Upgrade of the Global Muon Trigger for the Compact Muon Solenoid Experiment at CERN

Total Page:16

File Type:pdf, Size:1020Kb

Upgrade of the Global Muon Trigger for the Compact Muon Solenoid Experiment at CERN DISSERTATION/DOCTORAL THESIS Titel der Dissertation/Title of the Doctoral Thesis “Upgrade of the Global Muon Trigger for the Compact Muon Solenoid experiment at CERN” verfasst von/submitted by Mag. Dinyar Sebastian Rabady angestrebter akademischer Grad/in partial fulfilment of the requirements for the degree of Doktor der Naturwissenschaften (Dr. rer. nat.) CERN-THESIS-2018-033 25/04/2018 Wien, im Jänner 2018/Vienna, in January 2018 Studienkennzahl lt. Studienblatt/ A 796 605 411 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt/ Physik field of study as it appears onthe student record sheet: Betreut von/Supervisor: Dipl.-Ing. Dr. Claudia-Elisabeth Wulz Hon.-Prof. Dipl.-Phys. Dr. Eberhard Widmann Für meinen Großvater. Abstract The Large Hadron Collider is a large particle accelerator at the CERN research labo- ratory, designed to provide particle physics experiments with collisions at unprece- dented centre-of-mass energies. For its second running period both the number of colliding particles and their collision energy were increased. To cope with these more challenging conditions and maintain the excellent performance seen during the first running period, the Level-1 trigger of the Compact Muon Solenoid experiment — a so- phisticated electronics system designed to filter events in real-time — was upgraded. This upgrade consisted of the complete replacement of the trigger electronics andafull redesign of the system’s architecture. While the calorimeter trigger path now follows a time-multiplexed processing model where the entire trigger data for a collision are received by a single processing board, the muon trigger path was split into regional track finding systems where each newly introduced track finder receives data from all three muon subdetectors for a certain geometric detector slice and reconstructs fully formed muon tracks from this. In contrast, the system in operation during the first data taking period was built around subdetector-specific track finders whoseout- put tracks were merged in the Global Muon Trigger. This restructuring of the muon trigger required a novel system to receive muon objects from the track finding layer, remove any duplicate tracks, and forward the best-reconstructed objects to the global decision layer. The upgraded Global Muon Trigger (μGMT) was designed to satisfy the require- ments for such a system. It receives muon track data from all regional track finder processors as well as energy information from the final stage of the calorimeter trigger. These muon tracks are ranked and sorted, while in parallel their azimuthal coordinate is corrected and duplicate muon tracks are removed. An isolation variable using the calorimetric information is computed before the eight highest-ranked muon tracks are sent to the upgraded Global Trigger (μGT). The μGT then determines whether a read- out process shall be initiated by applying complex algorithms on the muon tracks as well as on data received from the calorimeter trigger chain. This thesis presents the design and development ofthe μGMT, outlining the re- quirements as well as challenges encountered during development of the upgraded trigger. Furthermore, the excellent performance of the new system is demonstrated in the context of studies on quarkonia: Both the impact of the improved duplicate removal system as well as of the correction of the azimuthal coordinate are evaluated and shown to improve upon the performance demonstrated by the original Level-1 trigger. Additionally, a simple scheme that increases the purity of dedicated trigger algorithms to select J/ψ mesons by requiring the presence of two oppositely charged muons is presented and assessed. i Kurzfassung Der Large Hadron Collider — ein großer Teilchenbeschleuniger am Forschungszen- trum CERN — wurde entworfen um Teilchenkollisionen mit beispiellosen Schwer- punktsenergien für Teilchenphysik-Experimente bereit zu stellen. Für dessen zwei- te Betriebsperiode wurden sowohl die Anzahl der kollidierenden Teilchen, als auch deren Kollisionsenergie erhöht. Um unter diesen herausfordernderen Bedingungen die hervorragende Leistung aufrechtzuerhalten die der Level-1 Trigger des Compact Muon Solenoid Detektors — ein komplexes Elektroniksystem das in Echtzeit Kolli- sionsereignisse filtert — während der ersten Betriebsperiode gezeigt hat, wareine Erweiterung seiner Funktionalität notwendig. Für diesen Ausbau wurde die gesam- te Trigger-Elektronik ersetzt und die Systemarchitektur überarbeitet. Während nun im Kalorimeter-Trigger die vollständige Trigger-Information für eine Kollision in ei- nem Prozessor verfügbar ist, wurde der Myonen-Trigger in regionale Spurenfinder- Systeme geteilt, bei denen jedes System Daten von allen drei Myonen-Subdetektoren für eine gewisse geometrische Region erhält und hieraus Spuren erstellt. Demgegen- über wurde im Trigger-System der ersten Betriebsperiode für jeden Subdetektor ein eigener Spurenfinder verwendet. Die Ergebnisse dieser Systeme wurden anschließend im Global Muon Trigger System vereinigt. Die Neugestaltung des Myonen-Triggers machte ein neuartiges System notwendig, welches die Resultate der neuen Spurenfin- der erhält, Duplikate entfernt und die am besten rekonstruierten Spuren an das globale Entscheidungssystem weiterleitet. Das neue Global Muon Trigger (μGMT) System wurde entworfen um die obigen Anforderungen zu erfüllen. Es erhält Myonen-Daten von allen regionalen Spurenfin- dern, wie auch Energie-Information von der finalen Stufe des Kalorimeter-Triggers. Die Myonen-Spuren werden gereiht und sortiert, während zeitgleich deren azimutale Koordinate korrigiert und Duplikate entfernt werden. Mit Hilfe der Kalorimeter-Infor- mationen wird eine Isolationsvariable berechnet, bevor die acht höchst-gereihten Spu- ren an das neue Global Trigger (μGT) System geschickt werden. Der μGT entscheidet mit Hilfe komplexer Algorithmen die auf die erhaltenen Objekte angewendet werden, ob ein Auslesevorgang des Detektors initiiert werden soll. Die vorliegende Arbeit präsentiert den μGMT. Es werden zunächst Anforderun- gen definiert und Herausforderungen während der Entwicklung besprochen, bevor das Design des μGMT präsentiert wird. Weiters wird die hervorragende Leistung des neuen Systems im Kontext von Quarkonia-Analysen gezeigt. Sowohl der Einfluss des verbesserten Duplikatentferungssystems als auch der Korrektur der azimutalen Ko- ordinate werden besprochen und deren positiver Effekt gezeigt. Außerdem wird ein Schema vorgestellt, welches die Reinheit eines dedizierten Trigger-Algorithmus um J/ψ-Mesonen zu selektieren erhöht indem zwei Myonen mit gegensätzlicher Ladung gesucht werden. iii Contents Abstract i Kurzfassung iii 1 Introduction 1 1.1 Overview of the thesis ............................... 1 1.2 Personal contributions ............................... 2 2 Quarkonium physics 3 2.1 Introduction ..................................... 3 2.2 Quarkonium production .............................. 4 2.3 Quarkonium polarisation .............................. 5 2.4 Challenges in the trigger system .......................... 7 3 The Large Hadron Collider 9 3.1 Introduction ..................................... 9 3.2 The injection chain ................................. 11 3.3 Luminosity ...................................... 11 3.4 Operational periods of the LHC .......................... 13 3.5 Experiments at the LHC ............................... 15 3.5.1 ALICE .................................... 15 3.5.2 ATLAS .................................... 16 3.5.3 CMS ..................................... 17 3.5.4 LHCb .................................... 18 4 The Compact Muon Solenoid experiment 21 4.1 Overview ....................................... 21 4.1.1 Geometry .................................. 21 4.1.2 Coordinate system ............................. 22 4.2 Inner tracking .................................... 23 4.2.1 The pixel detector .............................. 24 4.2.2 The silicon strip tracker .......................... 25 4.3 Calorimetry ..................................... 26 4.3.1 Electromagnetic calorimeter ........................ 26 4.3.2 Hadron calorimeter ............................. 27 v Contents 4.4 Forward detectors .................................. 28 4.4.1 Castor .................................... 28 4.4.2 Zero degree calorimeters .......................... 29 4.5 The superconducting solenoid ........................... 29 4.6 The muon system .................................. 31 4.6.1 Drift Tubes ................................. 32 4.6.2 Cathode Strip Chambers .......................... 33 4.6.3 Resistive Plate Chambers ......................... 35 4.7 Trigger and data acquisition ............................ 36 4.7.1 Upgrade of the DAQ and HLT during long shutdown 1 . 39 5 The Level-1 Trigger 41 5.1 Introduction ..................................... 41 5.2 The Level-1 trigger for LHC Run-1 ......................... 42 5.2.1 The calorimeter trigger ........................... 42 5.2.2 The muon trigger .............................. 46 5.2.3 The Global Trigger ............................. 53 5.2.4 The Timing, Trigger, and Control system . 54 5.3 The upgraded Level-1 trigger ............................ 54 5.3.1 Level-1 trigger hardware .......................... 56 5.3.2 The calorimeter trigger ........................... 57 5.3.3 The muon trigger .............................. 60 5.3.4 The upgraded Global Trigger ....................... 66 5.3.5 The Trigger Control and Distribution
Recommended publications
  • CERN Courier–Digital Edition
    CERNMarch/April 2021 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the March/April 2021 issue of CERN Courier. Hadron colliders have contributed to a golden era of discovery in high-energy physics, hosting experiments that have enabled physicists to unearth the cornerstones of the Standard Model. This success story began 50 years ago with CERN’s Intersecting Storage Rings (featured on the cover of this issue) and culminated in the Large Hadron Collider (p38) – which has spawned thousands of papers in its first 10 years of operations alone (p47). It also bodes well for a potential future circular collider at CERN operating at a centre-of-mass energy of at least 100 TeV, a feasibility study for which is now in full swing. Even hadron colliders have their limits, however. To explore possible new physics at the highest energy scales, physicists are mounting a series of experiments to search for very weakly interacting “slim” particles that arise from extensions in the Standard Model (p25). Also celebrating a golden anniversary this year is the Institute for Nuclear Research in Moscow (p33), while, elsewhere in this issue: quantum sensors HADRON COLLIDERS target gravitational waves (p10); X-rays go behind the scenes of supernova 50 years of discovery 1987A (p12); a high-performance computing collaboration forms to handle the big-physics data onslaught (p22); Steven Weinberg talks about his latest work (p51); and much more. To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING ATLAS spots rare Higgs decay Weinberg on effective field theory Hunting for WISPs CCMarApr21_Cover_v1.indd 1 12/02/2021 09:24 CERNCOURIER www.
    [Show full text]
  • The ATLAS Experiment
    The ATLAS Experiment Mapping the Secrets of the Universe Michael Barnett Physics Division July 2007 With help from: Joao Pequenao Paul Schaffner M. Barnett – July 2007 1 Large Hadron Collider CERN lab in Geneva Switzerland Protons will circulate in opposite directions and collide inside experimental areas 100 meters underground 17 miles around M. Barnett – July 2007 2 The ATLAS Experiment See animation M. Barnett – July 2007 3 Large Hadron Collider Numbers The fastest racetrack on the planet Trillions of protons will race around the 17-mile ring 11,000 times a second, traveling at 99.9999991% the speed of light. Seven times the energy of any previous accelerator. The emptiest space in the solar system Accelerating protons to almost the speed of light requires a vacuum as empty as interplanetary space. There is 10 times more atmosphere on the moon than there will be in the LHC. M. Barnett – July 2007 4 Large Hadron Collider Numbers The hottest spot in our galaxy Colliding protons will generate temperatures 100,000 times hotter than the sun (but in a minuscule space). Equivalent to a billionth of a second after the Big Bang M. Barnett – July 2007 5 LHC Exhibition at London Science Museum M. Barnett – July 2007 6 Large Hadron Collider Numbers The biggest most sophisticated detectors ever built Recording the debris from 600 million proton collisions per second requires building gargantuan devices that measure particles with 0.0004 inch precision. The most extensive computer system in the world Analyzing the data requires tens of thousands of computers around the world using the Grid.
    [Show full text]
  • Aaron Taylor Physics and Astronomy This
    Aaron Taylor Candidate Physics and Astronomy Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Sally Seidel , Chairperson Dr. Pavel Reznicek Dr. Huaiyu Duan Dr. Douglas Fields Dr. Bruce Schumm CERN-THESIS-2017-006 04/11/2016 SEARCH FOR NEW PHYSICS PROCESSES WITH HEAVY QUARK SIGNATURES IN THE ATLAS EXPERIMENT by AARON TAYLOR B.A., Mathematics, University of California, Santa Cruz, 2011 M.S., Physics, University of New Mexico, 2014 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Physics The University of New Mexico Albuquerque, New Mexico May, 2017 ©2017, Aaron Taylor iii Acknowledgements I would like to thank Professor Sally Seidel, for her constant support and guidance in my research. I would also like to thank her for her patience in helping me to develop my technical writing and presentation skills; without her assistance, I would never have gained the skill I have in that field. I would like to thank Konstantin Toms, for his constant assistance with the ATLAS code, and for generally giving advice on how to handle data analysis. The Bs → 4μ analysis likely wouldn’t have gotten anywhere without him. I would like to deeply thank Pavel Reznicek, without whom I would never have gotten as great an understanding of ATLAS code as I currently have. It is no exaggeration to say that I would not have been half as successful as I have been without his constant patience and understanding. Thank you. Many thanks to Martin Hoeferkamp, who taught me much about instrumentation and physical measurements.
    [Show full text]
  • Very Forward Photon Production in Proton-Proton Collisions Measured by the Lhcf Experiment at the Large Hadron Collider
    Very forward photon production in proton-proton collisions measured by the LHCf experiment at the Large Hadron Collider Author: Alessio Tiberio Supervisor: Lorenzo Bonechi The LHC-forward (LHCf) experiment, situated at the LHC accelerator, has measured neutral particles production in a very forward region (pseudo-rapidity η > 8:4) in proton-proton and proton- lead collisions. The main purpose of the LHCf experiment is to test hadronic interaction models used in ground based cosmic rays experiments to simulate cosmic rays induced air-showers in the Earth's atmosphere. Highest energy cosmic rays can only be detected from secondary particles which are produced by the interaction of the primary particle with nuclei of the atmosphere. Studying the development of air showers, it is possible to reconstruct the type and kinematic parameters of primary particle. For this reason, Monte Carlo (MC) simulations with accurate hadronic interaction models are needed to reproduce the development of air-showers. Since the energy flow of secondary particles is concentrated in the forward direction, measurements of particle production at high pseudo-rapidity (i.e. small angles) are very important. Furthermore, soft QCD interactions (non perturbative regime) dominates in the very forward region and MC simulations of air showers are based on phenomenological model, so inputs from experimental data are crucial. The experiment is composed by two independent detectors (Arm1 and Arm2 ) located at 140 m from the ATLAS's interaction point (IP1) on opposite sides [1]. Detectors are placed inside the Target Neutral Absorber (TAN), where the beam pipe from IP1 turns into two separates tubes: the position between the two beam pipes allows to measure particles produced at zero degrees.
    [Show full text]
  • The Moedal Experiment at the LHC. Searching Beyond the Standard
    126 EPJ Web of Conferences , 02024 (2016) DOI: 10.1051/epjconf/201612602024 ICNFP 2015 The MoEDAL experiment at the LHC Searching beyond the standard model James L. Pinfold (for the MoEDAL Collaboration)1,a 1 University of Alberta, Physics Department, Edmonton, Alberta T6G 0V1, Canada Abstract. MoEDAL is a pioneering experiment designed to search for highly ionizing avatars of new physics such as magnetic monopoles or massive (pseudo-)stable charged particles. Its groundbreaking physics program defines a number of scenarios that yield potentially revolutionary insights into such foundational questions as: are there extra dimensions or new symmetries; what is the mechanism for the generation of mass; does magnetic charge exist; what is the nature of dark matter; and, how did the big-bang develop. MoEDAL’s purpose is to meet such far-reaching challenges at the frontier of the field. The innovative MoEDAL detector employs unconventional methodologies tuned to the prospect of discovery physics. The largely passive MoEDAL detector, deployed at Point 8 on the LHC ring, has a dual nature. First, it acts like a giant camera, comprised of nuclear track detectors - analyzed offline by ultra fast scanning microscopes - sensitive only to new physics. Second, it is uniquely able to trap the particle messengers of physics beyond the Standard Model for further study. MoEDAL’s radiation environment is monitored by a state-of-the-art real-time TimePix pixel detector array. A new MoEDAL sub-detector to extend MoEDAL’s reach to millicharged, minimally ionizing, particles (MMIPs) is under study Finally we shall describe the next step for MoEDAL called Cosmic MoEDAL, where we define a very large high altitude array to take the search for highly ionizing avatars of new physics to higher masses that are available from the cosmos.
    [Show full text]
  • EPS-HEP 2017 Report of Contributions
    EPS-HEP 2017 Report of Contributions https://indico.cern.ch/e/epshep2017 EPS-HEP 2017 / Report of Contributions Theory overview on FCNC B-decays Contribution ID: 10 Type: Parallel Talk Theory overview on FCNC B-decays Thursday, 6 July 2017 09:00 (30 minutes) LHCb experiment at CERN has recently reported a set of measurements on lepton flavour univer- sality in b to s transitions showing a departure from the Standard Model predictions. I will review the main ideas recently put forward to make sense out of these intriguing hints. Focusing on the new physics explanation, I will discuss the correlated signals expected in other low- and high- energy observables, that could help clarify the mysterious signal. Experimental Collaboration Primary author: GRELJO, Admir (University of Zurich) Presenter: GRELJO, Admir (University of Zurich) Session Classification: Flavour and symmetries Track Classification: Flavour Physics and Fundamental Symmetries October 6, 2021 Page 1 EPS-HEP 2017 / Report of Contributions Charm Quark Mass with Calibrate … Contribution ID: 11 Type: Parallel Talk Charm Quark Mass with Calibrated Uncertainty Friday, 7 July 2017 12:35 (13 minutes) We determine the charm quark mass mc(mc) from QCD sum rules of moments of the vector cur- rent correlator calculated in perturbative QCD. Only experimental data for the charm resonances below the continuum threshold are needed in our approach, while the continuum contribution is determined by requiring self-consistency between various sum rules, including the one for the ze- roth moment. Existing data from the continuum region can then be used to bound the theoretical error. Our result is mc(mc) = 1272 ± 8 MeV for αs(MZ ) = 0:1182.
    [Show full text]
  • CERN to Seek Answers to Such Fundamental 1957, Was CERN’S First Accelerator
    What is the nature of our universe? What is it ----------------------------------------- DAY 1 -------- made of? Scientists from around the world go to The 600 MeV Synchrocyclotron (SC), built in CERN to seek answers to such fundamental 1957, was CERN’s first accelerator. It provided questions using particle accelerators and pushing beams for CERN’s first experiments in particle and nuclear the limits of technology. physics. In 1964, this machine started to concentrate on nuclear physics alone, leaving particle physics to the newer During February 2019, I was given a once in a lifetime and more powerful Proton Synchrotron. opportunity to be part of The Maltese Teacher Programme at CERN, which introduced me, as one of the participants, to cutting-edge particle physics through lectures, on-site visits, exhibitions, and hands-on workshops. Why do they do all this? The main objective of these type of visits is to bring modern science into the classroom. Through this report, my purpose is to give an insight of what goes on at CERN as well as share my experience with you students, colleagues, as well as the general public. The SC became a remarkably long-lived machine. In 1967, it started supplying beams for a dedicated radioactive-ion-beam facility called ISOLDE, which still carries out research ranging from pure What does “CERN” stand for? At an nuclear physics to astrophysics and medical physics. In 1990, intergovernmental meeting of UNESCO in Paris in ISOLDE was transferred to the Proton Synchrotron Booster, and the SC closed down after 33 years of service. December 1951, the first resolution concerning the establishment of a European Council for Nuclear Research SM18 is CERN’s main facility for testing large and heavy (in French Conseil Européen pour la Recherche Nucléaire) superconducting magnets at liquid helium temperatures.
    [Show full text]
  • Observation of Structure in the J/Ψ-Pair Mass Spectrum
    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-EP-2020-115 LHCb-PAPER-2020-011 November 10, 2020 Observation of structure in the J= -pair mass spectrum LHCb collaboration† Abstract p Using proton-proton collision data at centre-of-mass energies of s = 7, 8 and 13 TeV recorded by the LHCb experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 9 fb−1, the invariant mass spectrum of J= pairs is studied. A narrow structure around 6:9 GeV/c2 matching the lineshape of a resonance and a broad structure just above twice the J= mass are observed. The deviation of the data from nonresonant J= -pair production is above five standard deviations in the mass region between 6:2 and 7:4 GeV/c2, covering predicted masses of states composed of four charm quarks. The mass and natural width of the narrow X(6900) structure are measured assuming a Breit{Wigner lineshape. arXiv:2006.16957v2 [hep-ex] 10 Nov 2020 Keywords: QCD; exotics; tetraquark; spectroscopy; quarkonium; particle and resonance production Published in Science Bulletin 2020 65(23)1983-1993 © 2020 CERN for the benefit of the LHCb collaboration. CC BY 4.0 licence. †Authors are listed at the end of this paper. ii 1 Introduction The strong interaction is one of the fundamental forces of nature and it governs the dynamics of quarks and gluons. According to quantum chromodynamics (QCD), the theory describing the strong interaction, quarks are confined into hadrons, in agreement with experimental observations. The quark model [1,2] classifies hadrons into conventional mesons (qq) and baryons (qqq or qqq), and also allows for the existence of exotic hadrons such as tetraquarks (qqqq) and pentaquarks (qqqqq).
    [Show full text]
  • Slides Lecture 1
    Advanced Topics in Particle Physics Probing the High Energy Frontier at the LHC Ulrich Husemann, Klaus Reygers, Ulrich Uwer University of Heidelberg Winter Semester 2009/2010 CERN = European Laboratory for Partice Physics the world’s largest particle physics laboratory, founded 1954 Historic name: “Conseil Européen pour la Recherche Nucléaire” Lake Geneva Proton-proton2500 employees, collider almost 10000 guest scientists from 85 nations Jura Mountains 8.5 km Accelerator complex Prévessin site (approx. 100 m underground) (France) Meyrin site (Switzerland) Probing the High Energy Frontier at the LHC, U Heidelberg, Winter Semester 09/10, Lecture 1 2 Large Hadron Collider: CMS Experiment: Proton-Proton and Multi Purpose Detector Lead-Lead Collisions LHCb Experiment: B Physics and CP Violation ALICE-Experiment: ATLAS Experiment: Heavy Ion Physics Multi Purpose Detector Probing the High Energy Frontier at the LHC, U Heidelberg, Winter Semester 09/10, Lecture 1 3 The Lecture “Probing the High Energy Frontier at the LHC” Large Hadron Collider (LHC) at CERN: premier address in experimental particle physics for the next 10+ years LHC restart this fall: first beam scheduled for mid-November LHC and Heidelberg Experimental groups from Heidelberg participate in three out of four large LHC experiments (ALICE, ATLAS, LHCb) Theory groups working on LHC physics → Cornerstone of physics research in Heidelberg → Lots of exciting opportunities for young people Probing the High Energy Frontier at the LHC, U Heidelberg, Winter Semester 09/10, Lecture 1 4 Scope
    [Show full text]
  • Arxiv:2001.07837V2 [Hep-Ex] 4 Jul 2020 Scale Funding Will Be Requested at Different Stages Across the Globe
    Brazilian Participation in the Next-Generation Collider Experiments W. L. Aldá Júniora C. A. Bernardesb D. De Jesus Damiãoa M. Donadellic D. E. Martinsd G. Gil da Silveirae;a C. Henself H. Malbouissona A. Massafferrif E. M. da Costaa C. Mora Herreraa I. Nastevad M. Rangeld P. Rebello Telesa T. R. F. P. Tomeib A. Vilela Pereiraa aDepartamento de Física Nuclear e Altas Energias, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, CEP 20550-900, Rio de Janeiro, Brazil bUniversidade Estadual Paulista (Unesp), Núcleo de Computação Científica Rua Dr. Bento Teobaldo Ferraz, 271, 01140-070, Sao Paulo, Brazil cInstituto de Física, Universidade de São Paulo (USP), Rua do Matão, 1371, CEP 05508-090, São Paulo, Brazil dUniversidade Federal do Rio de Janeiro (UFRJ), Instituto de Física, Caixa Postal 68528, 21941-972 Rio de Janeiro, Brazil eInstituto de Física, Universidade Federal do Rio Grande do Sul , Av. Bento Gonçalves, 9550, CEP 91501-970, Caixa Postal 15051, Porto Alegre, Brazil f Centro Brasileiro de Pesquisas Físicas (CBPF), Rua Dr. Xavier Sigaud, 150, CEP 22290-180 Rio de Janeiro, RJ, Brazil E-mail: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract: This proposal concerns the participation of the Brazilian High-Energy Physics community in the next-generation collider experiments.
    [Show full text]
  • Geant4 – a Simulation Toolkit to Be Published in Nuclear Physics News, June 2007 John Allison, the University of Manchester, UK
    Geant4 – a simulation toolkit To be published in Nuclear Physics News, June 2007 John Allison, The University of Manchester, UK. A toolkit? More a building set. But you get the idea. You can build what you want, tailor it to your requirements, but you have to build it yourself. That makes it flexible and versatile; it is also fun. Geant4 is a body of C++ code that models and simulates the interaction of particles with matter. The code is distributed freely under an open software license1. Documentation, source code, databases and, for some computer platforms, binary libraries can be downloaded from the Geant4 web site.2 Being a toolkit means you have to learn how it works and find good ways of putting the pieces together and to help you do this, Geant4 comes with many examples and a web-based documentation system. Also, the Geant4 Collaboration organises tutorials and workshops from time to time. Two general reference papers3 4and many specialist papers have been published. For a full list, see the web site2. Geant4 is being, indeed has been adopted in many areas – space, medicine, particle and nuclear physics – across the world. Geant is an acronym for “Geometry and tracking” and is usually pronounced like the French géant, meaning giant. Its origins can be traced back to the 1970s. The original designs were in Fortran, culminating in GEANT35 in 1982, which is still being used but no longer being developed. In 1993, two independent studies, one at CERN6 and one at KEK7, considered the application of modern computing techniques, particularly object oriented programming, to this sort of simulation.
    [Show full text]
  • Formation of Centauro and Strangelets in Nucleus–Nucleus Collisions at the LHC and Their Identification by the ALICE Experiment 1 A.L.S
    HE.6.2.02 Formation of Centauro and Strangelets in Nucleus–Nucleus Collisions at the LHC and their Identification by the ALICE Experiment 1 A.L.S. Angelis1,J.Bartke2, M.Yu. Bogolyubsky3, S.N. Filippov4, E. Gładysz-Dziadus´2, Yu.V. Kharlov3,A.B.Kurepin4, A.I. Maevskaya4, G. Mavromanolakis1, A.D. Panagiotou1, S.A. Sadovsky3,P.Stefanski2 and Z. Włodarczyk5 1Division of Nuclear and Particle Physics, University of Athens,Greece. 2Institute of Nuclear Physics, Cracow, Poland. 3Institute for High Energy Physics, Protvino, Russia. 4Institute for Nuclear Research, Moscow,Russia. 5Institute of Physics, Pedagogical University, Kielce, Poland. Abstract We present a phenomenological model which describes the formation of a Centauro fireball in nucleus-nucleus interactions in the upper atmosphere and at the LHC, and its decay to non-strange baryons and Strangelets. We describe the CASTOR detector for the ALICE experiment at the LHC. CASTOR will probe, in an event- by-event mode, the very forward, baryon-rich phase space 5.6 ≤ η ≤ 7.2in5.5×A TeV central Pb + Pb collisions. We present results of simulations for the response of the CASTOR calorimeter, and in particular to the traversal of Strangelets. 1 Introduction: The physics motivation to study the very forward phase space in nucleus–nucleus collisions stems from the potentially very rich field of new phenomena, to be produced in and by an environment with very high baryochemical potential. The study of this baryon-dense region, much denser than the highest baryon density attained at the AGS or SPS, will provide important information for the understanding of a Deconfined Quark Matter (DQM) state at relatively low temperatures, with different properties from those expected in the higher temperature baryon-free region around mid-rapidity, thought to exist in the core of neutron stars.
    [Show full text]