6.2 Transition Radiation

6.2 Transition Radiation

Contents I General introduction 9 1Preamble 11 2 Relevant publications 15 3 A first look at the formation length 21 4 Formation length 23 4.1Classicalformationlength..................... 24 4.1.1 A reduced wavelength distance from the electron to the photon ........................... 25 4.1.2 Ignorance of the exact location of emission . ....... 25 4.1.3 ‘Semi-bare’ electron . ................... 26 4.1.4 Field line picture of radiation . ............... 26 4.2Quantumformationlength..................... 28 II Interactions in amorphous targets 31 5 Bremsstrahlung 33 5.1Incoherentbremsstrahlung..................... 33 5.2Genericexperimentalsetup..................... 35 5.2.1 Detectors employed . ................... 35 5.3Expandedexperimentalsetup.................... 39 6 Landau-Pomeranchuk-Migdal (LPM) effect 47 6.1 Formation length and LPM effect.................. 48 6.2 Transition radiation . ....................... 52 6.3 Dielectric suppression - the Ter-Mikaelian effect.......... 54 6.4CERNLPMExperiment...................... 55 6.5Resultsanddiscussion....................... 55 3 4 CONTENTS 6.5.1 Determination of ELPM ................... 56 6.5.2 Suppression and possible compensation . ........ 59 7 Very thin targets 61 7.1Theory................................ 62 7.1.1 Multiple scattering dominated transition radiation . .... 62 7.2MSDTRExperiment........................ 63 7.3Results................................ 64 8 Ternovskii-Shul’ga-Fomin (TSF) effect 67 8.1Theory................................ 67 8.1.1 Logarithmic thickness dependence . ............ 68 8.2Results................................ 71 9 King-Perkins-Chudakov (KPC) effect 75 9.1 Introduction to the KPC effect................... 75 9.2KPCExperiment.......................... 81 9.3Results................................ 84 10 Ultrarelativistic ionization energy loss 87 10.1 Introduction . ............................ 87 10.1.1 Loss of density effect.................... 87 10.1.2 Coherence length effect................... 88 10.2 ’Ogle’ Experiment . ........................ 89 10.2.1 Background from synchrotron and transition radiation . 90 10.3 Results ................................ 91 11 Ultrarelativistic heavy ions 95 11.1 Fragmentation experiment . .................... 96 11.2 Results and discussion . .................... 98 11.3 Ionization energy loss for ions . ................100 11.3.1 Nuclear size effect.....................100 11.3.2 Free-free pair production and bremsstrahlung . 101 11.3.3 Bound-free pair production . ................101 III Interactions in crystalline targets 103 12 Strong crystalline fields 105 12.1 The critical field . ........................105 12.2 Strong fields in crystals . ....................109 12.3 Crystal parameters . ........................110 CONTENTS 5 12.3.1 Crystal lattice . .......................110 13 Channeling 113 13.1 Critical angles . ...........................115 13.2 Positively and negatively charged particles . ...........116 13.3 High energy channeling radiation . ...............118 13.4 Coherent bremsstrahlung . ...................120 14 Quantum or classical description? 125 14.1 Particle motion ...........................125 14.2 Emission of radiation . .......................126 14.3 Classical recoil ...........................128 15 Radiation emission in strong fields 129 15.1 Threshold for strong field effects..................130 15.2 The classical limit of synchrotron radiation . ...........131 15.3 The Constant Field Approximation (CFA) . ...........131 15.4 Virtual photon density . .......................137 15.5 Spin processes . ...........................138 15.6 Doughnut scattering suppression . ...............140 16 Radiation emission experiments 141 16.1 Side-slip ...............................143 16.2 Coherent resonances in radiation emission . ...........145 16.3 Quantum suppression . .......................146 16.4 Spin-flip in a strong field . ...................147 16.5 Generation of polarized GeV photons ...............147 16.6 Search for short-lived photo-produced particles . 150 17 Ultra-low emittance beams from crystals 153 17.1 Radiation cooling . .......................153 17.2 Radiation cooling in a ‘continuous focusing environment’ . 157 17.3 Excitation-free radiation emission . ...............158 17.4 Results . ...............................160 18 Photons in strong fields 163 18.1 Pair production ...........................163 18.1.1 Total and differentialrates.................164 18.1.2 Enhancements in crystals . ...............165 18.1.3 Suppression of incoherent contribution . .......166 18.1.4 Coherent resonance for pair production . .......167 18.2 Corrections to the CFA .......................167 6 CONTENTS 18.3 Photon splitting . ........................168 18.4 Delbruckscattering.........................170¨ 19 Trident production 171 19.1 Trident experiment . ........................172 19.2 Results and discussion . ....................174 20 Beam-beam interactions - beamstrahlung 179 20.1 Quantum treatment of beamstrahlung . ............180 20.2 ’Coherent pairs’ . ........................183 20.3 ’Landau-Lifshitz’ pairs and tridents ................185 21 Non-crystalline strong fields 189 21.1 Strong fields from plasma wakefields ................189 21.2 Astrophysical strong fields . ....................190 21.3 Strong fields in nuclear collisions . ................190 21.4 Strong laser fields . ........................191 21.5 Hawking radiation and Unruh effect................193 21.6 The geomagnetic field as a strong field . ............194 22 Channeling in bent crystals 197 22.1 Introduction . ............................197 22.2 Deflection of charged particles in bent crystals . ....198 22.2.1 Critical curvature . ....................198 22.2.2 Strong fields ........................198 22.2.3 Dechanneling ........................199 22.2.4 Model for deflection efficiency...............201 22.2.5 Comparison - model vs. experiment ............202 22.2.6 Volume capture and reflection . ............203 22.2.7 Axial deflection . ....................206 22.3 Radiation damage . ........................206 22.3.1 Imperfections and radiation damage ............207 22.4 Momentum and charge dependence ................207 22.4.1 High-Z crystals.......................208 22.4.2 Momentum dependence . ................208 22.4.3 Low energy, 1GeV...................208 22.4.4 Highly charged ions ....................208 22.4.5 Pion deflection, positive and negative charges . 209 22.5 Extraction . ............................209 22.6 Crystalline Undulator ........................211 22.6.1 Radiation from bent crystals ................211 CONTENTS 7 22.6.2 Crystalline undulator . ...................212 22.7 Applications related to bent crystals . ...............213 23 Ultrarelativistic heavy ions in crystals 215 23.1 Ionization energy loss . .......................215 23.1.1 Restricted energy loss ...................215 23.1.2 Ionization energy loss for channeled ions . .......216 23.2 Proton loss and capture in bent crystals ...............216 23.3 Results . ...............................218 IV Future projects 221 24 LPM effect in low-Z targets 223 25 Magnetic suppression 227 26 Bremsstrahlung emission from γ = 170 Pb82+ 233 27 Efficient positron production in diamonds 239 V Conclusion and acknowledgments 241 28 Conclusion 243 29 Acknowledgments 245 VI Appendices 247 A The quasiclassical approximation in QED 249 A.1Classicalradiationtheory......................250 A.1.1 Potentials and fields . ...................250 A.1.2 Radiation intensity . ...................252 A.1.3 Radiation from ultrarelativistic particles . .......256 A.1.4 Qualitative treatment of radiation . ...........258 A.1.5 Properties of radiation in magnetic bremsstrahlung limit . 261 A.2Quasiclassicalmethodinhigh-energyQED............265 A.2.1 The Probability of Radiation in a Stationary External Field 265 A.2.2 Disentanglement . ...................269 A.2.3 Radiation intensities in the quantum case . .......272 8 CONTENTS B List of symbols 275 C Danish summary 281 Part I General introduction 9 Chapter 1 Preamble The aim of the present dissertation is to summarize the results from the publica- tions shown in chapter 2, to extract what they have in common and where they supplement each other, and to put the results into a broader perspective. This means that there is unavoidably some overlap with results that have already been published, in particular between the part on interactions in crystals and the review paper, [Ugg05]. However, I have attempted to write here a coherent summary of the results obtained at CERN - in my case since 1992 - on penetration of ultrarel- ativistic particles. In the first main part of the dissertation, the penetration of ultrarelativistic particles in amorphous matter is discussed. The focus is on the existence of a formation time for the generation of radiation, which results in a variety of phe- nomena in radiation emission, e.g. by variation of the thickness of the target. In a sense, the question being addressed is the origin of light, although evidently from a rather limited perspective, since an answer to such a broad question must be sought in many other connections as well. It turns out, however, that by the use of ultrarelativistic particles - generally defined as particles with a Lorentz fac- tor significantly above unity - time dilation enables the investigation of the light emission process, ’while it takes place’. In the second part, the focus is on strong field phenomena, investigated by means of

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    327 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us