Neutrino Physics with Future Dark Matter Detectors
Total Page:16
File Type:pdf, Size:1020Kb
Neutrino Physics with Future Dark Matter Detectors Jocelyn Monroe, Royal Holloway, University of London XVIII International Workshop on Neutrino Telescopes Venice, IT March 21, 2019 Dark Matter Direct Detection Signal:χN ➙χN χ χ Backgrounds: γ e- ➙ γ e- n N ➙ n N N ➙ N’ + α, e- ν N ➙ ν N experimental requirements: particle ID for recoil N, e-, alpha, n (multiple)γ final states γ Jocelyn Monroe March 21, 2019 / p. 2 Dark Matter Direct Neutrino Detection Signal: ν N ➙ ν N or ν e- ➙ ν e- ν ν Backgrounds: γ e- ➙ γ e- n N ➙ n N N ➙ N’ + α, e- χN ➙ χN? very similar requirements! ν (and ideally also measure direction) ν Jocelyn Monroe March 21, 2019 / p. 3 Neutrino Backgrounds to Dark Matter Searches and Directionality Jocelyn Monroe, MIT Jocelyn Monroe May 30, 2008 ν Cross Sections: ν-N Coherent Scattering Cross sections are coherently 2 2 -44 2 enhanced, ~ A x (Eν/MeV) x 10 cm recoils are O(10 KeV) D. Z. Freedman, Phys. Rev. D9. 1389 (1974) ν ν Z 2 Φ(solar B8 ν) = 2En Tmax = 5.86 x 106 cm-2 s-1 mnucleus + 2En N N Aprile et al., JCAP04 (2016) 027 O(tens) of events/ton-year = ~ 10-46 cm2 limit An irreducible background, without direction measurement! JM, P. Fisher, Phys. Rev. D 76:033007 (2007) Jocelyn Monroe May 30, 2008 What ν physics can future dark matter detectors do? https://masterclass.icecube.wisc.edu/en/learn/detecting-neutrinos Jocelyn Monroe March 21, 2019 / p. 6 Future Large-Mass Dark Matter Detectors Detector Technology: dual-phase Time Projection Chambers with 4-50 tonne liquid Xe, Ar targets read out primary scintillation: “S1” + proportional gas scintillation from drifted electrons: “S2” • x-y resolution ~cm • z resolution ~mm Goal: zeptobarn -> yoctobarn sensitivity to dark matter! https://lz.slac.stanford.edu/our-research/lz-research Jocelyn Monroe March 21, 2019 / p. 7 2-Phase TPCs: Near(ish) Future XENON-nT: 6 t LXe (active), following XENON-1T (LNGS), from 2019. PandaX-4: 4 t LXe (active), following PandaX (JinPing), from 2019. LZ: 7 t LXe (active), following LUX (SURF), from 2020. DarkSide-20k: 50 t LAr (LNGS), ArDM+DEAP+DS50+MiniCLEAN, from 2022. DARWIN: 50 t LXe (LNGS), following XENON-nT. ARGO: 500 t LAr (SNOLAB?), following DarkSide-20k. 5 cm x 5 cm tiled SiPM Jocelyn Monroe 8 Jan. 23, 2019 Backgrounds ? N Gamma ray interactions: electron recoil final states rate ~ Ne x (gamma flux), O(1E7) events/(kg day) mis-identified electrons mimic nuclear recoils Contamination: 238U and 232Th decays, recoiling progeny and mis-identified alphas, betas mimic nuclear recoils Neutrons: Nuclear recoil final state. (alpha,n), U, Th fission, cosmogenic spallation μ μ γ N* N n D. Malling, UCLA DM’16 + discrimination between e- vs. N Jocelyn Monroe March 21, 2019 / p. 9 Backgrounds ? N Gamma ray interactions: electron recoil final states rate ~ Ne x (gamma flux), O(1E7) events/(kg day) mis-identified electrons mimic nuclear recoils Contamination: 238U and 232Th decays, recoiling progeny and mis-identified alphas, betas mimic nuclear recoils Neutrons: Nuclear recoil final state. (alpha,n), U, Th fission, cosmogenic spallation μ μ γ N* N n D. Malling, UCLA DM’16 - Amaudruz, JM et al, Phys.Rev.Lett. 121 (2018) no.7, 071801 + discrimination between e vs. N Jocelyn Monroe March 21, 2019 / p. 10 Backgrounds ? N Gamma ray interactions: electron recoil final states rate ~ Ne x (gamma flux), O(1E7) events/(kg day) mis-identified electrons mimic nuclear recoils Contamination: 238U and 232Th decays, recoiling progeny and D.-M. Mei, A. Hime, PRD73:053004 (2006) mis-identified alphas, betas mimic nuclear recoils Neutrons: Nuclear recoil final state. (alpha,n), U, Th fission, cosmogenic spallation μ μ γ N* N n + discrimination between e- vs. N Jocelyn Monroe + large, active neutron shielding March 21, 2019 / p. 11 What ν physics can future dark matter detectors do? https://masterclass.icecube.wisc.edu/en/learn/detecting-neutrinos Jocelyn Monroe March 21, 2019 / p. 12 12 ) 10 -1 11 pp 10 7 What ν physics can bin Be -1 10 13 s 10 N -2 future dark matter detectors do? 109 15O 17 108 F 8B 107 Flux (cm hep ν 106 105 Solar 104 103 102 10-1 1 10 Neutrino Energy (MeV) https://masterclass.icecube.wisc.edu/en/learn/detecting-neutrinos Jocelyn Monroe March 21, 2019 / p. 13 Prospects for Solar ν-N Coherent Scattering −37 10 CRESST-III 2017 10−38 CDMSLite 2017 ] 2 10−39 10−40 [cm SI −41 DarkSide-50 2018 σ 10 ATLAS 2018 (Vector Z', 95% CL) 10−42 DEAP-3600 2017 −43 10 SuperCDMS Ge HV proj. LUX 2017 −44 10 PANDAX-II 2017 DarkSide-LM proj. DarkSide-50 2018 DEAP-3600 proj. −45 10 XENON1T 2018 LZ proj. −46 proj. 10 XENONnT proj. t yr yr proj. −47 DARWIN 200t 10 yr proj. r 3k t ecto det −48 ARGO 10 nne Dark Matter-Nucleon DarkSide-20k o200 00-t re 3 −49 Futu 10 Neutrino floor on xenon 10−50 −3 −2 −1 2 10 10 10 2 1 10 10 DarkSide-20k ESPP 2019 Mχ [TeV/c ] Jocelyn Monroe March 21, 2019 / p. 14 Solar ν-N Coherent Scattering (= Neutrino Bound) • sensitivity scales with sqrt(time) instead of linearly in time (with zero background) • background systematics become crucial PDFs in (energy, angle, time) of event for coherent solar neutrino background vs. background + dark matter signal are different! (includes angular resolution) Grothaus, Fairbairn, JM, Phys.ReV.D90 (2014) 055018 • annual modulation still contains information to differentiate dark matter vs. neutrinos • directionality gains 10x in sensitivity 6 GeV 30 GeV in the presence of backgrounds 1000 GeV solid = with direction no neutrino bound for directional detectors dotted = without direction • dashed = neutrino bound from simulation with Phys.Rev. D89, 023524 (2014) Jocelyn Monroe May 3, 2018 / p. 22 12 ) 10 -1 Solar ν-e Event Rates 11 pp 10 7 ν bin Be ν -1 10 13 s 10 N example event rates -2 109 15O of solar neutrino-electron Z, W 17 108 F elastic scattering at LNGS, 8B 107 per tonne-year of CF4 Flux (cm hep e e ν 106 105 Solar 104 103 102 10-1 1 10 Neutrino Energy (MeV) e.g. for Ar target: DarkSide-20k estimates 10k solar neutrino- electron elastic scatters above threshold per 100 tonne-yrs Aalseth, et al. Eur.Phys.J.Plus 133 (2018) Jocelyn Monroe March 21, 2019 / p. 15 Solar ν-Electron Scattering Via neutrino-electron elastic scattering, LAr dark matter experiments can observe the unmeasured CNO solar neutrino flux! (via spectral deformation) +with O(500 t-y), study the “solar metallicity problem”. Franco et al., JCAP 1608 (2016) 08 Cerdeno, Davis, Fairbairn, Vincent, JCAP 1804 (2018) 37 big opportunity: distinguish exclusion betweendetection high vs. low metallicity. big challenges: Rn background suppression and uncertainty on cosmogenics *Xe-136 background makes LXe CNO challenging Baudis et al., JCAP 1401 (2014) 044, Jocelyn Monroe March 21, 2019 / p. 16 (P. Agnes, JM in preparation) What about Electron Directionality? potential increase in sensitivity / reduction in exposure to discovery from electron recoil direction • 1 mm sampling pitch in drift direction makes direction reconstruction of ~cm length electron tracks feasible in 1D • directional dark matter detection studies show 1D direction reconstruction gains 10x over non-directional measurements in the presence of backgrounds Mayet, JM et al., Phys.Rept. 627 (2016) 0.45 zenith θ 0.4 1.75 MeV ) / zenith 0.35 1.5 MeV θ 0.3 1.0 MeV (cos σ 0.25 0.2 0.15 0.1 exclusion detection 0.05 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 θzenith (radians) Jocelyn Monroe March 21, 2019 / p. 17 What neutrino physics can (if lucky!) future dark matter detectors do? for a supernova at 10 kPc, expect 300-500 ν-N events in DarkSide-20k, XENON-nT, LZ, up to few k in DARWIN. Lang et al., Phys. Rev. D 94 (2016) • measure all flavors via NC 40 - 40 • measure νe Ar e K* • multi-messenger observation: sub-eV mass ordering? Arnaud et al., Phys.Rev.D.65.033010 https://masterclass.icecube.wisc.edu/en/learn/detecting-neutrinos Jocelyn Monroe May 3, 2018 / p. 7 ) -1 105 s 238 What neutrino physics can -2 U 104 235U future dark matter detectors do? 3 10 232Th Flux (cm 40 ν 102 K Geo 10 1 10-1 10-2 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Anti-Neutrino Energy (MeV) https://masterclass.icecube.wisc.edu/en/learn/detecting-neutrinos Jocelyn Monroe March 21, 2019 / p. 18 in a 10n T-year exposure… Contribution from geo-neutrinos is non- to ν-e scattering rate: ~few% low E dominated by the (not-yet- study with 500 neutrino background events measured) K-40 (Q = 1.3 MeV). Leyton, Dye, JM, Nature Commun. 8 (2017) 15989 Example: ν-e elastic scatters per kt-yr at LNGS, on CF4 ν-N scattering: Gelmini et al, arXiv:1812.05550 Jocelyn Monroe March 21, 2019 / p. 2 Geo ν-Electron Scattering PLR analysis of energy, time, and direction shows sensitivity at 95% CL to measure K-40 geo-neutrino flux with O(100) t-yr exposure. study with 500 neutrino background events example: geo-, solar-, reactor-ν -induced electron recoil directions, at LNGS. challenge: measure the direction of ~1 MeV e- recoils…. Leyton, Dye, JM, Nature Commun. 8 (2017) 15989 Jocelyn Monroe March 21, 2019 / p. 20 What neutrino physics can future dark matter detectors do? diffuse supernovae back- ground: perhaps within reach in large exposures if could reject neutrino scatters! (requires directional nuclear recoil detection) Albers et al., JCAP 1611 (2016) Aprile et al., JCAP04 (2016) 027 https://masterclass.icecube.wisc.edu/en/learn/detecting-neutrinos Jocelyn Monroe May 3, 2018 / p.