Dark Matter Direct Detection Status and Prospects
Total Page:16
File Type:pdf, Size:1020Kb
Dark Matter Direct Detection Status and Prospects Jocelyn Monroe, Royal Holloway, University of London 2019 International Workshop on Baryon and Lepton Number Violation Institute for Theoretical Physics, Madrid, ES October 24, 2019 Big Questions for the Dark Sector (a la European Strategy for Particle Physics Update 2019) 1) How do we search for dark matter, depending on its properties? 2) What are the highlights and challenges of the experimental programs, current or near-future, that address different regions of parameter space? 3) How can dark matter detection experiments inform/guide energy and intensity frontier experiments, and vice versa? Jocelyn Monroe Oct. 24, 2019 / p.2 Big Questions for the Dark Sector (a la European Strategy for Particle Physics Update 2019) 1) How do we search for dark matter, depending on its properties? 2) What are the highlights and challenges of the experimental programs, current or near-future, that address different regions of parameter space? 3) How can dark matter detection experiments inform/guide energy and intensity frontier experiments, and vice versa? Jocelyn Monroe Oct. 24, 2019 / p.2 χ χ Gravitational Detection Indirect Detection ? e-,ν,γ e+,p,D Direct Detection Accelerator Production χ χ jet p p N N’ χ χ Jocelyn Monroe Oct. 24, 2019 / p.3 Dark Matter Direct Detection Signal:χN ➙χN χ χ Backgrounds: γ e- ➙ γ e- n N ➙ n N N ➙ N’ + α, e- ν N ➙ ν N experimental requirements: particle ID for recoil N, e-, alpha, n (multiple)γ final states γ Jocelyn Monroe Oct. 24, 2019 / p.4 1 E = m v2 WIMP Scattering χ D 2 D χ kinematics: v/c ~ 8E-4! q2 = 2m E recoil angle strongly correlated T recoil 4mDmT with incoming WIMP direction r = 2 (mD + mT ) N N (1 cosq) E = E r − recoil D 2 Spin Independent: χscatters coherently off of the entire nucleus A: σ~A2 D. Z. Freedman, PRD 9, 1389 (1974) Spin Dependent: mainly unpaired nucleons contribute to scattering amplitude: σ~ J(J+1) experimental requirements: measure recoil energy, time, +angle Jocelyn Monroe Oct. 24, 2019 / p.5 100 GeV/c2 WIMP mass Observable: Recoil Energy 1E-45 cm2 WIMP-nucleon SI σ 10 χ Scintillation 1 χ Heat 0.1 Ionization ~ experimental requirements: ~1-10s of keV energy threshold, very low backgrounds Jocelyn Monroe Oct. 24, 2019 / p.6 Backgrounds ? N Gamma ray interactions: electron recoil final states rate ~ Ne x (gamma flux), O(1E7) events/(kg day) mis-identified electrons mimic nuclear recoils Contamination: 238U and 232Th decays, recoiling progeny and 2008 mis-identified alphas, betas mimic nuclear recoils Neutrons: 2018 Nuclear recoil final state. (alpha,n), U, Th fission, cosmogenic spallation pp solar neutrinos μ μ γ N* N D. Malling, UCLA DM’16 n Thanks to L. Baudis Jocelyn Monroe Oct. 24, 2019 / p.7 Backgrounds ? N Gamma ray interactions: electron recoil final states rate ~ Ne x (gamma flux), O(1E7) events/(kg day) mis-identified electrons mimic nuclear recoils Contamination: 238U and 232Th decays, recoiling progeny and 2008 mis-identified alphas, betas mimic nuclear recoils Neutrons: 2018 Nuclear recoil final state. (alpha,n), U, Th fission, cosmogenic spallation pp solar neutrinos μ μ γ N* N D. Malling, UCLA DM’16 n Thanks to L. Baudis Jocelyn Monroe Oct. 24, 2019 / p.8 Backgrounds ? N Gamma ray interactions: electron recoil final states rate ~ Ne x (gamma flux), O(1E7) events/(kg day) mis-identified electrons mimic nuclear recoils Contamination: 238U and 232Th decays, recoiling progeny and D.-M. Mei, A. Hime, PRD73:053004 (2006) mis-identified alphas, betas mimic nuclear recoils Neutrons: Nuclear recoil final state. (alpha,n), U, Th fission, Boulby cosmogenic spallation μ μ γ N* N n + discrimination between e- vs. N Jocelyn Monroe + large, active neutron shielding Oct. 24, 2019 / p.9 Irreducible Backgrounds impossible to shield a detector from coherent neutrino scattering! • “neutrino floor:” both ν-N and ν-e ν ν contribute backgrounds Z Φ(solar B8) = 5.86 x 106 cm-2 s-1 N N Aprile et al., JCAP04 (2016) 027 nuclear recoil final state neutrino bound at 10-46-10-48 cm2 in zero-background paradigm JM, P. Fisher, PRD76:033007 (2007) Fisher, JM, P. unless you measure the direction! Jocelyn Monroe Oct. 24, 2019 / p. 10 Irreducible Backgrounds impossible to shield a detector from coherent neutrino scattering! • “neutrino floor:” both ν-N and ν-e ν ν contribute backgrounds Z Φ(solar B8) = 5.86 x 106 cm-2 s-1 N N Aprile et al.al.,, JCAP04JCAP16 04(2016) (2016) 027 027 nuclear recoil final state neutrino bound at 10-46-10-48 cm2 in zero-background paradigm JM, P. Fisher, PRD76:033007 (2007) Fisher, JM, P. unless you measure the direction! Jocelyn Monroe Oct. 24, 2019 / p. 10 Modulation Signatures Annual event rate modulation: June-December asymmetry ~2-10%. Drukier, Freese, Spergel, Phys. Rev. D33:3495 (1986) Sidereal direction modulation: asymmetry ~ 20-100% in forward-backward event rate. Spergel, Phys. Rev. D36:1353 (1988) need precise detector stability, + readout capable of direction measurement Jocelyn Monroe Oct. 24, 2019 / p.11 Big Questions for the Dark Sector (a la European Strategy for Particle Physics Update 2019) 1) How do we search for dark matter, depending on its properties? 2) What are the highlights and challenges of the experimental programs, current or near-future, that address different regions of parameter space? 3) How can dark matter detection experiments inform/guide energy and intensity frontier experiments, and vice versa? Jocelyn Monroe Oct. 24, 2019 / p.12 Direct Detection Status Wide range of parameters! Direct detection searches historically optimised for WIMP sensitivity... Baer et al., arXiv:1407.0017 Jocelyn Monroe Oct. 24, 2019 / p.13 −37 10 CRESST-III 2019 −38 Direct Detection Status10 and CDMSLiteProspects 2017 ] 2 10−39 excluded* at 90% DarkSide-50 2018 confidence level 10−40 Wide range of parameters! [cm SI −41 σ 10 Direct detection searches historically10−42 optimised for WIMP sensitivity... DEAP-3600 2017 −43 DEAP-3600 2019 10 SuperCDMS proj. DarkSide-50 2018 LUX 2017 10−44 +huge growth of axion-like DM industryPANDAX-II! 2017 DarkSide-LM proj. DEAP-3600 proj. 10−45 XENON1T 2018 Xenon 1TXENON1T (2017) Ionization Signals Xenon-nT2019 LZ proj. 10−46 proj. XENONnTyr proj. −47 t× 10 proj. t× yrproj. −48 DarkSide-20kt× yr 200 10 DARWIN 200 Dark Matter-Nucleon Argo 3000 −49 10 Neutrino floor on xenon 10−50 −3 −2 −1 2 10 10 10 2 1 10 10 Mχ [TeV/c ] Baer et al., arXiv:1407.0017 Jocelyn Monroe Oct. 24, 2019 / p.13 Low Mass Prospects: Solid State Detectors Detector Technology: Phonons: SuperCDMS and EDELWEISS (Ge), Phonons: CRESST (CaWO4) crystal bolometers with TES for Erecoil & R (timing) TES for Erecoill Transition Edge Sensor readout at O(10 mK) for phonon detection + scintillation/ionization h+ + many new ideas (e.g. skipper CCDs, high e- pressure gas ….) Charge: biased at V, used to measure Scintillation: Erecoil, configured to reject surface events TES for particle ID detectors reach energy thresholds of < 1 keV, with FWHM < 0.3 keV e.g. PRD 99 (2019) 082013 Jocelyn Monroe Oct. 24, 2019 / p.14 Large Mass Prospects: Liquid Noble Detectors Detector Technology: dual-phase Time Projection Chambers with multi-tonne liquid Xe, Ar targets read out primary scintillation: “S1” + proportional gas scintillation from drifted electrons: “S2” https://lz.slac.stanford.edu/our-research/lz-research Jocelyn Monroe Oct. 24, 2019 / p.15 Liquid Noble Targets particle identification: light vs. time depends on ionization density. (Argon example) high light yield, purifyable target, self-shielding, transparent to VUV scintillation, … Amaudruz et al. Astropart.Phys. 85 (2016) 1-23 Jocelyn Monroe Oct. 24, 2019 / p.16 Xenon Detectors Xenon100 XENON 10 (LNGS) ZEPLIN (Boulby) 10 kg 2010 XENON 100 (LNGS) 100 kg LUX (250 kg, SURF), PANDA-X XMASS 2015 (500 kg, CJPL) Aprile et al, arXiv:1805.12565 (0.8t, Kamioka) 1,000 kg XENON 1T (1t, LNGS) PandaX-4:(4t, CJPL) 2020 XENONnT: (6t, LNGS) LZ: (7t, SURF) 10,000 kg Future: DARWIN: 50 t Jocelyn Monroe Oct. 24, 2019 / p.17 Argon Detectors Xenon100 DarkSide-50: leading SI limit at 1-5 GeV/c2 for WIMP-nucleus and WIMP-e scattering Agnes et al., Phys. Rev. Lett.121.081307 (2018) 2010 DarkSide-50 10 kg (50 kg, LNGS) low mass frontier here! 100 kg ArDM (1t, LSC) 1,000 kg 2015 DEAP-3600 (3.6t, SNOLAB) Global Argon Dark Matter 10000 kg Collaboration formed 2020 10,000 kg DEAP-3600: parts-per-billion level “S1” particle ID, 100,000 kg ultrapure acrylic cryostat DarkSide-20k (50t, LNGS) Ajaj et al,Phys. Rev. D (2019) Future: ARGO: 400 t Jocelyn Monroe Oct. 24, 2019 / p.18 Technology Synergies DarkSide-20k 1. Cryostat technologies: DarkSide-20k cryostat uses technology developed for ProtoDUNEs (1) 2. Photon sensors: low noise, high efficiency, cryo Si sensors developed by DarkSide-20k with FBK (LHC Si) 3. Isotopic enhancement: ARIA facility for depletion of Ar-39 in UAr, CERN Vacuum Group collaboration ProtoDUNE (3) + Data (2) - 1 PE fit - 2 PE fit - 3 PE fit - 4 PE fit 5 cm x 5 cm - 5 PE fit tiled SiPM for comparison: Charge (Arb. Units) Aalseth, et al. JINST 12 (2017) no.09, P09030 Jocelyn Monroe Charge[Arb. Units] Sept. 24, 2018 / p.16 Technology Synergies DarkSide-20k 1. Cryostat technologies: DarkSide-20k cryostat uses technology developed for ProtoDUNEs (1) 2. Photon sensors: low noise, high efficiency, cryo Si sensors developed by DarkSide-20k with FBK (LHC Si) 3. Isotopic enhancement: ARIA facility for depletion of Ar-39 in UAr, CERN Vacuum Group collaboration ProtoDUNE (3) + Data (2) - 1 PE fit - 2 PE fit - 3 PE fit - 4 PE fit 5 cm x 5 cm - 5 PE fit tiled SiPM for comparison: Charge (Arb.