CERN Courier–Digital Edition

Total Page:16

File Type:pdf, Size:1020Kb

CERN Courier–Digital Edition CERNMarch/April 2021 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the March/April 2021 issue of CERN Courier. Hadron colliders have contributed to a golden era of discovery in high-energy physics, hosting experiments that have enabled physicists to unearth the cornerstones of the Standard Model. This success story began 50 years ago with CERN’s Intersecting Storage Rings (featured on the cover of this issue) and culminated in the Large Hadron Collider (p38) – which has spawned thousands of papers in its first 10 years of operations alone (p47). It also bodes well for a potential future circular collider at CERN operating at a centre-of-mass energy of at least 100 TeV, a feasibility study for which is now in full swing. Even hadron colliders have their limits, however. To explore possible new physics at the highest energy scales, physicists are mounting a series of experiments to search for very weakly interacting “slim” particles that arise from extensions in the Standard Model (p25). Also celebrating a golden anniversary this year is the Institute for Nuclear Research in Moscow (p33), while, elsewhere in this issue: quantum sensors HADRON COLLIDERS target gravitational waves (p10); X-rays go behind the scenes of supernova 50 years of discovery 1987A (p12); a high-performance computing collaboration forms to handle the big-physics data onslaught (p22); Steven Weinberg talks about his latest work (p51); and much more. To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING ATLAS spots rare Higgs decay Weinberg on effective field theory Hunting for WISPs CCMarApr21_Cover_v1.indd 1 12/02/2021 09:24 CERNCOURIER www. V OLUME 6 1 N UMBER 2 M ARCH / A PRIL 2 0 2 1 CERNCOURIER.COM Your DIGITAL POWER ELECTRONICS V OLUME 61 N UMBER 2 M ARCH /A PRIL 2 02 1 Partner IN THIS ISSUE It’s ALL ATLAS Baikal-GVD CERN about the DETAILS Dalitz decay ATLAS spots rare decay of the Higgs boson Universal search Baikal-GVD will continue the Staff search CER N’s efforts to attract to a photon and a low-mass electron or muon pair. 17 astrophysical neutrino search. 33 non-physicists into key roles. 61 NEWS PEOPLE ANALYSIS ENERGY FRONTIERS FIELD NOTES CAREERS OBITUARIES AEgIS on track to test First evidence for rare Tooling up to hunt dark Accelerating talent • Jack Steinberger antimatter free fall Higgs-boson decay matter • Computing at CERN • Martinus Veltman • NICA sees first beam • Supersymmetry collaboration kicks off The challenge of attracting • Günther Plass • CLOUD and Arctic sea searches • Precision • Quark-matter fireballs engineers, technicians • André Martin ice Quantum sensing leap for B0 Light shines in Protvino. 21 • s • and others who build and • Stephanie Zimmermann • Farewell Daya Bay inside lead nuclei. 17 maintain CERN’s complex • Stephen Reucroft • The core of SN1987A. 7 infrastructure. 61 • Jean-Claude Berset. 69 FEATURES WISPS Müller-Elsner DESY/Heiner INR RAS HADRON COLLIDERS LHC In search of WISPs Russia’s particle- Discovery machines A decade in LHC New experiments will physics powerhouse Lyn Evans and Peter publications expand the search for The Institute for Nuclear Jenni look at the lessons Alex Kohls, Jens Vigen axions and other weakly Research in Moscow learned from 50 years and Micha Moskovic interacting ‘slim’ particles continues to leave its of experience with look back on the that could hail from far mark on neutrino and hadron colliders and first 10 years of LHC above the TeV scale. 25 high-energy physics. 33 their detectors. 38 publications. 47 OPINION DEPARTMENTS VIEWPOINT INTERVIEW REVIEWS FROM THE EDITOR 5 Power Supply Systems CERN Connecting physics Still seeking The hitchhiker’s NEWS DIGEST 15 Precision Current Measurements with society solutions guide to weak decays APPOINTMENTS 62 We must communicate Steven Weinberg reflects An expedition to & AWARDS Beamline Electronic Instrumentation the applications and on effective field theory new physics summits RECRUITMENT 64 impact of our field, and his latest attempt to • The science of On the cover: CERN’s FMC and MicroTCA argues Barbora Bruant understand the fermion learning physics. 57 Intersecting Storage Rings, BACKGROUND 74 Gulejova. 49 mass hierarchy. 51 the first hadron collider.38 www.caenels.com CERN COURIER MARCH/APRIL 2021 3 MASTER - February 2021_Paolo.indd 1 05/02/21 13:20 CCMarApr21_Contents_v3.indd 3 12/02/2021 09:42 CERNCOURIER www. V OLUME 6 1 N UMBER 2 M ARCH / A PRIL 2 0 2 1 edwardsvacuum.com CERNCOURIER.COM ENABLING RESEARCH IN UHV FROM THE Edwards are able to supply a total • Primary pumps nXDS dry scroll EDITOR vacuum package from UHV through to pumps and RV oil sealed rotary vane atmospheric pumping from a range of pumps for excellent ultimate and products including: superior vapour handling • Ultra-high vacuum Gamma Ion With our advanced modelling The rewards of bold thinking pumps for low cost and vibration capabilities and years of experience free operation in scientific research, rest assured ack in the early 1960s, as this month’s cover feature European strategy for particle physics, CERN is exploring the Edwards has the vacuum expertise to describes (p38), discussion raged at CERN about the most ambitious long-term technological path in undertaking • High vacuum nEXT and STP meet your application requirements. Bnext best step for particle physics. At the time, the high- a feasibility study for a future circular hadron collider with a turbomolecular pumps including energy frontier was commanded by the great proton synchro- centre-of-mass energy of at least 100 TeV. If built, the success versions for high throughput and [email protected] trons, such as Brookhaven’s Cosmotron and, later, CERN’s of this mother of all hadron colliders will have each generation Proton Synchrotron, which drove fixed-target experiments. of previous machine and its detectors to thank. radiation hardened designs But a new type of machine capable of exploiting the full energy Matthew of proton beams for the production of new particles – the Know your limits Chalmers hadron collider – was revving up in the sidelines. In Decem- As productive as hadron colliders are in probing nature at Editor ber 1965 the CERN Council approved the construction of the the highest energies, many current mysteries, such as dark more technologically innovative Intersecting Storage Rings matter and the origin of neutrino masses, may well origi- (ISR) over a very high-energy proton synchrotron, although nate from phenomena at the latter would materialise 10 years later in the Super Proton energy scales inaccessible Synchrotron (SPS). The ISR’s first proton–proton collisions, to any collider imaginable. which reached a centre-of-mass energy of 62 GeV, took place Fortunately, models involv- on 27 January 1971, opening the era of hadron colliders. ing such scales can be tested From the ISR came the ingenious conversion of the SPS now and in the near future by a CERN-PHOTO-201802-030-9 into a proton–antiproton collider (Spp–S), the demonstration series of experiments – some of large-scale superconducting magnet technology for the using magnets from the LHC Tevatron at Fermilab, and the LHC, whose elegant magnet and HERA in fact – searching design has enabled the highest collision energies (13 TeV) for very weakly interacting and luminosities to date. Each machine, and its increasingly “slim” particles that arise complex detectors, was a step into the unknown, requiring in extensions of the Stand- the invention of new technologies and sharp political and ard Model (see p25). Effective organisational skills to build and operate ever larger facil- field theory is another power- ities. The payoff was the discovery of the Standard Model’s ful tool to pursue such signals cornerstones: the W and Z bosons at the Spp–S, the top quark from far beyond the TeV scale, at the Tevatron, and the Higgs boson at the LHC. Not to be Discovery machine The LHC. explains Steven Weinberg in omitted from the hadron-beam collider success story are the this issue’s interview (p51). leaps in understanding of strongly interacting matter brought Meanwhile at CERN: ATLAS reports the first evidence for a Each machine, about by Brookhaven’s Relativistic Heavy-Ion Collider and the rare “Dalitz” decay of the Higgs boson (p17); pulsed-mode anti- and its LHC, and the deep-inelastic scattering experiments at DESY’s hydrogen paves the way to test antimatter in free fall (p7); and increasingly so-far unique electron–proton collider HERA, which revealed the CLOUD experiment reveals a new mechanism that could complex the proton’s innards in full colour. accelerate the loss of Arctic sea ice (p9). Elsewhere in this issue: H a l f a c e nt u r y a f t e r t h e ISR’s fi r s t c ol l i s io n s, a n d w it h a t l e a st quantum sensors target gravitational waves (p10); X-rays go detectors, was 15 years of LHC operations still to come, particle physicists behind the scenes of supernova 1987A (p12); a high-performance a step into o n c e a g a i n fi n d t h e m s e l v e s d e b a t i n g t h e n e x t b e s t s t e p for the computing collaboration forms to handle the big-physics data the unknown fie l d.
Recommended publications
  • CERN Celebrates Discoveries
    INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERN COURIER VOLUME 43 NUMBER 10 DECEMBER 2003 CERN celebrates discoveries NEW PARTICLES NETWORKS SPAIN Protons make pentaquarks p5 Measuring the digital divide pl7 Particle physics thrives p30 16 KPH impact 113 KPH impact series VISyN High Voltage Power Supplies When the objective is to measure the almost immeasurable, the VISyN-Series is the detector power supply of choice. These multi-output, card based high voltage power supplies are stable, predictable, and versatile. VISyN is now manufactured by Universal High Voltage, a world leader in high voltage power supplies, whose products are in use in every national laboratory. For worldwide sales and service, contact the VISyN product group at Universal High Voltage. Universal High Voltage Your High Voltage Power Partner 57 Commerce Drive, Brookfield CT 06804 USA « (203) 740-8555 • Fax (203) 740-9555 www.universalhv.com Covering current developments in high- energy physics and related fields worldwide CERN Courier (ISSN 0304-288X) is distributed to member state governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly, except for January and August, in English and French editions. The views expressed are CERN not necessarily those of the CERN management. Editor Christine Sutton CERN, 1211 Geneva 23, Switzerland E-mail: [email protected] Fax:+41 (22) 782 1906 Web: cerncourier.com COURIER Advisory Board R Landua (Chairman), P Sphicas, K Potter, E Lillest0l, C Detraz, H Hoffmann, R Bailey
    [Show full text]
  • A Time of Great Growth
    Newsletter | Spring 2019 A Time of Great Growth Heartfelt greetings from the UC Riverside Department of Physics and Astronomy. This is our annual newsletter, sent out each Spring to stay connected with our former students, retired faculty, and friends in the wider community. The Department continues to grow, not merely in size but also in stature and reputation. For the 2018-2019 academic year, we were pleased to welcome two new faculty: Professors Thomas Kuhlman and Barry Barish. Professor Kuhlman was previously on the faculty at the University of Illinois at Urbana-Champaign. He joins our efforts in the emerging field of biophysics. His research lies in the quantitative imaging and theoretical modeling of biological systems. He works on genome dynamics, quantification of the activity of transposable elements in living cells, and applications to the engineering of genome editing. Professor Barry Barish, who joins us from Caltech, is the winner of the 2017 Nobel Prize in Physics. He brings great prestige to our Department. Along with Professor Richard Schrock of the Department of Chemistry, who also joined UCR in 2018, UCR now has two Nobel Prize winners on its faculty. Professor Barish is an expert on the detection and physics of gravitational waves. He has been one of the key figures in the conception, construction, and operation of the LIGO detector, where gravitational waves were first discovered in 2015, and which led to his Nobel Prize. He is a member of the National Academy of Sciences and the winner of many other prestigious awards. The discovery of gravitational waves is one of the most exciting developments in physics so far this century.
    [Show full text]
  • Axions and Other Similar Particles
    1 91. Axions and Other Similar Particles 91. Axions and Other Similar Particles Revised October 2019 by A. Ringwald (DESY, Hamburg), L.J. Rosenberg (U. Washington) and G. Rybka (U. Washington). 91.1 Introduction In this section, we list coupling-strength and mass limits for light neutral scalar or pseudoscalar bosons that couple weakly to normal matter and radiation. Such bosons may arise from the spon- taneous breaking of a global U(1) symmetry, resulting in a massless Nambu-Goldstone (NG) boson. If there is a small explicit symmetry breaking, either already in the Lagrangian or due to quantum effects such as anomalies, the boson acquires a mass and is called a pseudo-NG boson. Typical examples are axions (A0)[1–4] and majorons [5], associated, respectively, with a spontaneously broken Peccei-Quinn and lepton-number symmetry. A common feature of these light bosons φ is that their coupling to Standard-Model particles is suppressed by the energy scale that characterizes the symmetry breaking, i.e., the decay constant f. The interaction Lagrangian is −1 µ L = f J ∂µ φ , (91.1) where J µ is the Noether current of the spontaneously broken global symmetry. If f is very large, these new particles interact very weakly. Detecting them would provide a window to physics far beyond what can be probed at accelerators. Axions are of particular interest because the Peccei-Quinn (PQ) mechanism remains perhaps the most credible scheme to preserve CP-symmetry in QCD. Moreover, the cold dark matter (CDM) of the universe may well consist of axions and they are searched for in dedicated experiments with a realistic chance of discovery.
    [Show full text]
  • CERN to Seek Answers to Such Fundamental 1957, Was CERN’S First Accelerator
    What is the nature of our universe? What is it ----------------------------------------- DAY 1 -------- made of? Scientists from around the world go to The 600 MeV Synchrocyclotron (SC), built in CERN to seek answers to such fundamental 1957, was CERN’s first accelerator. It provided questions using particle accelerators and pushing beams for CERN’s first experiments in particle and nuclear the limits of technology. physics. In 1964, this machine started to concentrate on nuclear physics alone, leaving particle physics to the newer During February 2019, I was given a once in a lifetime and more powerful Proton Synchrotron. opportunity to be part of The Maltese Teacher Programme at CERN, which introduced me, as one of the participants, to cutting-edge particle physics through lectures, on-site visits, exhibitions, and hands-on workshops. Why do they do all this? The main objective of these type of visits is to bring modern science into the classroom. Through this report, my purpose is to give an insight of what goes on at CERN as well as share my experience with you students, colleagues, as well as the general public. The SC became a remarkably long-lived machine. In 1967, it started supplying beams for a dedicated radioactive-ion-beam facility called ISOLDE, which still carries out research ranging from pure What does “CERN” stand for? At an nuclear physics to astrophysics and medical physics. In 1990, intergovernmental meeting of UNESCO in Paris in ISOLDE was transferred to the Proton Synchrotron Booster, and the SC closed down after 33 years of service. December 1951, the first resolution concerning the establishment of a European Council for Nuclear Research SM18 is CERN’s main facility for testing large and heavy (in French Conseil Européen pour la Recherche Nucléaire) superconducting magnets at liquid helium temperatures.
    [Show full text]
  • Particle Physics
    If you would like to register to receive Fascination automatically ISSUE 11 please visit www.stfc.ac.uk/fascination News from the Cover image: A proton collision at the ATLAS experiment which produced a microscopic-black-hole. Credit: CERN Science and Technology particle Facilities Council Exploring & Understanding Science physics special CONTENTS Benefits of particle physics LHC leads the way on new technology Higgs - The story so far Higgs Boson dominated the news media for two days LHC on tour in the UK Using the very large to look for the extremely small How did the Universe begin? What are we made of? Why are all world class. It represents amazing value for the amount does matter behave the way it does? These are questions of added benefit we get from what is at heart a fundamental that particle physics can answer. Particle physics is an ideal science project. With the recent breakthrough discovery of a showcase for STFC’s work – a subject where the research, the Higgs-like particle, this edition is focussing on particle physics resultant innovation and the inspirational value of the science and why it matters to the UK. The benefits of particle physics to you and everyone you know nature of matter, the so called known unknowns, and in the process uncover new questions we have yet to answer. It’s a compellingly difficult search that pushes our understanding of matter beyond the limits of what was previously possible. But the search is expensive, times are tough and costs need to be justified, so the secondary benefits from the research are often just as important.
    [Show full text]
  • Slides Lecture 1
    Advanced Topics in Particle Physics Probing the High Energy Frontier at the LHC Ulrich Husemann, Klaus Reygers, Ulrich Uwer University of Heidelberg Winter Semester 2009/2010 CERN = European Laboratory for Partice Physics the world’s largest particle physics laboratory, founded 1954 Historic name: “Conseil Européen pour la Recherche Nucléaire” Lake Geneva Proton-proton2500 employees, collider almost 10000 guest scientists from 85 nations Jura Mountains 8.5 km Accelerator complex Prévessin site (approx. 100 m underground) (France) Meyrin site (Switzerland) Probing the High Energy Frontier at the LHC, U Heidelberg, Winter Semester 09/10, Lecture 1 2 Large Hadron Collider: CMS Experiment: Proton-Proton and Multi Purpose Detector Lead-Lead Collisions LHCb Experiment: B Physics and CP Violation ALICE-Experiment: ATLAS Experiment: Heavy Ion Physics Multi Purpose Detector Probing the High Energy Frontier at the LHC, U Heidelberg, Winter Semester 09/10, Lecture 1 3 The Lecture “Probing the High Energy Frontier at the LHC” Large Hadron Collider (LHC) at CERN: premier address in experimental particle physics for the next 10+ years LHC restart this fall: first beam scheduled for mid-November LHC and Heidelberg Experimental groups from Heidelberg participate in three out of four large LHC experiments (ALICE, ATLAS, LHCb) Theory groups working on LHC physics → Cornerstone of physics research in Heidelberg → Lots of exciting opportunities for young people Probing the High Energy Frontier at the LHC, U Heidelberg, Winter Semester 09/10, Lecture 1 4 Scope
    [Show full text]
  • Axions –Theory SLAC Summer Institute 2007
    Axions –Theory SLAC Summer Institute 2007 Helen Quinn Stanford Linear Accelerator Center Axions –Theory – p. 1/?? Lectures from an Axion Workshop Strong CP Problem and Axions Roberto Peccei hep-ph/0607268 Astrophysical Axion Bounds Georg Raffelt hep-ph/0611350 Axion Cosmology Pierre Sikivie astro-ph/0610440 Axions –Theory – p. 2/?? Symmetries Symmetry ⇔ Invariance of Lagrangian Familiar cases: Lorentz symmetries ⇔ Invariance under changes of coordinates Other symmetries: Invariances under field redefinitions e.g (local) gauge invariance in electromagnetism: Aµ(x) → Aµ(x)+ δµΩ(x) Fµν = δµAν − δνAµ → Fµν Axions –Theory – p. 3/?? How to build an (effective) Lagrangian Choose symmetries to impose on L: gauge, global and discrete. Choose representation content of matter fields Write down every (renormalizable) term allowed by the symmetries with arbitrary couplings (d ≤ 4) Add Hermitian conjugate (unitarity) - Fix renormalized coupling constants from match to data (subtractions, usually defined perturbatively) "Naturalness" - an artificial criterion to avoid arbitrarily "fine tuned" couplings Axions –Theory – p. 4/?? Symmetries of Standard Model Gauge Symmetries Strong interactions: SU(3)color unbroken but confined; quarks in triplets Electroweak SU(2)weak X U(1)Y more later:representations, "spontaneous breaking" Discrete Symmetries CPT –any field theory (local, Hermitian L); C and P but not CP broken by weak couplings CP (and thus T) breaking - to be explored below - arises from quark-Higgs couplings Global symmetries U(1)B−L accidental; more? Axions –Theory – p. 5/?? Chiral symmetry Massless four component Dirac fermion is two independent chiral fermions (1+γ5) (1−γ5) ψ = 2 ψ + 2 ψ = ψR + ψL γ5 ≡ γ0γ1γ2γ3 γ5γµ = −γµγ5 Chiral Rotations: rotate L and R independently ψ → ei(α+βγ5)ψ i(α+β) i(α−β) ψR → e ψR; ψL → e ψL Kinetic and gauge coupling terms in L are chirally invariant † ψγ¯ µψ = ψ¯RγµψR + ψ¯LγµψL since ψ¯ = ψ γ0 Axions –Theory – p.
    [Show full text]
  • 6.2 Transition Radiation
    Contents I General introduction 9 1Preamble 11 2 Relevant publications 15 3 A first look at the formation length 21 4 Formation length 23 4.1Classicalformationlength..................... 24 4.1.1 A reduced wavelength distance from the electron to the photon ........................... 25 4.1.2 Ignorance of the exact location of emission . ....... 25 4.1.3 ‘Semi-bare’ electron . ................... 26 4.1.4 Field line picture of radiation . ............... 26 4.2Quantumformationlength..................... 28 II Interactions in amorphous targets 31 5 Bremsstrahlung 33 5.1Incoherentbremsstrahlung..................... 33 5.2Genericexperimentalsetup..................... 35 5.2.1 Detectors employed . ................... 35 5.3Expandedexperimentalsetup.................... 39 6 Landau-Pomeranchuk-Migdal (LPM) effect 47 6.1 Formation length and LPM effect.................. 48 6.2 Transition radiation . ....................... 52 6.3 Dielectric suppression - the Ter-Mikaelian effect.......... 54 6.4CERNLPMExperiment...................... 55 6.5Resultsanddiscussion....................... 55 3 4 CONTENTS 6.5.1 Determination of ELPM ................... 56 6.5.2 Suppression and possible compensation . ........ 59 7 Very thin targets 61 7.1Theory................................ 62 7.1.1 Multiple scattering dominated transition radiation . .... 62 7.2MSDTRExperiment........................ 63 7.3Results................................ 64 8 Ternovskii-Shul’ga-Fomin (TSF) effect 67 8.1Theory................................ 67 8.1.1 Logarithmic thickness dependence
    [Show full text]
  • Beam–Material Interactions
    Beam–Material Interactions N.V. Mokhov1 and F. Cerutti2 1Fermilab, Batavia, IL 60510, USA 2CERN, Geneva, Switzerland Abstract This paper is motivated by the growing importance of better understanding of the phenomena and consequences of high-intensity energetic particle beam interactions with accelerator, generic target, and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and environment in challenging current and future applications. Keywords Particle physics simulation; material irradiation effects; accelerator design. 1 Introduction The next generation of medium- and high-energy accelerators for megawatt proton, electron, and heavy- ion beams moves us into a completely new domain of extreme energy deposition density up to 0.1 MJ/g and power density up to 1 TW/g in beam interactions with matter [1, 2]. The consequences of controlled and uncontrolled impacts of such high-intensity beams on components of accelerators, beamlines, target stations, beam collimators and absorbers, detectors, shielding, and the environment can range from minor to catastrophic. Challenges also arise from the increasing complexity of accelerators and experimental set-ups, as well as from design, engineering, and performance constraints. All these factors put unprecedented requirements on the accuracy of particle production predictions, the capability and reliability of the codes used in planning new accelerator facilities and experiments, the design of machine, target, and collimation systems, new materials and technologies, detectors, and radiation shielding and the minimization of radiation impact on the environment.
    [Show full text]
  • Sixtrack V and Runtime Environment
    February 19, 2020 11:45 IJMPA S0217751X19420351 page 1 International Journal of Modern Physics A Vol. 34, No. 36 (2019) 1942035 (17 pages) c World Scientific Publishing Company DOI: 10.1142/S0217751X19420351 SixTrack V and runtime environment R. De Maria∗ Beam Department (BE-ABP-HSS), CERN, 1211, Geneva 23, Switzerland [email protected] J. Andersson, V. K. Berglyd Olsen, L. Field, M. Giovannozzi, P. D. Hermes, N. Høimyr, S. Kostoglou, G. Iadarola, E. Mcintosh, A. Mereghetti, J. Molson, D. Pellegrini, T. Persson and M. Schwinzerl CERN, 1211, Geneva 23, Switzerland E. H. Maclean CERN, 1211, Geneva 23, Switzerland University of Malta, Msida, MSD 2080, Malta K. N. Sjobak CERN, 1211, Geneva 23, Switzerland University of Oslo, Boks 1072 Blindern, 0316, Oslo, Norway I. Zacharov EPFL, Rte de la Sorge, 1015, Lausanne, Switzerland S. Singh Indian Institute of Technology Madras, IIT P.O., Chennai 600 036, India Int. J. Mod. Phys. A 2019.34. Downloaded from www.worldscientific.com Received 28 February 2019 Revised 5 December 2019 Accepted 5 December 2019 Published 17 February 2020 SixTrack is a single-particle tracking code for high-energy circular accelerators routinely used at CERN for the Large Hadron Collider (LHC), its luminosity upgrade (HL-LHC), the Future Circular Collider (FCC) and the Super Proton Synchrotron (SPS) simula- tions. The code is based on a 6D symplectic tracking engine, which is optimized for long-term tracking simulations and delivers fully reproducible results on several plat- forms. It also includes multiple scattering engines for beam{matter interaction studies, by INDIAN INSTITUTE OF TECHNOLOGY @ MADRAS on 04/19/20.
    [Show full text]
  • Atmospheric Nucleation and Growth in the CLOUD Experiment at CERN Jasper Kirkby and CLOUD Collaboration
    Atmospheric nucleation and growth in the CLOUD experiment at CERN Jasper Kirkby and CLOUD Collaboration Citation: AIP Conference Proceedings 1527, 278 (2013); doi: 10.1063/1.4803258 View online: http://dx.doi.org/10.1063/1.4803258 View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1527?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Multi-species nucleation rates in CLOUD AIP Conf. Proc. 1527, 326 (2013); 10.1063/1.4803269 Ternary H 2 SO 4 - H 2 O - NH 3 neutral and charged nucleation rates for a wide range of atmospheric conditions AIP Conf. Proc. 1527, 310 (2013); 10.1063/1.4803265 Observations and models of particle nucleation near cloud outflows AIP Conf. Proc. 534, 831 (2000); 10.1063/1.1361988 Application of nucleation theories to atmospheric aerosol formation AIP Conf. Proc. 534, 711 (2000); 10.1063/1.1361961 Laboratory studies of ice nucleation in sulfate particles: Implications for cirrus clouds AIP Conf. Proc. 534, 471 (2000); 10.1063/1.1361909 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions IP: 131.215.225.131 On: Tue, 19 Apr 2016 20:27:43 Atmospheric Nucleation and Growth in the CLOUD Experiment at CERN Jasper Kirkbya and the CLOUD collaborationb aCERN, CH-1211 Geneva, Switzerland b Aerodyne Research Inc., Billerica, Massachusetts 01821, USA California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, California 91125, USA Carnegie Mellon University, Dep. of Chemical
    [Show full text]
  • Highlights from ALICE
    Highlights from ALICE Michael Weber for the ALICE Collaboration Quark Matter, Wuhan, 04-09 Nov 2019 Michael Weber (SMI) Opening the doors (December 2018) CERN-PHOTO-201812-335 2 Quark Matter, Wuhan, 04-09 Nov 2019 Michael Weber (SMI) Soon after CERN-PHOTO-201903-053 Quark Matter, Wuhan, 04-09 Nov 2019 Michael Weber (SMI) 3 Harvest of the past ten years Recorded L System Year(s) √s (TeV) int NN (for muon triggers) 2010,2011 2.76 ~75 μb-1 Pb–Pb 2015 5.02 ~0.25 nb-1 2018 5.02 ~0.55 nb-1 Xe–Xe 2017 5.44 ~0.3 μb-1 2013 5.02 ~15 nb-1 p–Pb 2016 5.02, 8.16 ~3 nb-1; ~25 nb-1 New for QM 2019: ~200 μb-1; ~100 nb-1; 2009-2013 0.9,2.76,7,8 ~1.5 pb-1; ~2.5 pb-1 ● Full 13 TeV pp data set with high-multiplicity triggers pp ● 2018 Pb-Pb with central and semi-central triggers 2015,2017 5.02 ~1.3 pb-1 ● Selected results out of 26 parallel talks, 2015-2018 13 ~36 pb-1 68 posters, and 18 new papers Labels used in this presentation: New since last QM New New preliminary for QM Final On arXiv for QM Quark Matter, Wuhan, 04-09 Nov 2019 Michael Weber (SMI) 4 Outline Initial state → Hadronic structure and photoproduction QGP - Macroscopic properties → Properties of QCD matter and the transition between phases QGP - Microscopic dynamics → Degrees of freedom at each stage and their interactions Small systems → Unified picture of QCD particle production from small to larger systems Hadron physics → LHC as laboratory for hadron interaction studies Following the open questions in the HL-LHC WG5 yellow report Quark Matter, Wuhan, 04-09 Nov 2019 Michael Weber (SMI) 5 ALICE parallel talks Initial state ● Low-mass dielectron measurements in pp, p-Pb and Pb-Pb collisions with ALICE at the LHC S.
    [Show full text]