Direct Dark Matter Detection Phenomenology by Jayden L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2013 January/February AAS Newsletter 31 January, 2013
2013 January/February AAS Newsletter 31 January, 2013 President's Column David J. Helfand Quest University Canada As I noted in my opening remarks at the 221st meeting of the Society in Long Beach, the state of the AAS — unlike that of the nation — is strong. We ended the year with a small positive balance in the Society's account for the fourth year in a row. Our collection of journals — the highest impact journals in the world in our field — is in even stronger financial shape. Our semiannual conferences exceed expected attendance levels every time we meet, and we are exploiting the Executive Office's outstanding meeting organization resources to support more of our Division Meetings and to launch the Topical Conference Series with three smaller, focused meetings this summer. We will have an expanded public policy presence with the recruitment of Joel Parriott to the fulltime role of Director of Public Policy, and our education and public outreach activities continue to grow in size and impact. This enviable position of strength affords us the opportunity to examine many of the things we do for our members to see if we can do them even better. It also allows us to work on some of the issues in our discipline where we face notable challenges in the research funding trajectory, in facilities access, and with employment/demographic issues. In the months ahead, you will see initiatives in several of these areas. The Employment Committee, chaired by Kelle Cruz, has a new Strategic Plan which promises future benefits for our members. -
Curriculum Vitæ Jocelyn Monroe
CURRICULUM VITÆ JOCELYN MONROE ! ADDRESS: CONTACT: Royal Holloway University of London Phone: +44 1784 443513 Department of Physics, W255 Email: [email protected] Egham, Surrey Web: http://www.pp.rhul.ac.uk/~jmonroe EDUCATION: 2006: Ph.D. (Physics) Columbia University Dissertation Title: “A Combined "µ and "e Oscillation Search at MiniBooNE,” Advisor: Prof. Michael Shaevitz 2002: M.A. (Physics) Columbia University 2002: M.Phil. (Physics) Columbia University 1999: B.A. (Astrophysics) Columbia University EMPLOYMENT: May 2013-: Professor of Physics, Royal Holloway University of London 2011-2013: Senior Lecturer, Royal Holloway University of London 2009-2014: Assistant Professor, Massachusetts Institute of Technology 2006-2009: Pappalardo Fellow, Massachusetts Institute of Technology 2000-2006: Research Assistant, Columbia University 1999-2000: Engineering Physicist, Beams Division, Fermi National Accelerator Laboratory 1997: DOE REU Summer Program, Particle Physics Division, Fermi National Accelerator Laboratory COLLABORATION MEMBERSHIPS: 2017-: DarkSide-20k Collaboration, UK P.I. (LNGS, IT), Deputy Spokesperson (2021-) 2019-: The PlomBox Project, P.I. (https://plombox.org/) 2008-: DEAP-3600 (SNOLab, Canada), Executive Board Chair (2014-15) 2006-2016: DMTPC (WIPP, USA), Spokesperson (2011-2016) 2006-2009: SNO (SNOLab, Canada) 1999-2008: MiniBooNE (FNAL, USA) 1999-2000: Neutrino Factory (FNAL, USA) AWARDS AND HONORS: 2016 Breakthrough Prize in Fundamental Physics Laureate 2012 Kavli Frontiers of Science Fellow, U.S. National Academy -
Monday 22 June
Monday 22 June 7:00 AM US CDT Opening 7:00 AM 10 Welcome Steve Brice Fermilab 7:10 AM 5 Update on IUPAP neutrino panel Nigel Smith SNOLab 7:15 AM 5 The Snowmass process for neutrinos Kate Scholberg Duke University 7:20 AM 35+5 Neutrinos in the era of multi-messenger astronomy Francis Halzen University of Wisconsin, Madison 8:00 AM US CDT 10 Break 8:10 AM 25+5 A review of progress in R&D for neutrino detectors David Nygren University of Texas, Arlington 8:40 AM 17+3 Neutrino oscillation measurements with IceCube Summer Blot DESY/Zeuthen 9:00 AM US CDT 10 Break 9:10 AM US CDT Direct Neutrino Mass Measurements 9:10 AM 17+3 Mass meaurements with Ho-163 Maurits Haverkort University of Heidelberg 9:30 AM 20+5 Project 8 Noah Oblath Pacific Northwest National Laboratory 9:55 AM 20+5 KATRIN: first results and future perspectives Susanne Mertens Technical University Munich and Max Planck Institute for Physics 10:20 AM US CDT 10 Break 10:30 AM 60 Poster Session 11:30 AM US CDT End of Day Tuesday 23 June 7:00 AM US CDT Neutrino Interactions 7:00 AM 25+5 Historical Review and Future program of neutrino cross section measurements and calculations Noemi Rocco Argonne National Laboratory and Fermilab 7:30 AM 17+3 Connections between neutrino and electron scattering Adi Ashkenazi MIT 7:50 AM US CDT 10 Break 8:00 AM 20+5 The Neutrino's View of the Nucleus: New Results from MINERvA Deepika Jena Fermilab 8:25 AM 20+5 Neutrino Interaction Measurements on Argon Kirsty Duffy Fermilab 8:50 AM 20+5 Cross-section measurements with NOvA Linda Cremonesi University -
Understanding the Universe from Deep Underground
Understanding the Universe from Deep Underground Sudbury Neutrino Observatory Art McDonald, Professor Emeritus Queen’s University, Kingston, Ontario, Canada With our laboratory deep underground we have created a very low radioactivity location where we study some of the most basic scientific questions: • How do stars like our Sun burn and create the elements from which we are made? • What are the basic Laws of Physics for the smallest fundamental particles? • What is the composition of our Universe and how has it evolved to the present ? How do you make measurements that can provide answers to enormous questions like these? Answers: 1: Measure elusive particles called NEUTRINOS that come from the deepest reaches of the Sun where the energy is generated and from cosmic rays interacting in the atmosphere. 2: Measure fundamental particles (DARK MATTER) that are left over from the original formation of the Universe. 3. Measure rare forms of radioactivity (DOUBLE BETA DECAY) that can tell us more about fundamental laws of physics. Neutrinos from the Sun The middle of the sun is so hot that the centers of the atoms (nuclei) fuse together, giving off lots of energy and neutrinos. The neutrinos penetrate easily through the dense material in the Sun and reach the earth. Neutrino facts: • Neutrinos, along with electrons and quarks, are basic particles of nature that we do not know how to sub-divide further. • Neutrinos come in three “flavours” (electron, mu, tau) as described in The Standard Model of Elementary Particles, a fundamental theory of microscopic particle physics. •They only stop if they hit the nucleus of an atom or an electron head-on and can pass through a million billion kilometers of lead without stopping. -
Viktor Ambartsumian International Prize 2012 Goes to Prof. Jaan EINASTO (Estonia) and Prof
Viktor Ambartsumian International Prize Steering Committee Official Press-Release, 21.07.2012, Yerevan, Armenia Viktor Ambartsumian International Prize 2012 goes to Prof. Jaan EINASTO (Estonia) and Prof. Igor NOVIKOV (Russia) Viktor Ambartsumian International Prize has been established by the President of Armenia in 2009 and at present is one of the important awards in astronomy/astrophysics and related sciences. It is being awarded to outstanding scientists from any country and nationality having significant contribution in science. The Prize totals USD 500,000 and since 2010 is being awarded once every two years. March 18 was the deadline for nominations, and the International Steering Committee chaired by the President of the Armenian National Academy of Sciences Prof. Radik Martirosyan received nominations from national academies of sciences, universities, observatories, and Nobel Prize winners for 12 outstanding scientists and teams from different countries. After a thorough study of the nominated works, as well as independent referees’ reports, the Committee had several discussions and finally it was decided to share the Prize between Prof. Jaan Einasto (Tartu Observatory, Estonia), nominated by Tartu Observatory “for his fundamental contributions to the discovery of dark matter and the cosmic web” and Prof. Igor Novikov (Astro-Space Center, P.N. Lebedev Physics Institute, Russia) nominated by the Institute of Theoretical Physics and Astronomy of Vilnius University, Lithuania “for his pioneering formulation how to confirm observationally that our Universe started as a hot one, and for proposing the method for determination of quasar masses”. Jaan Einasto (83) is a senior scientist at the Tartu Observatory, Estonia. Since 1952 he works at Tartu Observatory. -
Sandra Faber Receives $500,000 Gruber Cosmology Prize
Media Contact: A. Sarah Hreha +1 (203) 432-6231 [email protected] Online Newsroom: www.gruber.yale.edu/news-media SANDRA FABER RECEIVES $500,000 GRUBER COSMOLOGY PRIZE FOR CAREER ACHIEVEMENTS Sandra Faber May 17, 2017, New Haven, CT – The 2017 Gruber Foundation Cosmology Prize recognizes Sandra M. Faber for a body of work that has helped establish many of the foundational principles underlying the modern understanding of the universe on the largest scales. The citation praises Faber for “her groundbreaking studies of the structure, dynamics, and evolution of galaxies.” That work has led to the widespread acceptance of the need to study dark matter, to an appreciation of the inextricable relationship between the presence of dark matter and the formation of galaxies, and to the recognition that black holes reside at the heart of most large galaxies. She has also made significant contributions to the innovations in telescope technology that have revolutionized modern astronomy. Through these myriad achievements, the Gruber citation adds, Faber has “aided and inspired the work of astronomers and cosmologists worldwide.” Faber will receive the $500,000 award as well as a gold medal at a ceremony this fall. Less than a hundred years ago, astronomers were still debating whether our Milky Way Galaxy was the entirety of the universe or if other galaxies existed beyond our own. Today astronomers estimate the number of galaxies within the visible universe at somewhere between 200 billion and 2 trillion. For more than four decades Faber—now Professor Emerita at the University of California, Santa Cruz, and Astronomer Emerita of the University of California Observatories—has served as a pivotal figure in leading and guiding the exploration of this unimaginably vast virgin scientific territory. -
Icranet Scientific Report 2009
Cosmology group of Tartu Observatory 1 The cosmology group of Tartu Observatory 1.1 Science staff members Jaan Einasto, Maret Einasto, Mirt Gramann, Urmas Haud, Gert Hutsi, Juhan Lauri Liivamägi, Valery Malyuto; Enn Saar, Ivan Suhhonenko, Erik Tago, Antti Tamm, Elmo Tempel, Peeter Tenjes, Jaan Vennik; 1.2 PhD student Tiit Sepp 1.3 Technicians Peeter Einasto, Triin Einasto, Margus Sisask. 1527 2 Scientific studies I will classify the results according to the project goals. 2.1 Testing the inflationary paradigm In order to test the inflationary paradigm (the initial extremely fast expansion of the Universe) we studied the observational traces of baryon oscillations (BAO), predicted by inflation theories. Gert Hütsi discovered the traces of BAO in the power spectrum of the galaxy distribution, using the catalogue of the distant galaxy clusters of the Sloan Digital Sky Survey (SDSS). The paper has been accepted by ’Monthly Notices of the Royal Astronomical Society’ (MNRAS). Enn Saar, together with Ivan Suhhonenko and colleagues from the Valen- cia and Tuorla observatories demonstrated that photometric redshifts can be used to restore the matter correlation functions of deep lightcones. The paper has been published by MNRAS. Gert Hütsi, together with colleagues from the Hiroshima University, stud- ied the damping of BAO, and estimated the structure growth rate. One paper has been published (Physical Review), another submitted. Traces of BAO can be sought also in the correlation function of galaxies. Enn Saar and Elmo Tempel, together with colleagues from Valencia, found these. Enn Saar also solved the problem of bootstrap estimation of correlation function errors. The paper was published in ’Astrophysical Journal Letters’. -
Lars Hernquist and Volker Springel Receive $500,000 Gruber Cosmology Prize
Media Contact: A. Sarah Hreha +1 (203) 432‐6231 [email protected] Online Newsroom: https://gruber.yale.edu/news‐media Lars Hernquist and Volker Springel Receive $500,000 Gruber Cosmology Prize Lars Hernquist Volker Springel New Haven, CT — The 2020 Gruber Cosmology Prize recognizes Lars Hernquist, Center for Astrophysics | Harvard & Smithsonian, and Volker Springel, Max Planck Institute for Astrophysics, for their defining contributions to cosmological simulations, a method that tests existing theories of, and inspires new investigations into, the formation of structures at every scale from stars to galaxies to the universe itself. Hernquist and Springel will divide the $500,000 award, and each will receive a gold laureate pin at a ceremony that will take place later this year. The award recognizes their transformative work on structure formation in the universe, and development of numerical algorithms and community codes further used by many other researchers to significantly advance the field. Hernquist was a pioneer in cosmological simulations when he joined the fledgling field in the late 1980s, and since then he has become one of its most influential figures. Springel, who entered the field in 1998 and first partnered with Hernquist in the early 2000s, has written and applied several of the most widely used codes in cosmological research. Together Hernquist and Springel constitute, in the words of one Gruber Prize nominator, “one of the most productive collaborations ever in cosmology.” Computational simulations in cosmology begin with the traditional source of astronomical data: observations of the universe. Then, through a combination of theory and known physics that might approximate initial conditions, the simulations recreate the subsequent processes that would have led to the current structure. -
Jocelyn Monroe
CURRICULUM VITÆ JOCELYN MONROE ADDRESS: CONTACT: Massachusetts Institute of Technology Phone: (617) 253 2332 77 Massachusetts Avenue, 26-561 Email: [email protected] Cambridge, MA 02139 Web: http://molasses.lns.mit.edu/jocelyn EDUCATION: 2006: Ph.D. (Physics) Columbia University Dissertation Title: “A Combined νµ and νe Oscillation Search at MiniBooNE,” Advisor: Prof. Michael Shaevitz 2002: M.A. (Physics) Columbia University 2002: M.Phil. (Physics) Columbia University 1999: B.A. (Astrophysics) Columbia University EMPLOYMENT: July 2009-: Assistant Professor, Massachusetts Institute of Technology 2006-2009: Pappalardo Fellow, Massachusetts Institute of Technology 2000-2006: Research Assistant, Columbia University 1999-2000: Engineering Physicist, Beams Division, Fermi National Accelerator Laboratory 1997: DOE REU Summer Program, Particle Physics Division, Fermi National Accelerator Laboratory COLLABORATION MEMBERSHIPS: 2008-: CLEAN/DEAP Collaboration (SNOLab, Canada) 2006-: DMTPC Collaboration (MIT, USA) 2006-: SNO Collaboration (SNOLab, Canada) 1999-: MiniBooNE Collaboration (FNAL, USA) 1999-2000: Neutrino Factory Collaboration (FNAL, USA) COMMITTEES: SNO Physics Interpretation Review Committee Chair (2006-present) SNO Low Energy Threshold Analysis Review Committee Member (2006-2009) Conference Organizer, 2nd CYGNUS Directional Dark Matter Workshop (2009) SNO Collaboration Executive Board Junior Member (2007-2008) Conference Organizer, 5th International Workshop on Neutrino Factories (2003) Jocelyn Monroe 1 of 11 OUTREACH: 2009 MIT Physics -
Annual Report 2013 1 Research
Annual Report 2013 Jaan Einasto 1 Research I participated in the comparison of the structure of groups of galaxies of the Sloan Digital Sky Survey seventh data release (SDSS DR7) galaxy and galaxy group catalogues and groups found for the Millennium N-body simulation by Nurmi et al. (2013). We analysed the group luminosities, group richnesses, virial radii, sizes of groups and their rms velocities for four volume-limited samples from observations and simulations. Our results showed that the spatial densities of groups agree within one order of magnitude in all samples with a rather good agreement between the mock catalogues and observations. I participated in the search for shell-like structures in the distribution of nearby rich clusters of galaxies drawn from the SDSS DR8, initiated by Maret Einasto (Einasto et al., 2013b). We find the maxima in the distribution of distances from rich galaxy clusters to other groups and clusters at distance of about 120 h−1 Mpc suggesting a density enhancement at these distances from rich clusters, and possible indication of shell-like structures. The rich cluster A1795, the central cluster of the Bootes supercluster, has the highest maximum in the distance distribution of other groups and clusters around them at distance of about 120 h−1 Mpc among our rich cluster sample, and another maximum at a distance of about 240 h−1 Mpc. However, the radius of the possible shell is larger than expected for a BAO shell (≈ 109 h−1 Mpc). Together with Maret Einasto and collaborators I studied the morphology and galaxy content of SDSS DR8 superclusters (Einasto et al., 2013a). -
Recent Progress from the DEAP-3600 Dark Matter Direct Detection Experiment
Recent Progress from the DEAP-3600 Dark Matter Direct Detection Experiment Jocelyn Monroe, Royal Holloway University of London IPA2014 August 22, 2014 Outline 1. DEAP-3600 Detector 2. Experimental Technique 3. Status and Outlook RHUL Jocelyn Monroe December 12, 2012 The Low-Background Frontier: Status of SI Searches 1 event/ kg/day 1 event/ 100kg/day 1 event/ 100 kg/ 100 days RHUL Jocelyn Monroe August 22, 2014 The Low-Background Frontier: Status of SI Searches 1 event/ kg/day 1 event/ 100kg/day 1 event/ 100 kg/ 100 days Scalability of Detector Technology Scalability of Detector RHUL Jocelyn Monroe August 22, 2014 The Low-Background Frontier: Status of SI Searches 1 event/ kg/day 1 event/ 100kg/day 1 event/ 100 kg/ 100 days New Techniques for Backgrounds Techniques New Scalability of Detector Technology Scalability of Detector RHUL Jocelyn Monroe August 22, 2014 The Low-Background Frontier: Status of SI Searches 1 event/ kg/day 1 event/ 100kg/day 1 event/ 100 kg/ 100 days New Techniques for Backgrounds Techniques New Scalability of Detector Technology Scalability of Detector Complementary with High-Energy Frontier RHUL Jocelyn Monroe August 22, 2014 The Low-Background Frontier: Prospects under construction proposed so far: <1 event at 1E-45 cm2, therefore need minimum 2 1E-47 cm sensitivity for 100 events to measure MX,σ RHUL Jocelyn Monroe August 22, 2014 cross section (cm2) detector mass (ktonnes) Neutrino Lesson: key to scalability is large, open volume 10-45 100 simple detector design 30 DEAP/CLEAN Strategy: Super-K draw on design successes of 10-44 (55 kt) large neutrino experiments 10 DEAP/CLEAN Kamland (3 kt) 10-43 3 1 10-42 SNO (1 kt) MiniBooNE 10-39 0.1 (0.8 kt) RHUL Jocelyn Monroe August 22, 2014 Single Phase a la Neutrinos high light yield and self-shielding of target background discrimination from prompt scintillation timing.. -
HAS the UNIVERSE the CELL STRUCTURE? Mihkel Jôeveer and Jaan Einasto Tartu Astrophysical Observatory Tôravere 20244 Estonia, U
HAS THE UNIVERSE THE CELL STRUCTURE? Mihkel Jôeveer and Jaan Einasto Tartu Astrophysical Observatory Tôravere 20244 Estonia, U.S.S.R. 1. INTRODUCTION As demonstrated by de Vaucouleurs (1956, 1975a,b, 1976), Abell (1961), Karachentsev (1966), Kiang and Saslaw (1969) and others, clusters of galaxies as well as groups of galaxies have a tendency to form second-order clusters of galaxies, often called superclusters. Recent statistical studies by the Princeton group (Davis, Groth and Peebles 1977, Seldner and Peebles 1977a) have confirmed this result. Statistical studies, however, give little information about the internal structure of second-order clusters. To get a clearer picture of the distribution of galaxies in space, we have studied the three-dimensional distribution of galaxies and clusters1 of galaxies. We have used recession velocities of galaxies and mean velocities of clusters as distance indicators supposing, following Sandage and Tammann (1975) , that the expansion of the Universe is uniform. 2. OBSERVATIONAL DATA The distribution of the following objects has been studied: Abell clusters of galaxies (Abell 1958), Zwicky clusters of galaxies (Zwicky et al. 1961-68), groups and pairs of galaxies, and single galaxies. The second Reference Catalogue of Bright Galaxies (de Vaucouleurs, de Vaucouleurs and Corwin 1976) has served as the source of the radial velocities for galaxies. Radial velocities of the Abell clusters have been taken from a compilation by Corwin (1974) supplemented by some new determinations (Faber and Dressier 1976). Only nearby objects have been studied: Zwicky clusters belonging to the "near" distance class and galaxies having redshifts not in excess of 15 000 km s_1 have been used.