published paper hazards to which it is exposed, are only slowly http://www.agr.hr/smotra/issues.htm. Unlike its penetrating the minds of professionals and the neighbours, Croatia has a high percentage of general public circles. Hence, the surprise with hydromorphic soils, in part because Croatia started which information on the endangered state of the soils is received by the public. 90 Soil Resources of Croatia. F. Bašić EUROPEAN SOIL BUREAU ⎯ RESEARCH REPORT NO. 9 Table 1: Soil orders and main soil types of the Republic of Croatia (Bogunović, 1997) No Soil type Area, ha % I. Automorphic Soils 3,153,432 56.631 1. Lithosol 32,703 0.587 2. Regosol 70,698 1.270 3. Colluvial soil 91,938 1.651 4. Arenosol 667 0.012 5. Chernozem 51,808 0.930 6. Leptosol on hard limestone and dolomite (melanosol) 255,201 4.583 7. Humic silicate soil (ranker) 86,944 1.561 8. Leptosol, calcaric 420,184 7.546 9. Vertisol 5,002 0.090 10. Cambisol, eutric 172,495 3.098 11. Cambisol, distric 316,184 5.678 12. Cambisol, rhodic (Terra rossa) 245,289 4.405 13. Cambisol on limestone and dolomite 474,959 8.530 14. Luvisol 703,215 12.629 15. Podzol 1,382 0.025 16. Brown podzolic soil 7,393 0.133 17. Anthropogenic soils 217,370 3.904 II. Hydromorphic Soils 1,617,640 29.050 18. Stagnosol 577,025 10.363 19. Fluvisol 136,343 2.449 20. Humofluvisol 89,901 1.614 21.
Recommended publications
  • 81421371.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE ORIGINAL SCIENTIFIC PAPER 187 Clay and Humus Contents Have the Key Impact on Physical Properties of Croatian Pseudogleys Vedran RUBINIĆ ( ) Stjepan HUSNJAK Summary Pseudogleys (Stagnosols according to WRB-2014) represent the second most widespread soil type in Croatia, developed almost exclusively in its Pannonian region. Although most Croatian Pseudogleys are found on agricultural land or in agro- ecosystems, they usually have numerous constraints for agricultural production. Primarily, this is due to their unfavorable water/air regime (precipitation water periodically stagnates on/in the poorly permeable subsoil horizon). Th e aim of this study was to determine which signifi cant diff erences in physical properties and humus content exist between the eluvial horizon (Eg) and the illuvial horizon (Btg) in Croatian Pseudogleys. Total of 33 Pseudogley profi les were investigated at 11 forest sites across the Pannonian region of Croatia. Properties of Eg horizon signifi cantly diff ered from the properties of Btg horizon. Compared with the Eg horizon, the Btg horizon had more clay, higher bulk density, less pores, and lower capacity for air. However, the stability of microaggregates was higher in the Btg horizon than in the Eg horizon. Contents of clay and humus have the key impact on most soil physical properties. Th ese results should be borne in mind, both when converting natural Pseudogleys into arable soils and when ameliorating arable Pseudogleys that contain the Eg horizon below the Ap horizon. Key words stagnosols, Pannonian region of Croatia, forest soils, soil physical properties, humus University of Zagreb Faculty of Agriculture, Svetošimunska 25, 10000 Zagreb, Croatia e-mail: [email protected] Received: June 4, 2016 | Accepted: November 17, 2016 Agriculturae Conspectus Scientifi cus .
    [Show full text]
  • The Soil Map of the Flemish Region Converted to the 3 Edition of the World Reference Base for Soil Resources
    Ontwikkelen en toepassen van een methodiek voor de vertaling van de Belgische bodemclassificatie van de kustpolders naar het internationale WRB systeem en generaliseren van de WRB-bodemkaart voor gans Vlaanderen naar het 1 : 250 000 schaalniveau The soil map of the Flemish region converted to the 3 rd edition of the World Reference Base for soil resources Stefaan Dondeyne, Laura Vanierschot, Roger Langohr Eric Van Ranst and Jozef Deckers Oct. 2014 Opdracht van de Vlaamse Overheid Bestek nr. BOD/STUD/2013/01 Contents Contents............................................................................................................................................................3 Acknowledgement ...........................................................................................................................................5 Abstract............................................................................................................................................................7 Samenvatting ...................................................................................................................................................9 1. Background and objectives.......................................................................................................................11 2. The soil map of Belgium............................................................................................................................12 2.1 The soil survey project..........................................................................................................................12
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • The Muencheberg Soil Quality Rating (SQR)
    The Muencheberg Soil Quality Rating (SQR) FIELD MANUAL FOR DETECTING AND ASSESSING PROPERTIES AND LIMITATIONS OF SOILS FOR CROPPING AND GRAZING Lothar Mueller, Uwe Schindler, Axel Behrendt, Frank Eulenstein & Ralf Dannowski Leibniz-Zentrum fuer Agrarlandschaftsforschung (ZALF), Muencheberg, Germany with contributions of Sandro L. Schlindwein, University of St. Catarina, Florianopolis, Brasil T. Graham Shepherd, Nutri-Link, Palmerston North, New Zealand Elena Smolentseva, Russian Academy of Sciences, Institute of Soil Science and Agrochemistry (ISSA), Novosibirsk, Russia Jutta Rogasik, Federal Agricultural Research Centre (FAL), Institute of Plant Nutrition and Soil Science, Braunschweig, Germany 1 Draft, Nov. 2007 The Muencheberg Soil Quality Rating (SQR) FIELD MANUAL FOR DETECTING AND ASSESSING PROPERTIES AND LIMITATIONS OF SOILS FOR CROPPING AND GRAZING Lothar Mueller, Uwe Schindler, Axel Behrendt, Frank Eulenstein & Ralf Dannowski Leibniz-Centre for Agricultural Landscape Research (ZALF) e. V., Muencheberg, Germany with contributions of Sandro L. Schlindwein, University of St. Catarina, Florianopolis, Brasil T. Graham Shepherd, Nutri-Link, Palmerston North, New Zealand Elena Smolentseva, Russian Academy of Sciences, Institute of Soil Science and Agrochemistry (ISSA), Novosibirsk, Russia Jutta Rogasik, Federal Agricultural Research Centre (FAL), Institute of Plant Nutrition and Soil Science, Braunschweig, Germany 2 TABLE OF CONTENTS PAGE 1. Objectives 4 2. Concept 5 3. Procedure and scoring tables 7 3.1. Field procedure 7 3.2. Scoring of basic indicators 10 3.2.0. What are basic indicators? 10 3.2.1. Soil substrate 12 3.2.2. Depth of A horizon or depth of humic soil 14 3.2.3. Topsoil structure 15 3.2.4. Subsoil compaction 17 3.2.5. Rooting depth and depth of biological activity 19 3.2.6.
    [Show full text]
  • Responses of Soil Microorganisms to Land Use in Different Soil Types Along the Soil Profiles
    Soil and Water Research, 15, 2020 (2): 125–134 Original Paper https://doi.org/10.17221/20/2019-SWR Responses of soil microorganisms to land use in different soil types along the soil profiles Erika Gömöryová1*, Gabriela Barančíková2, Erika Tobiašová3, Ján Halás2, Rastislav Skalský 2, Štefan Koco2, Dušan Gömöry 1 1Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia 2National Agriculture and Food Centre, Soil Science and Conservation Research Institute, Bratislava, Slovakia 3Department of Soil Science, Slovak University of Agriculture, Nitra, Slovakia *Corresponding author: [email protected] Citation: Gömöryová E., Barančíková G., Tobiašová E., Halás J., Skalský R., Koco Š., Gömöry D. (2020): Responses of soil microorganisms to land use in different soil types along the soil profiles. Soil & Water Res., 15: 125−134. Abstract: The objective of this study was to find out how land use affects the soil microbial attributes in different soil types and to which depth. The study was performed in Slovakia (Europe) in three areas differing in soil type (Cherno- zem, Stagnosol, Cambisol). Within each area, three localities with different land use (forest, grassland, cropland), repre- senting a gradient with different intensity of management, were chosen. The soil samples were taken along a single soil profile up to a depth of 1 m with 10 cm increments at each locality. In the soil samples, the basic soil chemical properties and microbial attributes were determined. The effect of the land use on the microbial biomass and basal respiration was mainly observed in the Chernozem in the top 30 cm, while in the Stagnosol, no difference in the trend in the microbial biomass between the different ecosystems along the soil profile was found.
    [Show full text]
  • Hydraulic Properties of Forest Soils with Stagnic Conditions
    Article Hydraulic Properties of Forest Soils with Stagnic Conditions Stefan Julich 1,* , Janis Kreiselmeier 1,2,3 , Simon Scheibler 1, Rainer Petzold 4, Kai Schwärzel 2,3 and Karl-Heinz Feger 1 1 Institute of Soil Science and Site Ecology, Technische Universität Dresden, 01069 Dresden, Germany; [email protected] (J.K.); [email protected] (S.S.); [email protected] (K.-H.F.) 2 Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES), United Nations University, 01067 Dresden, Germany; [email protected] 3 Thünen Institute of Forest Ecosystems, 16225 Eberswalde, Germany 4 Centre of Excellence for Wood and Forestry, Public Enterprise Sachsenforst, 01796 Pirna, Germany; [email protected] * Correspondence: [email protected] Abstract: Tree species, e.g., shallow vs. deep rooting tree species, have a distinct impact on hydrolog- ical properties and pore size distribution of soils. In our study, we determined the soil hydrologic properties and pore size distribution at three forest stands and one pasture as reference on soils with stagnant water conditions. All sites are located in the Wermsdorf Forest, where historical studies have demonstrated severe silvicultural problems associated with stagnant water in the soil. The studied stands represent different stages of forest management with a young 25-year-old oak (Sessile Oak (Quercus petraea) and Red oak (Q. robur)) plantation, a 170-year-old oak stand and a 95-year-old Norway Spruce (Picea abies) stand in second rotation. We determined the infiltration rates under saturated and near-saturated conditions with a hood-infiltrometer at the topsoil as well as the saturated hydraulic conductivity and water retention characteristic from undisturbed soil samples taken from the surface and 30 cm depth.
    [Show full text]
  • Annex: Soil Groups, Characteristics, Distribution and Ecosystem Services
    Status of the World’s Main Report Soil Resources Annex Soil groups, characteristics, distribution and ecosystem services © FAO | Giuseppe Bizzarri © FAO INTERGOVERNMENTAL TECHNICAL PANEL ON SOILS Disclaimer and copyright Recommended citation: FAO and ITPS. 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-109004-6 © FAO, 2015 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.
    [Show full text]
  • Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic
    Article Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic Daniel Žížala 1,2,*, Tereza Zádorová 2 and Jiří Kapička 1 1 Research Institute for Soil and Water Conservation, Žabovřeská 250, Prague CZ 156 27, Czech Republic; [email protected] 2 Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 29, Prague CZ 165 00, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +42-02-5702-7232 Academic Editors: José A.M. Demattê, Clement Atzberger and Prasad S. Thenkabail Received: 28 October 2016; Accepted: 28 December 2016; Published: 1 January 2017 Abstract: The assessment of the soil redistribution and real long-term soil degradation due to erosion on agriculture land is still insufficient in spite of being essential for soil conservation policy. Imaging spectroscopy has been recognized as a suitable tool for soil erosion assessment in recent years. In our study, we bring an approach for assessment of soil degradation by erosion by means of determining soil erosion classes representing soils differently influenced by erosion impact. The adopted methods include extensive field sampling, laboratory analysis, predictive modelling of selected soil surface properties using aerial hyperspectral data and the digital elevation model and fuzzy classification. Different multivariate regression techniques (Partial Least Square, Support Vector Machine, Random forest and Artificial neural network) were applied in the predictive modelling of soil properties. The properties with satisfying performance (R2 > 0.5) were used as input data in erosion classes determination by fuzzy C-means classification method.
    [Show full text]
  • Clay and Humus Contents Have the Key Impact on Physical Properties of Croatian Pseudogleys
    ORIGINAL SCIENTIFIC PAPER 187 Clay and Humus Contents Have the Key Impact on Physical Properties of Croatian Pseudogleys Vedran RUBINIĆ ( ) Stjepan HUSNJAK Summary Pseudogleys (Stagnosols according to WRB-2014) represent the second most widespread soil type in Croatia, developed almost exclusively in its Pannonian region. Although most Croatian Pseudogleys are found on agricultural land or in agro- ecosystems, they usually have numerous constraints for agricultural production. Primarily, this is due to their unfavorable water/air regime (precipitation water periodically stagnates on/in the poorly permeable subsoil horizon). Th e aim of this study was to determine which signifi cant diff erences in physical properties and humus content exist between the eluvial horizon (Eg) and the illuvial horizon (Btg) in Croatian Pseudogleys. Total of 33 Pseudogley profi les were investigated at 11 forest sites across the Pannonian region of Croatia. Properties of Eg horizon signifi cantly diff ered from the properties of Btg horizon. Compared with the Eg horizon, the Btg horizon had more clay, higher bulk density, less pores, and lower capacity for air. However, the stability of microaggregates was higher in the Btg horizon than in the Eg horizon. Contents of clay and humus have the key impact on most soil physical properties. Th ese results should be borne in mind, both when converting natural Pseudogleys into arable soils and when ameliorating arable Pseudogleys that contain the Eg horizon below the Ap horizon. Key words stagnosols, Pannonian region of Croatia, forest soils, soil physical properties, humus University of Zagreb Faculty of Agriculture, Svetošimunska 25, 10000 Zagreb, Croatia e-mail: [email protected] Received: June 4, 2016 | Accepted: November 17, 2016 Agriculturae Conspectus Scientifi cus .
    [Show full text]
  • Fsbdev2 034643.Pdf
    Blank Back Page International Symposium on Soil Organic Matter Dynamics: Land Use, Management and Global Change July 6‐9, 2009 Cheyenne Mountain Conference Center Colorado Springs, Colorado, USA Organizing Committee Keith Paustian – Colorado State University (Chair) M. Francesca Cotrufo – Colorado State University (Vice‐Chair) Richard Conant – Colorado State University Ronald Follett – USDA/Agricultural Research Service, Fort Collins Eugene Kelly – Colorado State University Maurice Mausbach – USDA/Natural Resource Conservation Service (retired) Stephen Ogle – Colorado State University Eldor Paul – Colorado State University Gary Peterson – Colorado State University Michael Ryan – US Forest Service, Fort Collins Scientific Committee Olof Andrén – Swedish University of Agricultural Sciences, Sweden Carlos E.P. Cerri – University of Sao Paolo, Brazil Abad Chabbi – INRA‐UEFE, France Jorge Etchevers – Colegio de Postgraduados, Mexico Paul Fixen – International Plant Nutrition Institute Jürg Fuhrer – ART, Zurich, Switzerland Peter Grace – Queensland University of Technology, Australia Georg Guggenberger – Leibniz Universität Hannover, Germany Henry Janzen – Agriculture and Agrifood Canada Miko Kirschbaum – Landcare Research, New Zealand Rattan Lal – Ohio State University, USA Johannes Lehmann – Cornell University, USA Roel Merckx – Belgium Genxing Pan – Nanjing University, China Phil Sollins – Oregon State University, USA Conference Sponsors 25×’25 Carbon Management Center, Colorado Clean Energy Collaboratory Chicago Climate Exchange College
    [Show full text]
  • Effects of Soil Erosion by Water Under Different Tillage Treatments on Distribution of Soil Chemical Parameters
    Original Paper Soil & Water Res., 13, 2018 (1): 36–43 doi: 10.17221/25/2017-SWR Effects of Soil Erosion by Water under Different Tillage Treatments on Distribution of Soil Chemical Parameters Ivica KISIC, Igor BOGUNOVIC*, Zeljka ZGORELEC and Darija BILANDZIJA Department of General Agronomy, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia *Corresponding author: [email protected] Abstract Kisic I., Bogunovic I., Zgorelec Z., Bilandzija D. (2018): Effects of soil erosion by water under different tillage treat- ments on distribution of soil chemical parameters. Soil & Water Res., 13: 36−43. Soil losses by water erosion were studied under six different tillage treatments, which differ in depth and direction of tillage and planting during a twenty-year period (1995–2014) on Stagnosols in central lowland Croatia. Studied tillage treatments were: control plot (bare fallow-BF), ploughing up and down the slope to 30 cm (PUDS), no- tillage (NT), ploughing across the slope to 30 cm (PAS), very deep ploughing across the slope to 50 cm (VDPAS), and subsoiling to 50 cm + ploughing to 30 cm across the slope (SSPAS). The paper presents the following chemi- cal parameters: soil pH, soil organic matter (OM), plant available phosphorus (P-P2O5), plant available potassium (K-K2O), total carbon content (Ctot), total nitrogen content (Ntot) and CN ratio of non-eroded soil and soil loss from studied treatments. All soil sediments had significantly higher content of the studied parameters compared to non-eroded soil. The overall respective levels of OM, Ctot, Ntot, P-P2O5 and K-K2O loss by eroded soil were as follows: 0.86 (NT) − 10.86 (BF) t/ha, 0.10 (SSPAS) – 2.60 (BF) t/ha, 0.015 (SSPAS) – 0.392 (BF) t/ha, 0.012 (NT) − 0.173 (BF) t/ha and 0.017 (SSPAS) − 0.158 (BF) t/ha.
    [Show full text]
  • Adsorption of Glyphosate and Aminomethylphosphonic Acid in Soils
    IINNNTTTEEERRRNNNAAATTTIIIOOONNNAAALL AAgggrrroooppphhhyyysssiiicccss www.international-agrophysics.org Int. Agrophys., 2013, 27, 203-209 doi: 10.2478/v10247-012-0086-7 Adsorption of glyphosate and aminomethylphosphonic acid in soils N. Rampazzo*, G. Rampazzo Todorovic, A. Mentler, and W.E.H. Blum Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Peter Jordan-Strasse 82, 1190 Vienna, Austria Received February 15, 2012; accepted October 26, 2012 A b s t r a c t. The results showed that glyphosate is initially Glyphosate (N-(phosphonomethyl)glycine) is the active adsorbed mostly in the upper 2 cm. It is than transported and ad- compound in Roundup Max, a post-emergency non-selec- sorbed after few days in deeper soil horizons with concomitant tive broad spectrum herbicide widely applied in agricultural increasing content of its metabolite aminomethylphosphonic acid. practice. Glyphosate itself is an acid, but it is commonly Moreover, Fe-oxides seem to be a key parameter for glyphosate and aminomethylphosphonic adsorption in soils. This study con- used as a salt, most commonly as isopropylammoniumsalt. firmed previous studies: the analysis showed lower contents of The persistence is typically up to 170 days, with a half- dithionite-soluble and Fe-oxides for the Chernozem, with con- life time of 45-60 days (Peruzzo et al., 2008). Some studies sequently lower adsorption of glyphosate and aminomethylphos- however, show a half-life time of years. The major degrada- phonic as compared with the Cambisol and the Stagnosol. tion product of glyphosate is aminomethylphosphonic acid K e y w o r d s: adsorption, glyphosate, aminomethylphospho- (AMPA), (Gimsing et al., 2004; Locke and Zablotowicz, nic acid, soils 2004; Peruzzo et al., 2008).
    [Show full text]