6.2 Transition Radiation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CERN Courier–Digital Edition
CERNMarch/April 2021 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the March/April 2021 issue of CERN Courier. Hadron colliders have contributed to a golden era of discovery in high-energy physics, hosting experiments that have enabled physicists to unearth the cornerstones of the Standard Model. This success story began 50 years ago with CERN’s Intersecting Storage Rings (featured on the cover of this issue) and culminated in the Large Hadron Collider (p38) – which has spawned thousands of papers in its first 10 years of operations alone (p47). It also bodes well for a potential future circular collider at CERN operating at a centre-of-mass energy of at least 100 TeV, a feasibility study for which is now in full swing. Even hadron colliders have their limits, however. To explore possible new physics at the highest energy scales, physicists are mounting a series of experiments to search for very weakly interacting “slim” particles that arise from extensions in the Standard Model (p25). Also celebrating a golden anniversary this year is the Institute for Nuclear Research in Moscow (p33), while, elsewhere in this issue: quantum sensors HADRON COLLIDERS target gravitational waves (p10); X-rays go behind the scenes of supernova 50 years of discovery 1987A (p12); a high-performance computing collaboration forms to handle the big-physics data onslaught (p22); Steven Weinberg talks about his latest work (p51); and much more. To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING ATLAS spots rare Higgs decay Weinberg on effective field theory Hunting for WISPs CCMarApr21_Cover_v1.indd 1 12/02/2021 09:24 CERNCOURIER www. -
REPORTS on RESEARCH PL9800669 6.1 the NA48
114 Annual Report 1996 I REPORTS ON RESEARCH PL9800669 6.1 The NA48 experiment on direct CP violation by A.Chlopik, Z.Guzik, J.Nassalski, E.Rondio, M.Szleper and W.WisIicki The NA48 experiment [1] was built and tested on the kaon beam at CERN. It aims to measure the effect of direct violation of the combined CP transformation in two-pion decays of neutral kaons with precision of 0.1 permille. To perform such a measurement beams of the long-lived and short-lived Ks are produced which decay in the common region of phase space. Decays of both kaons into charged and neutral pions are measured simultaneously. The Warsaw group contributed to the electronics of the data acquisition system, to the offline software and took part in the data taking during test runs in June and September 1996. The hardware contribution of the group consisted of design, prototype manufacturing, testing and production supervision of the data acquisition blocks: RIO Fiber Optics Links, Cluster Interconnectors and Clock Fanouts. These elements are described in a separate note of this report. We worked on the following software related issues: (i) reconstruction of data and Monte Carlo in the magnetic spectrometer consisting of four drift chambers, the bending magnet and the trigger hodoscope. Energy and momentum resolution and background sources were carefully studied, (ii) decoding and undecoding of the liquid kryptonium calorimeter data. This part of the equipment is crucial for the measurement of neutral decays, (iii) correlated Monte Carlo to use the same events to simulate KL and K^ decays and thus speed up simulation considerably. -
Mayda M. VELASCO Northwestern University, Dept. of Physics And
Mayda M. VELASCO Northwestern University, Dept. of Physics and Astronomy 2145 Sheridan Road, Evanston, IL 60208, USA Phone: Work: +1 847 467 7099 Cell: +1 847 571 3461 E-mail: [email protected] Last Updated: May 2016 Research Interest { High Energy Experimental Elementary Particle Physics: Work toward the understanding of fundamental interactions and its important role in: (a) solving the problem of CP violation in the Universe { Why is there more matter than anti- matter?; (b) explaning how mass is generated { Higgs mechanism and (c) finding the particle nature of Dark-Matter, if any... The required \new" physics phenomena is accessible at the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN). I am an active member of the Compact Muon Solenoid (CMS) collaboration already collect- ing data at the LHC, that led to the discovery of the Higgs boson or \God particle" in 2012. Education: • Ph.D. 1995: Northwestern University (NU) Experimental Particle Physics • 1995: Sicily, Italy ERICE: Spin Structure of Nucleon • 1994: Sorento, Italy CERN Summer School • B.S. 1988: University of Puerto Rico (UPR) Physics (Major) and Math (Minor) Rio Piedras Campus Fellowships and Honors: • 2015: NU, The Graduate School (TGS) Dean's Faculty Award for Diversity. • 2008-09: Paid leave of absence sponsored by US Department of Energy (DOE). • 2002-04: Sloan Research Fellow from Sloan Foundation. • 2002-03: Woodrow Wilson Fellow from Mellon Foundation. • 1999: CERN Achievement Award { Post-doctoral. • 1996-98: CERN Fellowship with Experimental Physics Division { Post-doctoral. • 1989-1995: Fermi National Accelerator Laboratory(FNAL)/URA Fellow { Doctoral. -
Sub Atomic Particles and Phy 009 Sub Atomic Particles and Developments in Cern Developments in Cern
1) Mahantesh L Chikkadesai 2) Ramakrishna R Pujari [email protected] [email protected] Mobile no: +919480780580 Mobile no: +917411812551 Phy 009 Sub atomic particles and Phy 009 Sub atomic particles and developments in cern developments in cern Electrical and Electronics Electrical and Electronics KLS’s Vishwanathrao deshpande rural KLS’s Vishwanathrao deshpande rural institute of technology institute of technology Haliyal, Uttar Kannada Haliyal, Uttar Kannada SUB ATOMIC PARTICLES AND DEVELOPMENTS IN CERN Abstract-This paper reviews past and present cosmic rays. Anderson discovered their existence; developments of sub atomic particles in CERN. It High-energy subato mic particles in the form gives the information of sub atomic particles and of cosmic rays continually rain down on the Earth’s deals with basic concepts of particle physics, atmosphere from outer space. classification and characteristics of them. Sub atomic More-unusual subatomic particles —such as particles also called elementary particle, any of various self-contained units of matter or energy that the positron, the antimatter counterpart of the are the fundamental constituents of all matter. All of electron—have been detected and characterized the known matter in the universe today is made up of in cosmic-ray interactions in the Earth’s elementary particles (quarks and leptons), held atmosphere. together by fundamental forces which are Quarks and electrons are some of the elementary represente d by the exchange of particles known as particles we study at CERN and in other gauge bosons. Standard model is the theory that laboratories. But physicists have found more of describes the role of these fundamental particles and these elementary particles in various experiments. -
PDF) Submittals Are Preferred) and Information Particle and Astroparticle Physics As Well As Accelerator Physics
CERNNovember/December 2019 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the November/December 2019 issue of CERN Courier. The Extremely Large Telescope, adorning the cover of this issue, is due to EXTREMELY record first light in 2025 and will outperform existing telescopes by orders of magnitude. It is one of several large instruments to look forward to in the decade ahead, which will also see the start of high-luminosity LHC operations. LARGE TELESCOPE As the 2020s gets under way, the Courier will be reviewing the LHC’s 10-year physics programme so far, as well as charting progress in other domains. In the meantime, enjoy news of KATRIN’s first limit on the neutrino mass (p7), a summary of the recently published European strategy briefing book (p8), the genesis of a hadron-therapy centre in Southeast Europe (p9), and dispatches from the most interesting recent conferences (pp19—23). CLIC’s status and future (p41), the abstract world of gauge–gravity duality (p44), France’s particle-physics origins (p37) and CERN’s open days (p32) are other highlights from this last issue of the decade. Enjoy! To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier KATRIN weighs in on neutrinos Maldacena on the gauge–gravity dual FPGAs that speak your language EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING CCNovDec19_Cover_v1.indd 1 29/10/2019 15:41 CERNCOURIER www. -
Nov/Dec 2020
CERNNovember/December 2020 cerncourier.com COURIERReporting on international high-energy physics WLCOMEE CERN Courier – digital edition ADVANCING Welcome to the digital edition of the November/December 2020 issue of CERN Courier. CAVITY Superconducting radio-frequency (SRF) cavities drive accelerators around the world, TECHNOLOGY transferring energy efficiently from high-power radio waves to beams of charged particles. Behind the march to higher SRF-cavity performance is the TESLA Technology Neutrinos for peace Collaboration (p35), which was established in 1990 to advance technology for a linear Feebly interacting particles electron–positron collider. Though the linear collider envisaged by TESLA is yet ALICE’s dark side to be built (p9), its cavity technology is already established at the European X-Ray Free-Electron Laser at DESY (a cavity string for which graces the cover of this edition) and is being applied at similar broad-user-base facilities in the US and China. Accelerator technology developed for fundamental physics also continues to impact the medical arena. Normal-conducting RF technology developed for the proposed Compact Linear Collider at CERN is now being applied to a first-of-a-kind “FLASH-therapy” facility that uses electrons to destroy deep-seated tumours (p7), while proton beams are being used for novel non-invasive treatments of cardiac arrhythmias (p49). Meanwhile, GANIL’s innovative new SPIRAL2 linac will advance a wide range of applications in nuclear physics (p39). Detector technology also continues to offer unpredictable benefits – a powerful example being the potential for detectors developed to search for sterile neutrinos to replace increasingly outmoded traditional approaches to nuclear nonproliferation (p30). -
Results on Direct CP Violation from NA48 1 Introduction
Results on Direct CP Violation from NA48 Giles Barr NA48 Collaboration CERN, Geneva, Switzerland 1 Introduction A long-standing question in high energy physics has been the origin of the phe- nomenon of CP violation. CP violation was first observed in the decay KL → + − 0 0 π π [1]. Effects have subsequently been found in KL → π π [2], the charge ± ∓ ± ∓ + − asymmetry of KL → e π ν (Ke3) [3] and KL → µ π ν (Kµ3) [4], KL → π π γ [5] and most recently in KL → ππee [6]. All of these effects can be explained by applying a single CP violating effect in the mixing between K0 and K0 which pro- ceeds through the box Feynman diagram and are characterized by the parameter ε. A second form of CP violation with different characteristics can also be in- vestigated in the decay of the neutral K-mesons. The CP =−1 kaon state (the K2) can decay directly into a 2π final state without first mixing into a kaon with CP =+1. This effect, referred to as direct CP violation, may proceed by the pen- guin Feynman diagram, and is characterized by the parameter ε. The measured quantity is the double ratio of the decay widths, which, in the NA48 experiment is equivalent to the double ratio of four event-counts Γ (K → π 0π 0)/ Γ (K → π 0π 0) R ≡ L S + − + − Γ (KL → π π )/ Γ (KS → π π ) N(K → π 0π 0)/ N(K → π 0π 0) = L S (1) + − + − N(KL → π π )/ N(KS → π π ) 1 − 6Re(ε/ε). -
Cerncourier Www
CERN Courier March 2014 CERN Courier March 2014 60 years of CERN 60 years of CERN Microelectronics at CERN: from infancy to maturity The LAA The LAA programme, proposed by Antonino Zichichi and fi nanced by the Italian government, was launched as a comprehensive R&D project to study new experimental techniques for the next step in hadron-collider physics at multi-tera-electron-volt energies. The project provided a unique opportunity for Europe to take a leading role in advanced technology for high-energy physics. It was open to all physicists and engineers interested in participating. A total of 40 physicists, engineers and technicians were recruited, and more than 80 associates joined the programme. Later in the 1990s, during the operation of LEP for physics, the programme was complemented by the activities overseen by CERN’s Detector R&D Committee. years 1984–1985 Heijne was seconded to the University of Leuven, where the microelectronics research facility had just become the Interuniversity MicroElectronics Centre (IMEC). It soon became apparent that CMOS technology was the way ahead, and the expe- rience with IMEC led to Jarron’s design of the AMPLEX. (Earlier, in 1983, a collaboration between SLAC, Stanford Uni- versity Integrated Circuits Laboratory, the University of Hawaii and Bernard Hyams from CERN had already initiated the design of Two decades of microelectronics at CERN – enabled by the LAA project. In 1988, the AMPLEX multiplexed read-out chip (top left) allowed UA2 to fi t a silicon-pad detector (bottom left) in the 9 mm gap around the beam the “Microplex” – a silicon-microstrip detector read-out chip using pipe (Image credit: C Gößling, TU Dortmund). -
Future Perspectives at CERN 3 Unprecedented Accuracy
Future Perspectives at CERN John Ellis1 Theoretical Physics Division, CERN, Geneva, Switzerland Abstract. Current and future experiments at CERN are reviewed,with emphasis on those relevant to astrophysics and cosmology. These include experiments related to nuclear astrophysics, matter-antimatter asymmetry, dark matter, axions, gravitational waves, cosmic rays, neutrino oscillations, inflation, neutron stars and the quark-gluon plasma. The centrepiece of CERN’s future programme is the LHC, but some ideas for perspectives after the LHC are also presented. CERN-TH/2002-119 astro-ph/0206054 Talk given at the CERN-ESA-ESO Symposium, M¨unchen, April 2002 1 Outline The scientific mission of CERN is to provide Europe with unique accelerators for the study of the fundamental particles of matter and the interactions between them. The scientific programme of CERN for the next decade is centred on the LHC accelerator, which is scheduled for completion in 2006, so that its experi- ments can start taking in 2007. A description of the LHC scientific programme is the centrepiece of this talk. The motivations for this and other new accelera- tors provided by ideas about possible physics beyond the Standard Model were discussed earlier at this meeting [1]. Between now and the startup of the LHC, CERN has a very limited pro- gramme of running experiments. However, scientific diversity at CERN is en- hanced by a number of recognized experiments, that do not use the CERN ac- celerators and are not supported by CERN, but whose scientists are allowed to use other CERN facilities. In parallel with the construction of the LHC, CERN arXiv:astro-ph/0206054v1 4 Jun 2002 is also preparing to send a long-baseline neutrino beam to the Gran Sasso under- ground laboratory in Italy, in a special programme largely supported by extra contributions from interested countries. -
CERN Courier – Digital Edition Welcome to the Digital Edition of the May/June 2020 Issue of CERN Courier
CERNMay/June 2020 cerncourier.com COURIERReporting on international high-energy physics WLCOMEE CERN Courier – digital edition Welcome to the digital edition of the May/June 2020 issue of CERN Courier. This month’s issue looks at the latest progress in niobium-tin (Nb3Sn) accelerator SUPER magnets for high-energy exploration. Discovered to be a superconductor more than half a century ago, and already in widespread commercial use in MRI CONDUCTOR scanners and employed on a giant scale in the under-construction ITER fusion THE RISE OF experiment, it is only recently that high-performance accelerator magnets made NIOBIUM-TIN from Nb3Sn have been mastered. The first use of Nb3Sn conductor in particle physics will be the High-Luminosity LHC (HL-LHC), for which the first Nb3Sn dipole and quadrupole magnets have recently been tested successfully at CERN and in the US. As our cover feature describes, the demonstration of Nb3Sn in the HL-LHC also serves as a springboard to future hadron colliders, enabling physicists to reach significantly higher energies than are possible with present-generation niobium-titanium accelerator magnets. To this end, CERN and the US labs are achieving impressive results in driving up the performance of Nb3Sn conductor in various demonstrator magnets. Sticking with accelerators, this issue also lays out the possible paths towards a high-energy muon collider – long considered a dream machine for precision and discovery, but devilishly difficult in its details. We also describe the rapid progress being made at synchrotron X-ray sources, arguably the most significant application of accelerator science in recent decades, towards understanding the molecular structure of the SARS-CoV-2 virus. -
Generation and Modeling of Radiation for Clinical and Research Applications Bishwambhar Sengupta Clemson University, [email protected]
Clemson University TigerPrints All Dissertations Dissertations 8-2019 Generation and Modeling of Radiation for Clinical and Research Applications Bishwambhar Sengupta Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Sengupta, Bishwambhar, "Generation and Modeling of Radiation for Clinical and Research Applications" (2019). All Dissertations. 2440. https://tigerprints.clemson.edu/all_dissertations/2440 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Generation and Modeling of Radiation for Clinical and Research Applications A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Physics by Bishwambhar Sengupta August 2019 Accepted by: Dr. Endre Takacs, Committee Chair Dr. Delphine Dean Dr. Brian Dean Dr. Jian He Abstract Cancer is one of the leading causes of death in todays world and also accounts for a major share of healthcare expenses for any country. Our research goals are to help create a device which has improved accuracy and treatment times that will alleviate the resource strain currently faced by the healthcare community and to shed some light on the elementary nature of the interaction between ionizing radiation and living cells. Stereotactic radiosurgery is the treatment of cases in intracranial locations using external radiation beams. There are several devices that can perform radiosurgery, but the Rotating Gamma System is relatively new and has not been extensively studied. -
Particle-Physics Fever in Melbourne
CERN Courier September 2012 ICHEP 2012 Particle-physics fever in Melbourne Starting with the announcement of the discovery of a new boson at CERN, ICHEP2012 resonated to a wave of optimism, despite the continued absence of long sought-after signs of new physics. Never before did the International Conference on High-Energy Physics (ICHEP) start with such a bang. Straight after register- ing on 4 July in Melbourne, participants at ICHEP2012, the 36th conference in the series, were invited to join a seminar at CERN via video link, where they would see the eagerly anticipated pres- entations of the latest results from ATLAS and CMS. The excite- ment generated by the evidence for a new boson sparked a wind of optimism that permeated the whole conference. Loud cheers and sustained applause were appropriately followed by the reception to Enthusiastic applause in Melbourne welcomes the new boson welcome more than 700 participants from around the world, where via webcast. (Image credit: Claudia Marcelloni /ATLAS.) they could discuss the news over a glass of delicious Australian wine or beer. transverse plane can help not only to reduce the background but As usual, ICHEP consisted of three days of six parallel sessions also to distinguish between spin-parity 0+ and 2+. Likewise, the followed by a rest day and then three days of plenary talks to cover parity of a spin-0 boson can be inferred from the distribution of the breadth and depth of particle physics around the world. This the decay angles of H → ZZ → llll. Bolognesi and her colleagues article presents only a personal choice of the highlights.