The Forms of Aluminium in Stagnosols in Serbia

Total Page:16

File Type:pdf, Size:1020Kb

The Forms of Aluminium in Stagnosols in Serbia The forms of aluminium in Stagnosols in Serbia V. Mrvić1, M. Jakovljević2, D. Stevanović2, D. Čakmak1 1Institute of Soil Science, Belgrade, Serbia 2Faculty of Agriculture, Belgrade, Serbia ABSTRACT The interactive relations of Al forms and the most important characteristics of Stagnosols were researched to dia- gnose which factors are the best to control the content of phytotoxic Al forms. The values of exchangeable Al (AlKCl) range from 0.0 to 560.7 mg/kg and increase with depth. The variation of exchangeable Al is high and it depends on the changes of all forms of soil acidity and the degree of base cation saturation. Their relation is best described by a non-linear function. The contents of total Al and Al extracted by ammonium oxalate in dark (Al amorphous, Aloxa) increase with depth, together with the increase of the content of clay particles. The values of Al extracted by sodium citrate/dithionite (Al crystalline, Aldit), 0.5M CuCl2 (AlCu) and 0.25M EDTA (AlEDTA) are in good correlati- on and they predominantly depend on the parameters of soil acidity. The value of AlCu-AlKCl (in eluvial horizons) is best represented by organically bound Al. Effects of the reserves of aluminium Aldit, AlCu and AlEDTA on the changes of exchangeable Al are higher (medium and high correlation), while the effects of the total Al and Aloxa are lower. Keywords: Stagnosol; soil; exchangeable Al; Al amorphous; Al crystalline; organic Al Stagnosols (FAO 2006) cover about 538 000 ha, 2003). Bouman et al. (1995) also reported that the or 6%, from the area of Serbia. One of the most low content of exchangeable Al in acid prairie soils important chemical characteristics of Stagnosols is can be the consequence of organically bound Al, that they are more or less leached, acid soils, and as well as of the inhibition of acid decomposition therefore one of the major problems is the elevated of minerals, the effect of high concentrations of 2+ content of mobile aluminium, which can be toxic soluble Mg and H4SiO4 on the stabilisation of for plants and other parts of the environment. clay minerals, climate conditions – soil freezing The study of Al regime in Stagnosols of Serbia and melting. was reported by several researchers (Nikodijević A significant issue that has not been sufficiently 1972, Jakovljević et al. 2001, Dugalić et al. 2002). investigated in Stagnosols is the content and the dy- They found that the content of exchangeable Al was namics of less readily available Al forms and their ef- variable per sites and profile depths and that the fect on available Al. According to Nikodijević (1972), interaction of pH and Al was high. It is concluded in some Stagnosol profiles in West Serbia total Al that liming is very efficacious for Al decrease, and varies from 5.8–7.9% in the topsoil horizon, 9–10.6% that fertilizing with phosphorus, humification, in Btg, and amorphous Al2O3 (Tamm method) in and deep tillage have positive effects. Ah horizon from 3200 to 4310 mg/kg, Btg horizon Soil reaction is one of the best parameters for from 4040 to 5750 mg/kg (it accounts for 2–4% of estimation of exchangeable Al content. Al solubil- the total Al). The correlation between exchangeable ity increases at the active soil acidity below 5.5. Al, total Al and amorphous Al is weak. In addition to soil reaction, Al dynamics is also In the studies of different types of soil, many affected by other factors, especially soil organic researchers conclude that the content of Al oxides matter content and composition. Acid cations in is not proportional to the content of exchange- the complexes or the chelates with organic matter able Al (Alvarez et al. 2002, Garcia-Rodeja et al. are not readily exchangeable by normal exchange 2004). McLaughlin et al. (1990) reported that in reactions (McLean 1965, Dijksta and Fitzhugh grassland soils in Australia, the values of Al amor- 482 PLANT SOIL ENVIRON., 53, 2007 (11): 482–489 phous oxides (extracted by NH4-oxalate) range AL solution (method by Egner-Riehm), and P from 470 to 2160 mg/kg; Al crystalline oxides was determined by colorimetry with molybdate, (extracted by Na citrate-dithionite) range from and K by flame photometry; hydrolytic acidity 206 to 1110 mg/kg; Al extracted by CuCl2 from (H meq/100 g) – after Kappen (extraction by 221 to 1050 mg/kg. These less available fractions CH3COONa, titration with 0.1M NaOH); the sum are in good correlation, but these forms and the of exchangeable basis (S) – after Kappen (extrac- content of toxic Al forms (extracted by KCl and tion by 0.1M HCl, titration with 0.1M NaOH); CaCl2) are in low correlation. Similar relations total capacity of cation adsorption (T) and de- are also reported by Jarvis (1986). gree of base saturation (V%) – was calculated; On the other hand, it is considered that Al solu- soil texture – combined method of sieving and bility is controlled by the amorphous forms of pipette method. Exchangeable Al (AlKCl) and Al(OH)3 rather than by its crystalline forms (Juo exchangeable acidity (meq/100 g) were deter- and Kamprath 1979). Jarvis (1986) reports that mined by extraction with 1M KCl and titration Al in the forms which are not well crystallised (Sokolov’s method). represents more labile reserves: exchangeable Al, The less available Al forms were determined electro-statically bound to negatively charged at the selected sites (45 samples). Total Al was clays or organic colloids; Al present in organic determined by digestion with HF and perchloric complexes, or as non-crystalline coatings on soil acid, on AAS with N2O-C2H2 flame (Barnhisel particles, and Al present as the microcrystalline and Bertsch 1982). phase of hydroxy-polymer components which Less available forms were also determined on occupy the clay mineral interlayers. AAS after the application of the procedure de- It is evident that, in accordance with Bertsch scribed by Jarvis (1986) and McLaughlin et al. and Bloom (1996), the methods of Al determina- (1990): Al crystalline (Aldit) – Na citrate-dithionite tion are not always selective for specific phases, solution (5 g soil were shaken for 1 h with 50 ml although there are some relations between opera- solution containing 0.15M Na citrate, 0.05M citric tionally defined, less available Al and the selective acid and 2 g/l Na dithionite); Al amorphous (Aloxa) extractants. – ammonium oxalate solution in the dark (1 g soil This study deals with the contents of different was shaken in the dark for 4 h with 50 ml of acidi- forms of Al (by depth, sites), their interdepend- fied 0.2M NH4 oxalate at pH 3.25); Al extracted ence, and their relation with Stagnosol character- by CuCl2 (AlCu) – 3 g soil was shaken for 2 h with istics. The aim of the study is to determine the 30 ml 0.5M CuCl2; Al extracted by EDTA (AlEDTA) most suitable factors to control the content of – 5 g soil was shaken for 1 h with 50 ml 0.25M EDTA Al phytotoxic form. [modification, the original method by Farmer et al. (1980) applies 0.5M EDTA]. All the suspensions were centrifuged for 20 min at 2500 relative cen- MATERIAL AND METHODS trifugal force and filtered (Whatman 42) before analysis. Al dynamics was assessed at 15 sites of lowland The study results were processed by mathemati- Stagnosols in the Northwest and East Serbia and in cal-statistical methods of regression analysis and the valley of the Zapadna Morava river. Lowland descriptive statistics (program SPSS 10.0.). Stagnosols in Serbia occur in temperate continental climate conditions, at the altitude of 100–350 m, on flat or mildly sloped lake, diluvial and river RESULTS AND DISCUSSION terraces. Closer data about the study area are presented in Table 1. Stagnosol characteristics and the content The samples were taken at each site from farm- of exchangeable Al land and meadow lands, from three characteristic horizons (Ah, Eg, EBtg or Btg) (90 samples). The Different factors of soil formation bring about basic characteristics of soil samples were deter- different Stagnosol characteristics. The structure mined by standard methods: pH of the soil solu- of the profiles to the analysed depth is Aoh-Eg-Btg; tion in water suspension (pH ) and in 1M KCl Aoh-Eg-EBtg; Aoh-EBtg-Btg. The thickness of H2O suspension (pHKCl) – potentiometrically; humus the humus – accumulation horizon is most often – by oxidation with solution KMnO4 (according 15–20 cm, the impermeable horizon is mainly at to Kotzman); available P and K – extraction with 40–60 cm. PLANT SOIL ENVIRON., 53, 2007 (11): 482–489 483 Table 1. Basic characteristics of the study area Mean annual Annual Sites of Stagnosol Area temperature precipitation Parent rock formation (°C) (mm) abrasion terraces aeolian sediments Northwest 11–12 650–850 and hillocks covering the Pleistocene Serbia of the Pannonian Sea sandy loams and clays Valley sandy-loessoid Pleistocene clays of the Zapadna 10–11 710–750 older river terraces and loams below which are older Morava river sediments of heavier composition mixture of clay Karbulovo and sands of indefinite age fluvial andesite gravel, East Serbia 10–11 610–690 diluvial terrace-Salaš covering clay sediments of the Sarmatian more acid sediments IV Danube terrace-Kladovo deposited in the already existing substrate Stagnosols are characterised by textural vari- loam) than Stagnosols in East Serbia, which have ability per profile depth, which is manifested in a higher percentage of coarse sand (on average the lighter soil texture of the eluvial horizons about 4–5 times) and less silt (on average 1.7 times). and in clay accumulation in the hardly perme- Eluvial horizons are sandy loam and sandy clay able illuvial horizon (Table 2).
Recommended publications
  • 81421371.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE ORIGINAL SCIENTIFIC PAPER 187 Clay and Humus Contents Have the Key Impact on Physical Properties of Croatian Pseudogleys Vedran RUBINIĆ ( ) Stjepan HUSNJAK Summary Pseudogleys (Stagnosols according to WRB-2014) represent the second most widespread soil type in Croatia, developed almost exclusively in its Pannonian region. Although most Croatian Pseudogleys are found on agricultural land or in agro- ecosystems, they usually have numerous constraints for agricultural production. Primarily, this is due to their unfavorable water/air regime (precipitation water periodically stagnates on/in the poorly permeable subsoil horizon). Th e aim of this study was to determine which signifi cant diff erences in physical properties and humus content exist between the eluvial horizon (Eg) and the illuvial horizon (Btg) in Croatian Pseudogleys. Total of 33 Pseudogley profi les were investigated at 11 forest sites across the Pannonian region of Croatia. Properties of Eg horizon signifi cantly diff ered from the properties of Btg horizon. Compared with the Eg horizon, the Btg horizon had more clay, higher bulk density, less pores, and lower capacity for air. However, the stability of microaggregates was higher in the Btg horizon than in the Eg horizon. Contents of clay and humus have the key impact on most soil physical properties. Th ese results should be borne in mind, both when converting natural Pseudogleys into arable soils and when ameliorating arable Pseudogleys that contain the Eg horizon below the Ap horizon. Key words stagnosols, Pannonian region of Croatia, forest soils, soil physical properties, humus University of Zagreb Faculty of Agriculture, Svetošimunska 25, 10000 Zagreb, Croatia e-mail: [email protected] Received: June 4, 2016 | Accepted: November 17, 2016 Agriculturae Conspectus Scientifi cus .
    [Show full text]
  • The Soil Map of the Flemish Region Converted to the 3 Edition of the World Reference Base for Soil Resources
    Ontwikkelen en toepassen van een methodiek voor de vertaling van de Belgische bodemclassificatie van de kustpolders naar het internationale WRB systeem en generaliseren van de WRB-bodemkaart voor gans Vlaanderen naar het 1 : 250 000 schaalniveau The soil map of the Flemish region converted to the 3 rd edition of the World Reference Base for soil resources Stefaan Dondeyne, Laura Vanierschot, Roger Langohr Eric Van Ranst and Jozef Deckers Oct. 2014 Opdracht van de Vlaamse Overheid Bestek nr. BOD/STUD/2013/01 Contents Contents............................................................................................................................................................3 Acknowledgement ...........................................................................................................................................5 Abstract............................................................................................................................................................7 Samenvatting ...................................................................................................................................................9 1. Background and objectives.......................................................................................................................11 2. The soil map of Belgium............................................................................................................................12 2.1 The soil survey project..........................................................................................................................12
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • The Muencheberg Soil Quality Rating (SQR)
    The Muencheberg Soil Quality Rating (SQR) FIELD MANUAL FOR DETECTING AND ASSESSING PROPERTIES AND LIMITATIONS OF SOILS FOR CROPPING AND GRAZING Lothar Mueller, Uwe Schindler, Axel Behrendt, Frank Eulenstein & Ralf Dannowski Leibniz-Zentrum fuer Agrarlandschaftsforschung (ZALF), Muencheberg, Germany with contributions of Sandro L. Schlindwein, University of St. Catarina, Florianopolis, Brasil T. Graham Shepherd, Nutri-Link, Palmerston North, New Zealand Elena Smolentseva, Russian Academy of Sciences, Institute of Soil Science and Agrochemistry (ISSA), Novosibirsk, Russia Jutta Rogasik, Federal Agricultural Research Centre (FAL), Institute of Plant Nutrition and Soil Science, Braunschweig, Germany 1 Draft, Nov. 2007 The Muencheberg Soil Quality Rating (SQR) FIELD MANUAL FOR DETECTING AND ASSESSING PROPERTIES AND LIMITATIONS OF SOILS FOR CROPPING AND GRAZING Lothar Mueller, Uwe Schindler, Axel Behrendt, Frank Eulenstein & Ralf Dannowski Leibniz-Centre for Agricultural Landscape Research (ZALF) e. V., Muencheberg, Germany with contributions of Sandro L. Schlindwein, University of St. Catarina, Florianopolis, Brasil T. Graham Shepherd, Nutri-Link, Palmerston North, New Zealand Elena Smolentseva, Russian Academy of Sciences, Institute of Soil Science and Agrochemistry (ISSA), Novosibirsk, Russia Jutta Rogasik, Federal Agricultural Research Centre (FAL), Institute of Plant Nutrition and Soil Science, Braunschweig, Germany 2 TABLE OF CONTENTS PAGE 1. Objectives 4 2. Concept 5 3. Procedure and scoring tables 7 3.1. Field procedure 7 3.2. Scoring of basic indicators 10 3.2.0. What are basic indicators? 10 3.2.1. Soil substrate 12 3.2.2. Depth of A horizon or depth of humic soil 14 3.2.3. Topsoil structure 15 3.2.4. Subsoil compaction 17 3.2.5. Rooting depth and depth of biological activity 19 3.2.6.
    [Show full text]
  • Responses of Soil Microorganisms to Land Use in Different Soil Types Along the Soil Profiles
    Soil and Water Research, 15, 2020 (2): 125–134 Original Paper https://doi.org/10.17221/20/2019-SWR Responses of soil microorganisms to land use in different soil types along the soil profiles Erika Gömöryová1*, Gabriela Barančíková2, Erika Tobiašová3, Ján Halás2, Rastislav Skalský 2, Štefan Koco2, Dušan Gömöry 1 1Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia 2National Agriculture and Food Centre, Soil Science and Conservation Research Institute, Bratislava, Slovakia 3Department of Soil Science, Slovak University of Agriculture, Nitra, Slovakia *Corresponding author: [email protected] Citation: Gömöryová E., Barančíková G., Tobiašová E., Halás J., Skalský R., Koco Š., Gömöry D. (2020): Responses of soil microorganisms to land use in different soil types along the soil profiles. Soil & Water Res., 15: 125−134. Abstract: The objective of this study was to find out how land use affects the soil microbial attributes in different soil types and to which depth. The study was performed in Slovakia (Europe) in three areas differing in soil type (Cherno- zem, Stagnosol, Cambisol). Within each area, three localities with different land use (forest, grassland, cropland), repre- senting a gradient with different intensity of management, were chosen. The soil samples were taken along a single soil profile up to a depth of 1 m with 10 cm increments at each locality. In the soil samples, the basic soil chemical properties and microbial attributes were determined. The effect of the land use on the microbial biomass and basal respiration was mainly observed in the Chernozem in the top 30 cm, while in the Stagnosol, no difference in the trend in the microbial biomass between the different ecosystems along the soil profile was found.
    [Show full text]
  • Hydraulic Properties of Forest Soils with Stagnic Conditions
    Article Hydraulic Properties of Forest Soils with Stagnic Conditions Stefan Julich 1,* , Janis Kreiselmeier 1,2,3 , Simon Scheibler 1, Rainer Petzold 4, Kai Schwärzel 2,3 and Karl-Heinz Feger 1 1 Institute of Soil Science and Site Ecology, Technische Universität Dresden, 01069 Dresden, Germany; [email protected] (J.K.); [email protected] (S.S.); [email protected] (K.-H.F.) 2 Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES), United Nations University, 01067 Dresden, Germany; [email protected] 3 Thünen Institute of Forest Ecosystems, 16225 Eberswalde, Germany 4 Centre of Excellence for Wood and Forestry, Public Enterprise Sachsenforst, 01796 Pirna, Germany; [email protected] * Correspondence: [email protected] Abstract: Tree species, e.g., shallow vs. deep rooting tree species, have a distinct impact on hydrolog- ical properties and pore size distribution of soils. In our study, we determined the soil hydrologic properties and pore size distribution at three forest stands and one pasture as reference on soils with stagnant water conditions. All sites are located in the Wermsdorf Forest, where historical studies have demonstrated severe silvicultural problems associated with stagnant water in the soil. The studied stands represent different stages of forest management with a young 25-year-old oak (Sessile Oak (Quercus petraea) and Red oak (Q. robur)) plantation, a 170-year-old oak stand and a 95-year-old Norway Spruce (Picea abies) stand in second rotation. We determined the infiltration rates under saturated and near-saturated conditions with a hood-infiltrometer at the topsoil as well as the saturated hydraulic conductivity and water retention characteristic from undisturbed soil samples taken from the surface and 30 cm depth.
    [Show full text]
  • Annex: Soil Groups, Characteristics, Distribution and Ecosystem Services
    Status of the World’s Main Report Soil Resources Annex Soil groups, characteristics, distribution and ecosystem services © FAO | Giuseppe Bizzarri © FAO INTERGOVERNMENTAL TECHNICAL PANEL ON SOILS Disclaimer and copyright Recommended citation: FAO and ITPS. 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-109004-6 © FAO, 2015 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.
    [Show full text]
  • Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic
    Article Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic Daniel Žížala 1,2,*, Tereza Zádorová 2 and Jiří Kapička 1 1 Research Institute for Soil and Water Conservation, Žabovřeská 250, Prague CZ 156 27, Czech Republic; [email protected] 2 Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 29, Prague CZ 165 00, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +42-02-5702-7232 Academic Editors: José A.M. Demattê, Clement Atzberger and Prasad S. Thenkabail Received: 28 October 2016; Accepted: 28 December 2016; Published: 1 January 2017 Abstract: The assessment of the soil redistribution and real long-term soil degradation due to erosion on agriculture land is still insufficient in spite of being essential for soil conservation policy. Imaging spectroscopy has been recognized as a suitable tool for soil erosion assessment in recent years. In our study, we bring an approach for assessment of soil degradation by erosion by means of determining soil erosion classes representing soils differently influenced by erosion impact. The adopted methods include extensive field sampling, laboratory analysis, predictive modelling of selected soil surface properties using aerial hyperspectral data and the digital elevation model and fuzzy classification. Different multivariate regression techniques (Partial Least Square, Support Vector Machine, Random forest and Artificial neural network) were applied in the predictive modelling of soil properties. The properties with satisfying performance (R2 > 0.5) were used as input data in erosion classes determination by fuzzy C-means classification method.
    [Show full text]
  • Clay and Humus Contents Have the Key Impact on Physical Properties of Croatian Pseudogleys
    ORIGINAL SCIENTIFIC PAPER 187 Clay and Humus Contents Have the Key Impact on Physical Properties of Croatian Pseudogleys Vedran RUBINIĆ ( ) Stjepan HUSNJAK Summary Pseudogleys (Stagnosols according to WRB-2014) represent the second most widespread soil type in Croatia, developed almost exclusively in its Pannonian region. Although most Croatian Pseudogleys are found on agricultural land or in agro- ecosystems, they usually have numerous constraints for agricultural production. Primarily, this is due to their unfavorable water/air regime (precipitation water periodically stagnates on/in the poorly permeable subsoil horizon). Th e aim of this study was to determine which signifi cant diff erences in physical properties and humus content exist between the eluvial horizon (Eg) and the illuvial horizon (Btg) in Croatian Pseudogleys. Total of 33 Pseudogley profi les were investigated at 11 forest sites across the Pannonian region of Croatia. Properties of Eg horizon signifi cantly diff ered from the properties of Btg horizon. Compared with the Eg horizon, the Btg horizon had more clay, higher bulk density, less pores, and lower capacity for air. However, the stability of microaggregates was higher in the Btg horizon than in the Eg horizon. Contents of clay and humus have the key impact on most soil physical properties. Th ese results should be borne in mind, both when converting natural Pseudogleys into arable soils and when ameliorating arable Pseudogleys that contain the Eg horizon below the Ap horizon. Key words stagnosols, Pannonian region of Croatia, forest soils, soil physical properties, humus University of Zagreb Faculty of Agriculture, Svetošimunska 25, 10000 Zagreb, Croatia e-mail: [email protected] Received: June 4, 2016 | Accepted: November 17, 2016 Agriculturae Conspectus Scientifi cus .
    [Show full text]
  • Fsbdev2 034643.Pdf
    Blank Back Page International Symposium on Soil Organic Matter Dynamics: Land Use, Management and Global Change July 6‐9, 2009 Cheyenne Mountain Conference Center Colorado Springs, Colorado, USA Organizing Committee Keith Paustian – Colorado State University (Chair) M. Francesca Cotrufo – Colorado State University (Vice‐Chair) Richard Conant – Colorado State University Ronald Follett – USDA/Agricultural Research Service, Fort Collins Eugene Kelly – Colorado State University Maurice Mausbach – USDA/Natural Resource Conservation Service (retired) Stephen Ogle – Colorado State University Eldor Paul – Colorado State University Gary Peterson – Colorado State University Michael Ryan – US Forest Service, Fort Collins Scientific Committee Olof Andrén – Swedish University of Agricultural Sciences, Sweden Carlos E.P. Cerri – University of Sao Paolo, Brazil Abad Chabbi – INRA‐UEFE, France Jorge Etchevers – Colegio de Postgraduados, Mexico Paul Fixen – International Plant Nutrition Institute Jürg Fuhrer – ART, Zurich, Switzerland Peter Grace – Queensland University of Technology, Australia Georg Guggenberger – Leibniz Universität Hannover, Germany Henry Janzen – Agriculture and Agrifood Canada Miko Kirschbaum – Landcare Research, New Zealand Rattan Lal – Ohio State University, USA Johannes Lehmann – Cornell University, USA Roel Merckx – Belgium Genxing Pan – Nanjing University, China Phil Sollins – Oregon State University, USA Conference Sponsors 25×’25 Carbon Management Center, Colorado Clean Energy Collaboratory Chicago Climate Exchange College
    [Show full text]
  • Effects of Soil Erosion by Water Under Different Tillage Treatments on Distribution of Soil Chemical Parameters
    Original Paper Soil & Water Res., 13, 2018 (1): 36–43 doi: 10.17221/25/2017-SWR Effects of Soil Erosion by Water under Different Tillage Treatments on Distribution of Soil Chemical Parameters Ivica KISIC, Igor BOGUNOVIC*, Zeljka ZGORELEC and Darija BILANDZIJA Department of General Agronomy, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia *Corresponding author: [email protected] Abstract Kisic I., Bogunovic I., Zgorelec Z., Bilandzija D. (2018): Effects of soil erosion by water under different tillage treat- ments on distribution of soil chemical parameters. Soil & Water Res., 13: 36−43. Soil losses by water erosion were studied under six different tillage treatments, which differ in depth and direction of tillage and planting during a twenty-year period (1995–2014) on Stagnosols in central lowland Croatia. Studied tillage treatments were: control plot (bare fallow-BF), ploughing up and down the slope to 30 cm (PUDS), no- tillage (NT), ploughing across the slope to 30 cm (PAS), very deep ploughing across the slope to 50 cm (VDPAS), and subsoiling to 50 cm + ploughing to 30 cm across the slope (SSPAS). The paper presents the following chemi- cal parameters: soil pH, soil organic matter (OM), plant available phosphorus (P-P2O5), plant available potassium (K-K2O), total carbon content (Ctot), total nitrogen content (Ntot) and CN ratio of non-eroded soil and soil loss from studied treatments. All soil sediments had significantly higher content of the studied parameters compared to non-eroded soil. The overall respective levels of OM, Ctot, Ntot, P-P2O5 and K-K2O loss by eroded soil were as follows: 0.86 (NT) − 10.86 (BF) t/ha, 0.10 (SSPAS) – 2.60 (BF) t/ha, 0.015 (SSPAS) – 0.392 (BF) t/ha, 0.012 (NT) − 0.173 (BF) t/ha and 0.017 (SSPAS) − 0.158 (BF) t/ha.
    [Show full text]
  • Adsorption of Glyphosate and Aminomethylphosphonic Acid in Soils
    IINNNTTTEEERRRNNNAAATTTIIIOOONNNAAALL AAgggrrroooppphhhyyysssiiicccss www.international-agrophysics.org Int. Agrophys., 2013, 27, 203-209 doi: 10.2478/v10247-012-0086-7 Adsorption of glyphosate and aminomethylphosphonic acid in soils N. Rampazzo*, G. Rampazzo Todorovic, A. Mentler, and W.E.H. Blum Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Peter Jordan-Strasse 82, 1190 Vienna, Austria Received February 15, 2012; accepted October 26, 2012 A b s t r a c t. The results showed that glyphosate is initially Glyphosate (N-(phosphonomethyl)glycine) is the active adsorbed mostly in the upper 2 cm. It is than transported and ad- compound in Roundup Max, a post-emergency non-selec- sorbed after few days in deeper soil horizons with concomitant tive broad spectrum herbicide widely applied in agricultural increasing content of its metabolite aminomethylphosphonic acid. practice. Glyphosate itself is an acid, but it is commonly Moreover, Fe-oxides seem to be a key parameter for glyphosate and aminomethylphosphonic adsorption in soils. This study con- used as a salt, most commonly as isopropylammoniumsalt. firmed previous studies: the analysis showed lower contents of The persistence is typically up to 170 days, with a half- dithionite-soluble and Fe-oxides for the Chernozem, with con- life time of 45-60 days (Peruzzo et al., 2008). Some studies sequently lower adsorption of glyphosate and aminomethylphos- however, show a half-life time of years. The major degrada- phonic as compared with the Cambisol and the Stagnosol. tion product of glyphosate is aminomethylphosphonic acid K e y w o r d s: adsorption, glyphosate, aminomethylphospho- (AMPA), (Gimsing et al., 2004; Locke and Zablotowicz, nic acid, soils 2004; Peruzzo et al., 2008).
    [Show full text]