Institute of Particle Physics 2022-2026 Long Range Plan IPP Scientific Council1 17 November 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Moedal Experiment at the LHC. Searching Beyond the Standard
126 EPJ Web of Conferences , 02024 (2016) DOI: 10.1051/epjconf/201612602024 ICNFP 2015 The MoEDAL experiment at the LHC Searching beyond the standard model James L. Pinfold (for the MoEDAL Collaboration)1,a 1 University of Alberta, Physics Department, Edmonton, Alberta T6G 0V1, Canada Abstract. MoEDAL is a pioneering experiment designed to search for highly ionizing avatars of new physics such as magnetic monopoles or massive (pseudo-)stable charged particles. Its groundbreaking physics program defines a number of scenarios that yield potentially revolutionary insights into such foundational questions as: are there extra dimensions or new symmetries; what is the mechanism for the generation of mass; does magnetic charge exist; what is the nature of dark matter; and, how did the big-bang develop. MoEDAL’s purpose is to meet such far-reaching challenges at the frontier of the field. The innovative MoEDAL detector employs unconventional methodologies tuned to the prospect of discovery physics. The largely passive MoEDAL detector, deployed at Point 8 on the LHC ring, has a dual nature. First, it acts like a giant camera, comprised of nuclear track detectors - analyzed offline by ultra fast scanning microscopes - sensitive only to new physics. Second, it is uniquely able to trap the particle messengers of physics beyond the Standard Model for further study. MoEDAL’s radiation environment is monitored by a state-of-the-art real-time TimePix pixel detector array. A new MoEDAL sub-detector to extend MoEDAL’s reach to millicharged, minimally ionizing, particles (MMIPs) is under study Finally we shall describe the next step for MoEDAL called Cosmic MoEDAL, where we define a very large high altitude array to take the search for highly ionizing avatars of new physics to higher masses that are available from the cosmos. -
EPS-HEP 2017 Report of Contributions
EPS-HEP 2017 Report of Contributions https://indico.cern.ch/e/epshep2017 EPS-HEP 2017 / Report of Contributions Theory overview on FCNC B-decays Contribution ID: 10 Type: Parallel Talk Theory overview on FCNC B-decays Thursday, 6 July 2017 09:00 (30 minutes) LHCb experiment at CERN has recently reported a set of measurements on lepton flavour univer- sality in b to s transitions showing a departure from the Standard Model predictions. I will review the main ideas recently put forward to make sense out of these intriguing hints. Focusing on the new physics explanation, I will discuss the correlated signals expected in other low- and high- energy observables, that could help clarify the mysterious signal. Experimental Collaboration Primary author: GRELJO, Admir (University of Zurich) Presenter: GRELJO, Admir (University of Zurich) Session Classification: Flavour and symmetries Track Classification: Flavour Physics and Fundamental Symmetries October 6, 2021 Page 1 EPS-HEP 2017 / Report of Contributions Charm Quark Mass with Calibrate … Contribution ID: 11 Type: Parallel Talk Charm Quark Mass with Calibrated Uncertainty Friday, 7 July 2017 12:35 (13 minutes) We determine the charm quark mass mc(mc) from QCD sum rules of moments of the vector cur- rent correlator calculated in perturbative QCD. Only experimental data for the charm resonances below the continuum threshold are needed in our approach, while the continuum contribution is determined by requiring self-consistency between various sum rules, including the one for the ze- roth moment. Existing data from the continuum region can then be used to bound the theoretical error. Our result is mc(mc) = 1272 ± 8 MeV for αs(MZ ) = 0:1182. -
Curriculum Vitæ Jocelyn Monroe
CURRICULUM VITÆ JOCELYN MONROE ! ADDRESS: CONTACT: Royal Holloway University of London Phone: +44 1784 443513 Department of Physics, W255 Email: [email protected] Egham, Surrey Web: http://www.pp.rhul.ac.uk/~jmonroe EDUCATION: 2006: Ph.D. (Physics) Columbia University Dissertation Title: “A Combined "µ and "e Oscillation Search at MiniBooNE,” Advisor: Prof. Michael Shaevitz 2002: M.A. (Physics) Columbia University 2002: M.Phil. (Physics) Columbia University 1999: B.A. (Astrophysics) Columbia University EMPLOYMENT: May 2013-: Professor of Physics, Royal Holloway University of London 2011-2013: Senior Lecturer, Royal Holloway University of London 2009-2014: Assistant Professor, Massachusetts Institute of Technology 2006-2009: Pappalardo Fellow, Massachusetts Institute of Technology 2000-2006: Research Assistant, Columbia University 1999-2000: Engineering Physicist, Beams Division, Fermi National Accelerator Laboratory 1997: DOE REU Summer Program, Particle Physics Division, Fermi National Accelerator Laboratory COLLABORATION MEMBERSHIPS: 2017-: DarkSide-20k Collaboration, UK P.I. (LNGS, IT), Deputy Spokesperson (2021-) 2019-: The PlomBox Project, P.I. (https://plombox.org/) 2008-: DEAP-3600 (SNOLab, Canada), Executive Board Chair (2014-15) 2006-2016: DMTPC (WIPP, USA), Spokesperson (2011-2016) 2006-2009: SNO (SNOLab, Canada) 1999-2008: MiniBooNE (FNAL, USA) 1999-2000: Neutrino Factory (FNAL, USA) AWARDS AND HONORS: 2016 Breakthrough Prize in Fundamental Physics Laureate 2012 Kavli Frontiers of Science Fellow, U.S. National Academy -
Monday 22 June
Monday 22 June 7:00 AM US CDT Opening 7:00 AM 10 Welcome Steve Brice Fermilab 7:10 AM 5 Update on IUPAP neutrino panel Nigel Smith SNOLab 7:15 AM 5 The Snowmass process for neutrinos Kate Scholberg Duke University 7:20 AM 35+5 Neutrinos in the era of multi-messenger astronomy Francis Halzen University of Wisconsin, Madison 8:00 AM US CDT 10 Break 8:10 AM 25+5 A review of progress in R&D for neutrino detectors David Nygren University of Texas, Arlington 8:40 AM 17+3 Neutrino oscillation measurements with IceCube Summer Blot DESY/Zeuthen 9:00 AM US CDT 10 Break 9:10 AM US CDT Direct Neutrino Mass Measurements 9:10 AM 17+3 Mass meaurements with Ho-163 Maurits Haverkort University of Heidelberg 9:30 AM 20+5 Project 8 Noah Oblath Pacific Northwest National Laboratory 9:55 AM 20+5 KATRIN: first results and future perspectives Susanne Mertens Technical University Munich and Max Planck Institute for Physics 10:20 AM US CDT 10 Break 10:30 AM 60 Poster Session 11:30 AM US CDT End of Day Tuesday 23 June 7:00 AM US CDT Neutrino Interactions 7:00 AM 25+5 Historical Review and Future program of neutrino cross section measurements and calculations Noemi Rocco Argonne National Laboratory and Fermilab 7:30 AM 17+3 Connections between neutrino and electron scattering Adi Ashkenazi MIT 7:50 AM US CDT 10 Break 8:00 AM 20+5 The Neutrino's View of the Nucleus: New Results from MINERvA Deepika Jena Fermilab 8:25 AM 20+5 Neutrino Interaction Measurements on Argon Kirsty Duffy Fermilab 8:50 AM 20+5 Cross-section measurements with NOvA Linda Cremonesi University -
Upgrade of the Global Muon Trigger for the Compact Muon Solenoid Experiment at CERN”
DISSERTATION/DOCTORAL THESIS Titel der Dissertation/Title of the Doctoral Thesis “Upgrade of the Global Muon Trigger for the Compact Muon Solenoid experiment at CERN” verfasst von/submitted by Mag. Dinyar Sebastian Rabady angestrebter akademischer Grad/in partial fulfilment of the requirements for the degree of Doktor der Naturwissenschaften (Dr. rer. nat.) Wien, im Jänner 2018/Vienna, in January 2018 Studienkennzahl lt. Studienblatt/ A 796 605 411 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt/ Physik field of study as it appears onthe student record sheet: Betreut von/Supervisor: Dipl.-Ing. Dr. Claudia-Elisabeth Wulz Hon.-Prof. Dipl.-Phys. Dr. Eberhard Widmann Für meinen Großvater. Abstract The Large Hadron Collider is a large particle accelerator at the CERN research labo- ratory, designed to provide particle physics experiments with collisions at unprece- dented centre-of-mass energies. For its second running period both the number of colliding particles and their collision energy were increased. To cope with these more challenging conditions and maintain the excellent performance seen during the first running period, the Level-1 trigger of the Compact Muon Solenoid experiment — a so- phisticated electronics system designed to filter events in real-time — was upgraded. This upgrade consisted of the complete replacement of the trigger electronics andafull redesign of the system’s architecture. While the calorimeter trigger path now follows a time-multiplexed processing model where the entire trigger data for a collision are received by a single processing board, the muon trigger path was split into regional track finding systems where each newly introduced track finder receives data from all three muon subdetectors for a certain geometric detector slice and reconstructs fully formed muon tracks from this. -
Understanding the Universe from Deep Underground
Understanding the Universe from Deep Underground Sudbury Neutrino Observatory Art McDonald, Professor Emeritus Queen’s University, Kingston, Ontario, Canada With our laboratory deep underground we have created a very low radioactivity location where we study some of the most basic scientific questions: • How do stars like our Sun burn and create the elements from which we are made? • What are the basic Laws of Physics for the smallest fundamental particles? • What is the composition of our Universe and how has it evolved to the present ? How do you make measurements that can provide answers to enormous questions like these? Answers: 1: Measure elusive particles called NEUTRINOS that come from the deepest reaches of the Sun where the energy is generated and from cosmic rays interacting in the atmosphere. 2: Measure fundamental particles (DARK MATTER) that are left over from the original formation of the Universe. 3. Measure rare forms of radioactivity (DOUBLE BETA DECAY) that can tell us more about fundamental laws of physics. Neutrinos from the Sun The middle of the sun is so hot that the centers of the atoms (nuclei) fuse together, giving off lots of energy and neutrinos. The neutrinos penetrate easily through the dense material in the Sun and reach the earth. Neutrino facts: • Neutrinos, along with electrons and quarks, are basic particles of nature that we do not know how to sub-divide further. • Neutrinos come in three “flavours” (electron, mu, tau) as described in The Standard Model of Elementary Particles, a fundamental theory of microscopic particle physics. •They only stop if they hit the nucleus of an atom or an electron head-on and can pass through a million billion kilometers of lead without stopping. -
Sub Atomic Particles and Phy 009 Sub Atomic Particles and Developments in Cern Developments in Cern
1) Mahantesh L Chikkadesai 2) Ramakrishna R Pujari [email protected] [email protected] Mobile no: +919480780580 Mobile no: +917411812551 Phy 009 Sub atomic particles and Phy 009 Sub atomic particles and developments in cern developments in cern Electrical and Electronics Electrical and Electronics KLS’s Vishwanathrao deshpande rural KLS’s Vishwanathrao deshpande rural institute of technology institute of technology Haliyal, Uttar Kannada Haliyal, Uttar Kannada SUB ATOMIC PARTICLES AND DEVELOPMENTS IN CERN Abstract-This paper reviews past and present cosmic rays. Anderson discovered their existence; developments of sub atomic particles in CERN. It High-energy subato mic particles in the form gives the information of sub atomic particles and of cosmic rays continually rain down on the Earth’s deals with basic concepts of particle physics, atmosphere from outer space. classification and characteristics of them. Sub atomic More-unusual subatomic particles —such as particles also called elementary particle, any of various self-contained units of matter or energy that the positron, the antimatter counterpart of the are the fundamental constituents of all matter. All of electron—have been detected and characterized the known matter in the universe today is made up of in cosmic-ray interactions in the Earth’s elementary particles (quarks and leptons), held atmosphere. together by fundamental forces which are Quarks and electrons are some of the elementary represente d by the exchange of particles known as particles we study at CERN and in other gauge bosons. Standard model is the theory that laboratories. But physicists have found more of describes the role of these fundamental particles and these elementary particles in various experiments. -
Particle Accelerators and Experiments Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore
Particle Accelerators and Experiments Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore March 30th- April 2nd Muscat 1 Part I Accelerators 2 Different types of Methodology tools and equipment are needed to observe different sizes of object Only particle accelerators can explore the tiniest objects in the 5 Universe 5 Accelerators are Powerful Microscopes Planck constant They make high energy particle beams h = momentum that allow us to see small things. wavelength p ~ energy seen by low energy seen by high energy beam of particles beam of particles (poorer resolution) (better resolution) High Energy Physics Experiments Rutherford experiment (1909) Centre of mass energy squared s=E1m2 Centre of mass energy squared s=4E1E2 Detectors techniques have followed these developments Accelerators for Charged Particles 9 Recent High Energy Colliders Highest energies can be reached with proton colliders Machine Year Beams Energy (s) Luminosity SPPS (CERN) 1981 pp 630-900 GeV 6.1030cm-2s-1 Tevatron (FNAL) 1987 pp 1800-2000 GeV 1031-1032cm-2s-1 SLC (SLAC) 1989 e+e- 90 GeV 1030cm-2s-1 LEP (CERN) 1989 e+e- 90-200 GeV 1031-1032cm-2s-1 HERA (DESY) 1992 ep 300 GeV 1031-1032cm-2s-1 RHIC (BNL) 2000 pp /AA 200-500 GeV 1032cm-2s-1 LHC (CERN) 2009 pp (AA) 7-14 TeV 1033-1034cm-2s-1 Luminosity = number of events/cross section/sec • Limits on circular machines – Proton colliders: Dipole magnet strength superconducting magnets – Electron colliders: Synchrotron10 radiation/RF power: loss ~E4/R2 How Many Accelerators Worldwide? a) 1-10 b) 10-100 c) 100-1,000 d) 1,000-10,000 e) > 10,000 11 Accelerators Worldwide > 25,000 accelerators in use 12 Accelerators Worldwide 44% Radio- therapy 13 Accelerators Worldwide 44% 40% Radio- Ion therapy implant. -
Arxiv:1405.7662V4 [Hep-Ph] 28 Aug 2014
THE PHYSICS PROGRAMME OF THE MoEDAL EXPERIMENT AT THE LHC B. ACHARYA1;2; J. ALEXANDRE1, J. BERNABEU´ 3, M. CAMPBELL4, S. CECCHINI5, J. CHWASTOWSKI6, M. DE MONTIGNY7, D. DERENDARZ6, A. DE ROECK4, J. R. ELLIS1;4, M. FAIRBAIRN1, D. FELEA8, M. FRANK9, D. FREKERS10, C. GARCIA3, G. GIACOMELLI5;5ay, J. JAKUBEK˚ 11, A. KATRE12, D-W KIM13, M.G.L. KING3, K. KINOSHITA14, D. LACARRERE4, S. C. LEE11, C. LEROY15, A. MARGIOTTA5, N. MAURI5;5a, N. E. MAVROMATOS1;4, P. MERMOD12, V. A. MITSOU3, R. ORAVA16, L. PASQUALINI5;5a, L. PATRIZII5, G. E. PAV˘ ALAS¸˘ 8, J. L. PINFOLD7∗, M. PLATKEVICˇ 11, V. POPA8, M. POZZATO5, S. POSPISIL11, A. RAJANTIE17, Z. SAHNOUN5;5b, M. SAKELLARIADOU1, S. SARKAR1, G. SEMENOFF18, G. SIRRI5, K. SLIWA19, R. SOLUK7, M. SPURIO5;5a, Y.N. SRIVASTAVA20, R. STASZEWSKI6, J. SWAIN20, M. TENTI5;5a, V. TOGO5, M. TRZEBINSKI6, J. A. TUSZYNSKI´ 7, V. VENTO3, O. VIVES3, Z. VYKYDAL11, and A. WIDOM20, J. H. YOON21. (for the MoEDAL Collaboration) 1Theoretical Particle Physics and Cosmology Group, Physics Department, King's College London, UK 2International Centre for Theoretical Physics, Trieste, Italy 3IFIC, Universitat de Val`encia- CSIC, Valencia, Spain 4Physics Department, CERN, Geneva, Switzerland 5 INFN, Section of Bologna, 40127, Bologna , Italy 5a Department of Physics & Astronomy, University of Bologna, Italy 5b Centre on Astronomy, Astrophysics and Geophysics, Algiers, Algeria 6 Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland 7Physics Department, University of Alberta, Edmonton Alberta, Canada 8Institute of Space -
Jocelyn Monroe
CURRICULUM VITÆ JOCELYN MONROE ADDRESS: CONTACT: Massachusetts Institute of Technology Phone: (617) 253 2332 77 Massachusetts Avenue, 26-561 Email: [email protected] Cambridge, MA 02139 Web: http://molasses.lns.mit.edu/jocelyn EDUCATION: 2006: Ph.D. (Physics) Columbia University Dissertation Title: “A Combined νµ and νe Oscillation Search at MiniBooNE,” Advisor: Prof. Michael Shaevitz 2002: M.A. (Physics) Columbia University 2002: M.Phil. (Physics) Columbia University 1999: B.A. (Astrophysics) Columbia University EMPLOYMENT: July 2009-: Assistant Professor, Massachusetts Institute of Technology 2006-2009: Pappalardo Fellow, Massachusetts Institute of Technology 2000-2006: Research Assistant, Columbia University 1999-2000: Engineering Physicist, Beams Division, Fermi National Accelerator Laboratory 1997: DOE REU Summer Program, Particle Physics Division, Fermi National Accelerator Laboratory COLLABORATION MEMBERSHIPS: 2008-: CLEAN/DEAP Collaboration (SNOLab, Canada) 2006-: DMTPC Collaboration (MIT, USA) 2006-: SNO Collaboration (SNOLab, Canada) 1999-: MiniBooNE Collaboration (FNAL, USA) 1999-2000: Neutrino Factory Collaboration (FNAL, USA) COMMITTEES: SNO Physics Interpretation Review Committee Chair (2006-present) SNO Low Energy Threshold Analysis Review Committee Member (2006-2009) Conference Organizer, 2nd CYGNUS Directional Dark Matter Workshop (2009) SNO Collaboration Executive Board Junior Member (2007-2008) Conference Organizer, 5th International Workshop on Neutrino Factories (2003) Jocelyn Monroe 1 of 11 OUTREACH: 2009 MIT Physics -
Recent Progress from the DEAP-3600 Dark Matter Direct Detection Experiment
Recent Progress from the DEAP-3600 Dark Matter Direct Detection Experiment Jocelyn Monroe, Royal Holloway University of London IPA2014 August 22, 2014 Outline 1. DEAP-3600 Detector 2. Experimental Technique 3. Status and Outlook RHUL Jocelyn Monroe December 12, 2012 The Low-Background Frontier: Status of SI Searches 1 event/ kg/day 1 event/ 100kg/day 1 event/ 100 kg/ 100 days RHUL Jocelyn Monroe August 22, 2014 The Low-Background Frontier: Status of SI Searches 1 event/ kg/day 1 event/ 100kg/day 1 event/ 100 kg/ 100 days Scalability of Detector Technology Scalability of Detector RHUL Jocelyn Monroe August 22, 2014 The Low-Background Frontier: Status of SI Searches 1 event/ kg/day 1 event/ 100kg/day 1 event/ 100 kg/ 100 days New Techniques for Backgrounds Techniques New Scalability of Detector Technology Scalability of Detector RHUL Jocelyn Monroe August 22, 2014 The Low-Background Frontier: Status of SI Searches 1 event/ kg/day 1 event/ 100kg/day 1 event/ 100 kg/ 100 days New Techniques for Backgrounds Techniques New Scalability of Detector Technology Scalability of Detector Complementary with High-Energy Frontier RHUL Jocelyn Monroe August 22, 2014 The Low-Background Frontier: Prospects under construction proposed so far: <1 event at 1E-45 cm2, therefore need minimum 2 1E-47 cm sensitivity for 100 events to measure MX,σ RHUL Jocelyn Monroe August 22, 2014 cross section (cm2) detector mass (ktonnes) Neutrino Lesson: key to scalability is large, open volume 10-45 100 simple detector design 30 DEAP/CLEAN Strategy: Super-K draw on design successes of 10-44 (55 kt) large neutrino experiments 10 DEAP/CLEAN Kamland (3 kt) 10-43 3 1 10-42 SNO (1 kt) MiniBooNE 10-39 0.1 (0.8 kt) RHUL Jocelyn Monroe August 22, 2014 Single Phase a la Neutrinos high light yield and self-shielding of target background discrimination from prompt scintillation timing.. -
Can Tonne-Scale Direct Detection Experiments Discover Nuclear Dark Matter?
Prepared for submission to JHEP Can Tonne-Scale Direct Detection Experiments Discover Nuclear Dark Matter? Alistair Butcher, Russell Kirk, Jocelyn Monroe and Stephen M. West Dept. of Physics, Royal Holloway University of London, Egham, Surrey, TW20 0EX, U.K. E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark mat- ter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive fea- tures arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spec- trum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ.