Dark Matter Direct Detection

Total Page:16

File Type:pdf, Size:1020Kb

Dark Matter Direct Detection Dark Matter Direct Detection Jocelyn Monroe, Royal Holloway University of London PPAP Community Meeting University of Birmingham September 18, 2012 Outline 1. Dark Matter Direct Detection Overview • What are the top scientific challenges in Particle Physics to be solved in the next 20-30 years? 2. Current and Future UK Efforts 3. DMUK Collaboration Input to PPAP • What current and future facilities will be needed for the UK to make significant contributions to these areas? • What are the technology needs for each key priority? • What is the appropriate programmatic balance between construction, operations, exploitation, and R&D? 4. Conclusions (my opinions) The Standard Model of Cosmology E. Komatsu et al., Astrophys. J. Suppl 192 (2011) 18 evidence from CMB, galaxy clusters, large scale structure, supernova data, distance measurements, gravitational lensing Dark Matter is ~25% of the universe. RHUL Jocelyn Monroe Sept. 18, 2012 We only understand 4% of the universe! E. Komatsu et al., Astrophys. J. Suppl 192 (2011) 18 No good Standard Model dark matter particle candidates... new physics ? required. ?? (NASA) Dark matter is globally acknowledged to be one of the top scientific challenges in Particle Physics to be solved in the next 20-30 years, perhaps the top challenge. RHUL Jocelyn Monroe Sept. 18, 2012 Direct Dark Matter Detection χ Signal: χN ➙χN’ Scintillation χ Heat Ionization Backgrounds: n N ➙ n N’ γ e- ➙ γ e-’ N ➙ N’ + α, e- ν N ➙ ν N’ RHUL Jocelyn Monroe Sept. 18, 2012 Around the World KIMS NEWAGE XMASS, PANDA-X DEAP/CLEAN Picasso COUPP DRIFT LUX CDMS Xenon100 DAMA CRESST DMTPC DarkSide DM-ICE Confirmation of EDELWEISS signal from multiple SIMPLE, ANAIS technologies required. MiMAC, ArDM RHUL Jocelyn Monroe Sept. 18, 2012 1 Dark Matter Scattering E = m v2 χ D 2 D χ kinematics: v/c ~ 8E-4! 2 4mDmT q = 2mT Erecoil r = 2 (mD + mT ) N N (1 cosθ) E = E r − recoil D 2 Spin Independent: χscatters coherently off of the entire nucleus A: σ~A2 F(Q2) D. Z. Freedman, PRD 9, 1389 (1974) Spin Dependent: only unpaired nucleons contribute to scattering amplitude: σ~J(J+1) F(Q2) RHUL Jocelyn Monroe Sept. 18, 2012 Spin-Independent Cross Section: Latest Experiment Results IDM2012, E. Aprile et al., arXiv:1207.5988 1 event/ kg/day 1 event/ 100 kg/day tonne-scale detectors likely required for discovery RHUL Jocelyn Monroe Sept. 18, 2012 Spin-Independent Cross Section: Latest Theory Results O. Buchmuller et al., arXiv:1207.7315 We are Here We are Here New Techniques for Backgrounds Techniques New Scalability of Detector Technology Scalability of Detector CAVEAT: many more exotic models (Asymmetric DM, Dark Forces Models, Magnetic Inelastic DM, Sterile Nus + Freeze-In, Isospin- Violating DM, Emergent DM and L# models ..... need 100-1000 dark matter events to measure Complementary with High-Energy Frontier mass, cross section RHUL Jocelyn Monroe Sept. 18, 2012 Outline 1. Dark Matter Direct Detection Overview • What are the top scientific challenges in Particle Physics to be solved in the next 20-30 years? 2. Current and Future UK Efforts 3. DMUK Collaboration Input to PPAP • What current and future facilities will be needed for the UK to make significant contributions to these areas? • What are the technology needs for each key priority? • What is the appropriate programmatic balance between construction, operations, exploitation, and R&D? 4. Conclusions (my opinions) UK Activity in the Global Dark Matter Programme Technology Current Future 2013 2014 2015 2016 2017 liquid Xe TPC LUX LUX-ZEPLIN cryo. Ge EDELWEISS EURECA Bolometer liquid Ar DEAP/ CLEAN-100 Single Phase CLEAN Directional DRIFT, CYGNUS (Gas TPC) DMTPC Stages: Exploitation of current effort, R&D on future effort (closely connected) Funding proposal period Construction Commissioning Exploitation RHUL Jocelyn Monroe Sept. 18, 2012 Global Dark Matter Programme, Sensitivity Reach CYGNUS (Directional) LZ CLEAN 2018 2018 EURECA Stage-II future SuperCDMS-100 XENON-1T DEAP-3600 LUX EDELWEISS III present 2016 2016 miniCLEAN Proposed XMASS Being designed COUPP-60 SuperCDMS-10 Under construction/in operation Xenon-100 Current results ZEPLIN III EDELWEISS II CDMS II completed 10-2 10-1 1 10 102 Spin-independent sensitivity (x10-46 cm2) results: 2012 2012 results: NB: projected sensitivities (all except green) assume zero background. RHUL Jocelyn Monroe Sept. 18, 2012 UK Groups H. Araujo, 13 LUX (material thanks to H. Araujo) Two-phase LXe TPC, 150 kg fiducial mass, PMT read out • background strategy: self shielding, S1/S2 discrimination • 5-10 keV recoil threshold, sensitivity to light WIMPs R. Gaitskell, UCLADM 2012 • construction complete, operated at surface 2011-12, underground installation in 4850’ level of Homestake now, science run to start late 2012 (main physics 2014) • UK groups contributing expertise from Zeplin to underground commissioning, operations • university support RHUL Jocelyn Monroe Sept. 18, 2012 LUX-ZEPLIN Concept design: 7 tonne active mass LXe TPC, with PMT readout, in LUX water tank in Homestake Davis cavern • modest increase in linear scale from LUX • active shield with instrumented Xe + scintillator + water veto in LUX tank • MOU between ZEPLINIII and LZ LUX350 LUX groups (2008) • LZ in US G2 process (coordinated proposals to DOE/NSF/STFC 120 cm 49 cm late 2013) • UK groups seeking significant construction roles RHUL Jocelyn Monroe (material thanks to H. Araujo) Sept. 18, 2012 EURECA / EDELWEISS Collaboraon KIT-IEK, Karlsruhe, Germany University of Oxford, Oxford, UK J. Blümer, G.A. Cox, G. Heuermann, H. Kluck, B. Schmidt, P. Coulter, S. Henry, H. Kraus, X. Zhang B. Siebenborn KIT-IPE, Karlsruhe, Germany CEA-IRFU, Saclay, France T. Bergmann, M. Kleifges, A. Menshikov, D. Tcherniakhovski, M. Weber E. Armengaud, G. Gerbier, M. Gros, X.-F. Navick, C. Nones, University of Sheffield, Sheffield, UK B. Paul, R.J. Walker V.A. Kudryavtsev, M. Robinson IPNL, CNRS/IN2P3, Lyon, France Max-Planck-InsItut für Physik, Munich, Germany C. Augier, B. Censier, J. Gascon, J. Gironnet, A. Juillard, V. G. Angloher, D. Hauff, P. Huff, M. Kiefer, C. Kister, F. Sanglard Petricca, F. Pröbst, F. Reindl, K. Schäffner, W. Seidel, A. InsItut Ne´el, CNRS, Grenoble, France Tanzke A. Benoit, P. Camus Eberhard-Karls-Universität, Tübingen, Germany CSNSM, Orsay, France M. Bauer, J. Jochum, J. Lobell, K. Ro[ler, C. Sailer, C. A. Broniatowski, L. Dumoulin, A. Giuliani, S. Marnieros Strandhagen, M. Turad, I. Usherov KIT-EK, Karlsruhe, Germany CNRS-ICMCB, Pessac, France J. Blümer, K. Eitel, S. Jokisch, V.Y. Kozlov M. Velazquez, P. Veber, O. Viraphong Universidad de Zaragoza, Zaragoza, Spain TUM-E15, Garching, Germany C. Cuesta, E. García, C. Ginestra, M. MarPnez, Y. OrRgoza, F. von Feilitzsch, A. Gü tlein, J.-C. Lanfranchi, A. Münster, J. Puimedón, T. Rolón, A. Salinas, M.L. Sarsa, J.A. Villar W. Potzel, S. Roth, S. Schönert, S. Scholl, M. v. Sivers, R. JINR, Dubna, Russian FederaIon Strauß, S. Wawoczny, M. Willers, M. Wüstrich, A. Zöller V. Brudanin, D. Filosofov, S. Rozov, E. Yakushev INR, Kyiv, Ukraine CEA-IRAMIS, Saclay, France F.A. Danevich, V.V. Kobychev, V.M. Mokina, A.S. Nikolaiko, P. Pari D.V. Poda, R.B. Podviyanuk, O.G. Polischuk, V.I. Tretyak IAS, CNRS, Orsay, France N. Coron, P. de Marcillac, T. Redon, L. Torres UK Groups EDELWEISS-III (material thanks to H. Kraus) Ge bolometers, readout of phonons and ionization • 40 800 gm Ge detectors (~600 gm fiducial) with interleaved bias electrodes, 2 NTD, 4 ionization channels • background strategy: ionization/phonon energy, fiducializing • 10 keV recoil threshold, light (and heavy) WIMP sensitivity Construction builds on EDELWEISS-II at LSM • upgrades of cabling, DAQ, cryogenics, shielding • operations start 2012 UK workpackages: • cryogenic cabling (largest n source), background simulations • pursuing STFC funds RHUL Jocelyn Monroe Sept. 18, 2012 EURECA Concept design: staged programme of 150 to 1000 kg of EDELWEISS and CRESST detectors, in LSM extension • collaboration founded at Oxford (2005) • EURECA has CDR, working towards TDR 2013, proposals to EU countries / STFC late 2013 • UK groups active in cryostat, electronics, cabling design RHUL Jocelyn Monroe (material thanks to H. Kraus) Sept. 18, 2012 DEAP/CLEAN Collaborators University of Alberta Queen’s University B. Beltran, P. Gorel, A. Hallin, S. Liu, C. Ng, K.S. Olsen, J. Soukup M. Boulay, B. Cai, M. Chen, S. Florian, R. Gagnon, V. Golovko, P. Harvey, M. Kuzniak, J. Lidgard, A. McDonald, T. Noble, Boston University P. Pasuthip, C. Pollman, W. Rau, P. Skensved, T. Sonley, M. Ward D. Gastler, E. Kearns, S. Linden Royal Holloway University of London Carleton University G. Boorman, A. Butcher, E. Grace, J. Monroe, M. Bowcock, K. Graham, P. Gravelle, C. Oullet J. A. Nikkel, J. Taylor, J. Walding Los Alamos National Laboratory Rutherford Appleton Laboratory M. Akashi-Ronquest, R. Bingham, R. Bourque, E. Flores, M. Baldwin, P. Majewski V.M. Gehman, J. Griego, R. Hennings-Yeomans, A. Hime, S. Jaditz, F. Lopez, J. Oertel, K. Rielage, L. Rodriguez, D. Steele SNOLAB Institute M. Batygov, F.A. Duncan, C. Jillings, I. Lawson, O. Li, Massachusetts Institute of Technology P. Liimatainen, K. McFarlane, T. O’Malley, E. Vazquez-Jauregi J.A. Formaggio, J. Kelsey, J. Monroe, K. Palladino University of South Dakota National Institute of Standards and Technology V. Guiseppe, D.-M. Mei, G. Perumpilly, C. Zhang K. Coakley University of Sussex University of New Mexico G. Booker, S. J. M. Peeters M. Bodmer, F. Giuliani, M. Gold, D. Loomba, J. Wang Syracuse University University of North Carolina/TUNL R. Bunker, Y. Chen, R.W.
Recommended publications
  • Curriculum Vitæ Jocelyn Monroe
    CURRICULUM VITÆ JOCELYN MONROE ! ADDRESS: CONTACT: Royal Holloway University of London Phone: +44 1784 443513 Department of Physics, W255 Email: [email protected] Egham, Surrey Web: http://www.pp.rhul.ac.uk/~jmonroe EDUCATION: 2006: Ph.D. (Physics) Columbia University Dissertation Title: “A Combined "µ and "e Oscillation Search at MiniBooNE,” Advisor: Prof. Michael Shaevitz 2002: M.A. (Physics) Columbia University 2002: M.Phil. (Physics) Columbia University 1999: B.A. (Astrophysics) Columbia University EMPLOYMENT: May 2013-: Professor of Physics, Royal Holloway University of London 2011-2013: Senior Lecturer, Royal Holloway University of London 2009-2014: Assistant Professor, Massachusetts Institute of Technology 2006-2009: Pappalardo Fellow, Massachusetts Institute of Technology 2000-2006: Research Assistant, Columbia University 1999-2000: Engineering Physicist, Beams Division, Fermi National Accelerator Laboratory 1997: DOE REU Summer Program, Particle Physics Division, Fermi National Accelerator Laboratory COLLABORATION MEMBERSHIPS: 2017-: DarkSide-20k Collaboration, UK P.I. (LNGS, IT), Deputy Spokesperson (2021-) 2019-: The PlomBox Project, P.I. (https://plombox.org/) 2008-: DEAP-3600 (SNOLab, Canada), Executive Board Chair (2014-15) 2006-2016: DMTPC (WIPP, USA), Spokesperson (2011-2016) 2006-2009: SNO (SNOLab, Canada) 1999-2008: MiniBooNE (FNAL, USA) 1999-2000: Neutrino Factory (FNAL, USA) AWARDS AND HONORS: 2016 Breakthrough Prize in Fundamental Physics Laureate 2012 Kavli Frontiers of Science Fellow, U.S. National Academy
    [Show full text]
  • Monday 22 June
    Monday 22 June 7:00 AM US CDT Opening 7:00 AM 10 Welcome Steve Brice Fermilab 7:10 AM 5 Update on IUPAP neutrino panel Nigel Smith SNOLab 7:15 AM 5 The Snowmass process for neutrinos Kate Scholberg Duke University 7:20 AM 35+5 Neutrinos in the era of multi-messenger astronomy Francis Halzen University of Wisconsin, Madison 8:00 AM US CDT 10 Break 8:10 AM 25+5 A review of progress in R&D for neutrino detectors David Nygren University of Texas, Arlington 8:40 AM 17+3 Neutrino oscillation measurements with IceCube Summer Blot DESY/Zeuthen 9:00 AM US CDT 10 Break 9:10 AM US CDT Direct Neutrino Mass Measurements 9:10 AM 17+3 Mass meaurements with Ho-163 Maurits Haverkort University of Heidelberg 9:30 AM 20+5 Project 8 Noah Oblath Pacific Northwest National Laboratory 9:55 AM 20+5 KATRIN: first results and future perspectives Susanne Mertens Technical University Munich and Max Planck Institute for Physics 10:20 AM US CDT 10 Break 10:30 AM 60 Poster Session 11:30 AM US CDT End of Day Tuesday 23 June 7:00 AM US CDT Neutrino Interactions 7:00 AM 25+5 Historical Review and Future program of neutrino cross section measurements and calculations Noemi Rocco Argonne National Laboratory and Fermilab 7:30 AM 17+3 Connections between neutrino and electron scattering Adi Ashkenazi MIT 7:50 AM US CDT 10 Break 8:00 AM 20+5 The Neutrino's View of the Nucleus: New Results from MINERvA Deepika Jena Fermilab 8:25 AM 20+5 Neutrino Interaction Measurements on Argon Kirsty Duffy Fermilab 8:50 AM 20+5 Cross-section measurements with NOvA Linda Cremonesi University
    [Show full text]
  • Understanding the Universe from Deep Underground
    Understanding the Universe from Deep Underground Sudbury Neutrino Observatory Art McDonald, Professor Emeritus Queen’s University, Kingston, Ontario, Canada With our laboratory deep underground we have created a very low radioactivity location where we study some of the most basic scientific questions: • How do stars like our Sun burn and create the elements from which we are made? • What are the basic Laws of Physics for the smallest fundamental particles? • What is the composition of our Universe and how has it evolved to the present ? How do you make measurements that can provide answers to enormous questions like these? Answers: 1: Measure elusive particles called NEUTRINOS that come from the deepest reaches of the Sun where the energy is generated and from cosmic rays interacting in the atmosphere. 2: Measure fundamental particles (DARK MATTER) that are left over from the original formation of the Universe. 3. Measure rare forms of radioactivity (DOUBLE BETA DECAY) that can tell us more about fundamental laws of physics. Neutrinos from the Sun The middle of the sun is so hot that the centers of the atoms (nuclei) fuse together, giving off lots of energy and neutrinos. The neutrinos penetrate easily through the dense material in the Sun and reach the earth. Neutrino facts: • Neutrinos, along with electrons and quarks, are basic particles of nature that we do not know how to sub-divide further. • Neutrinos come in three “flavours” (electron, mu, tau) as described in The Standard Model of Elementary Particles, a fundamental theory of microscopic particle physics. •They only stop if they hit the nucleus of an atom or an electron head-on and can pass through a million billion kilometers of lead without stopping.
    [Show full text]
  • Jocelyn Monroe
    CURRICULUM VITÆ JOCELYN MONROE ADDRESS: CONTACT: Massachusetts Institute of Technology Phone: (617) 253 2332 77 Massachusetts Avenue, 26-561 Email: [email protected] Cambridge, MA 02139 Web: http://molasses.lns.mit.edu/jocelyn EDUCATION: 2006: Ph.D. (Physics) Columbia University Dissertation Title: “A Combined νµ and νe Oscillation Search at MiniBooNE,” Advisor: Prof. Michael Shaevitz 2002: M.A. (Physics) Columbia University 2002: M.Phil. (Physics) Columbia University 1999: B.A. (Astrophysics) Columbia University EMPLOYMENT: July 2009-: Assistant Professor, Massachusetts Institute of Technology 2006-2009: Pappalardo Fellow, Massachusetts Institute of Technology 2000-2006: Research Assistant, Columbia University 1999-2000: Engineering Physicist, Beams Division, Fermi National Accelerator Laboratory 1997: DOE REU Summer Program, Particle Physics Division, Fermi National Accelerator Laboratory COLLABORATION MEMBERSHIPS: 2008-: CLEAN/DEAP Collaboration (SNOLab, Canada) 2006-: DMTPC Collaboration (MIT, USA) 2006-: SNO Collaboration (SNOLab, Canada) 1999-: MiniBooNE Collaboration (FNAL, USA) 1999-2000: Neutrino Factory Collaboration (FNAL, USA) COMMITTEES: SNO Physics Interpretation Review Committee Chair (2006-present) SNO Low Energy Threshold Analysis Review Committee Member (2006-2009) Conference Organizer, 2nd CYGNUS Directional Dark Matter Workshop (2009) SNO Collaboration Executive Board Junior Member (2007-2008) Conference Organizer, 5th International Workshop on Neutrino Factories (2003) Jocelyn Monroe 1 of 11 OUTREACH: 2009 MIT Physics
    [Show full text]
  • Recent Progress from the DEAP-3600 Dark Matter Direct Detection Experiment
    Recent Progress from the DEAP-3600 Dark Matter Direct Detection Experiment Jocelyn Monroe, Royal Holloway University of London IPA2014 August 22, 2014 Outline 1. DEAP-3600 Detector 2. Experimental Technique 3. Status and Outlook RHUL Jocelyn Monroe December 12, 2012 The Low-Background Frontier: Status of SI Searches 1 event/ kg/day 1 event/ 100kg/day 1 event/ 100 kg/ 100 days RHUL Jocelyn Monroe August 22, 2014 The Low-Background Frontier: Status of SI Searches 1 event/ kg/day 1 event/ 100kg/day 1 event/ 100 kg/ 100 days Scalability of Detector Technology Scalability of Detector RHUL Jocelyn Monroe August 22, 2014 The Low-Background Frontier: Status of SI Searches 1 event/ kg/day 1 event/ 100kg/day 1 event/ 100 kg/ 100 days New Techniques for Backgrounds Techniques New Scalability of Detector Technology Scalability of Detector RHUL Jocelyn Monroe August 22, 2014 The Low-Background Frontier: Status of SI Searches 1 event/ kg/day 1 event/ 100kg/day 1 event/ 100 kg/ 100 days New Techniques for Backgrounds Techniques New Scalability of Detector Technology Scalability of Detector Complementary with High-Energy Frontier RHUL Jocelyn Monroe August 22, 2014 The Low-Background Frontier: Prospects under construction proposed so far: <1 event at 1E-45 cm2, therefore need minimum 2 1E-47 cm sensitivity for 100 events to measure MX,σ RHUL Jocelyn Monroe August 22, 2014 cross section (cm2) detector mass (ktonnes) Neutrino Lesson: key to scalability is large, open volume 10-45 100 simple detector design 30 DEAP/CLEAN Strategy: Super-K draw on design successes of 10-44 (55 kt) large neutrino experiments 10 DEAP/CLEAN Kamland (3 kt) 10-43 3 1 10-42 SNO (1 kt) MiniBooNE 10-39 0.1 (0.8 kt) RHUL Jocelyn Monroe August 22, 2014 Single Phase a la Neutrinos high light yield and self-shielding of target background discrimination from prompt scintillation timing..
    [Show full text]
  • Can Tonne-Scale Direct Detection Experiments Discover Nuclear Dark Matter?
    Prepared for submission to JHEP Can Tonne-Scale Direct Detection Experiments Discover Nuclear Dark Matter? Alistair Butcher, Russell Kirk, Jocelyn Monroe and Stephen M. West Dept. of Physics, Royal Holloway University of London, Egham, Surrey, TW20 0EX, U.K. E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark mat- ter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive fea- tures arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spec- trum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ.
    [Show full text]
  • Dosimetry and Calorimetry Performance of a Scientific CMOS
    sensors Article Dosimetry and Calorimetry Performance of a Scientific CMOS Camera for Environmental Monitoring Alexis Aguilar-Arevalo 1 , Xavier Bertou 2 , Carles Canet 3 , Miguel Angel Cruz-Pérez 4 , Alexander Deisting 5,* , Adriana Dias 5 , Juan Carlos D’Olivo 1, Francisco Favela-Pérez 1,2, Estela A. Garcés 6 , Adiv González Muñoz 6, Jaime Octavio Guerra-Pulido 1 , Javier Mancera-Alejandrez 7, Daniel José Marín-Lámbarri 6 , Mauricio Martinez Montero 1, Jocelyn Monroe 5 , Sean Paling 8, Simon J. M. Peeters 9 , Paul Scovell 8, Cenk Türko˘glu 10 , Eric Vázquez-Jáuregui 6 and Joseph Walding 5 1 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Mexico, A. P. 70-543, Mexico 04510, Mexico; [email protected] (A.A.-A.); [email protected] (J.C.D.); [email protected] (F.F.-P.); [email protected] (J.O.G.-P.); [email protected] (M.M.M.) 2 Centro Atómico Bariloche, CNEA/CONICET/IB, Bariloche 8400, Argentina; [email protected] 3 Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico 04110, Mexico; [email protected] 4 Programa de Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de Mexico, Ciudad Universitaria, Coyoacán 04510, Mexico; [email protected] 5 Royal Holloway, University of London, Egham Hill TW20 0EX, UK; [email protected] (A.D.); [email protected] (J.M.); [email protected] (J.W.) 6 Instituto de Física, Universidad Nacional Autónoma de México, A. P. 20-364, Mexico 01000,
    [Show full text]
  • Slide from Marco Martini) a New Concept to Measure, and Report Neutrino Cross Section Data, Now the Standard of the Community
    1. MiniBooNE 2. Beam Observation of a Significant Excess of Electron-Like Events3. Detector 4. Oscillation in the MiniBooNE Short-Baseline Neutrino Experiment5. Discussion arXiv:1805.12028 outline 1. MiniBooNE neutrino experiment 2. Booster Neutrino Beamline (BNB) 3. MiniBooNE Detector 4. Oscillation canDiDate search 5. Discussion Teppei Katori for the MiniBooNE collaboration Queen Mary University of London HEP seminar, UCL, UK, June 14, 2018 13/06/18 1 1. MiniBooNE 2. Beam 3. Detector 4. Oscillation 5. Discussion 1. MiniBooNE neutrino experiment 2. Booster Neutrino Beamline (BNB) 3. MiniBooNE Detector 4. Oscillation canDidate search 5. Discussion 13/06/18 2 1. MiniBooNE 2. Beam 3. Detector 4. Oscillation 5. Discussion 13/06/18 3 PHYSICAL REVIEW LETTERS 120, 141802 (2018) signature of dark matter annihilation in the Sun [5,6]. 1. MiniBooNE Despite the importance of the KDAR neutrino, it has never MiniBooNE 2. Beam been isolated and identified. 3. Detector 86 m 4. Oscillation In the charged current (CC) interaction of a 236 MeV νμ background KDAR 12 − NuMI 5. Discussion (νμ C → μ X), the muon kinetic energy (Tμ) and closely beam decay pipe related neutrino-nucleus energy transfer (ω E − E ) horns ν μ target distributions are of particular interest for benchmarking¼ absorber neutrino interaction models and generators, which report widely varying predictions for kinematics at these tran- 5 m 675 m sition-region energies [7–14]. Traditionally, experiments 40 m are only sensitive, at best, to total visible hadronic energy FIG. 1. The NuMI beamline and various sources of neutrinos since invisible neutrons and model-dependent nucleon that reach MiniBooNE (dashed lines).
    [Show full text]
  • Dark Matter Direct Detection Status and Prospects
    Dark Matter Direct Detection Status and Prospects Jocelyn Monroe, Royal Holloway, University of London 2019 International Workshop on Baryon and Lepton Number Violation Institute for Theoretical Physics, Madrid, ES October 24, 2019 Big Questions for the Dark Sector (a la European Strategy for Particle Physics Update 2019) 1) How do we search for dark matter, depending on its properties? 2) What are the highlights and challenges of the experimental programs, current or near-future, that address different regions of parameter space? 3) How can dark matter detection experiments inform/guide energy and intensity frontier experiments, and vice versa? Jocelyn Monroe Oct. 24, 2019 / p.2 Big Questions for the Dark Sector (a la European Strategy for Particle Physics Update 2019) 1) How do we search for dark matter, depending on its properties? 2) What are the highlights and challenges of the experimental programs, current or near-future, that address different regions of parameter space? 3) How can dark matter detection experiments inform/guide energy and intensity frontier experiments, and vice versa? Jocelyn Monroe Oct. 24, 2019 / p.2 χ χ Gravitational Detection Indirect Detection ? e-,ν,γ e+,p,D Direct Detection Accelerator Production χ χ jet p p N N’ χ χ Jocelyn Monroe Oct. 24, 2019 / p.3 Dark Matter Direct Detection Signal:χN ➙χN χ χ Backgrounds: γ e- ➙ γ e- n N ➙ n N N ➙ N’ + α, e- ν N ➙ ν N experimental requirements: particle ID for recoil N, e-, alpha, n (multiple)γ final states γ Jocelyn Monroe Oct. 24, 2019 / p.4 1 E = m v2 WIMP Scattering χ D 2 D χ kinematics: v/c ~ 8E-4! q2 = 2m E recoil angle strongly correlated T recoil 4mDmT with incoming WIMP direction r = 2 (mD + mT ) N N (1 cosq) E = E r − recoil D 2 Spin Independent: χscatters coherently off of the entire nucleus A: σ~A2 D.
    [Show full text]
  • Springer Proceedings in Physics
    Springer Proceedings in Physics Volume 148 For further volumes: http://www.springer.com/series/361 David Cline Editor Sources and Detection of Dark Matter and Dark Energy in the Universe Proceedings of the 10th UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe, February 22-24, 2012, Marina del Rey, California Editor David Cline UCLA Physics & Astronomy Los Angeles , USA ISSN 0930-8989 ISSN 1867-4941 (electronic) ISBN 978-94-007-7240-3 ISBN 978-94-007-7241-0 (eBook) DOI 10.1007/978-94-007-7241-0 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013955385 © Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
    [Show full text]
  • Neutrino Signals at Dark Matter Direct Detection Experiments
    Neutrino Signals at Dark Matter Direct Detection Experiments Jocelyn Monroe, Royal Holloway, University of London XXIX International Conference on Neutrino Physics and Astrophysics June 30, 2020 Dark Matter Direct Detection Signal: N ➙ N or e- ➙ e- Backgrounds: γ e- ➙γe- N ➙ N N ➙N’ + α, e- νN ➙νN experimental requirements: particle ID for recoil N, e-, alpha, n (multiple)γ final states γ Jocelyn Monroe June 30, 2020 / p. 2 Dark Matter Direct Neutrino Detection Signal: ν N ➙ ν N or ν e- ➙ ν e- ν ν Backgrounds: γ e- ➙γe- N ➙ N N ➙N’ + α, e- N ➙N? very similar requirements! ν (and ideally also measure direction) ν Jocelyn Monroe June 30, 2020 / p. 3 2008: Neutrino Backgrounds to Dark Matter Searches and Directionality Jocelyn Monroe May 30, 2008 2008 2020: Neutrino Backgrounds Signals in Dark Matter Searches (and Directionality) Jocelyn Monroe May 30, 2008 ν Cross Sections 2 2 -44 2 ν-N coherent scattering: ~ A x (Eν/MeV) x 10 cm recoils are O(10 keV) … neutrino floor in DM searches ν ν Z Φ(solar B8 ν) = 5.86 x 106 cm-2 s-1 N N Aprile et al., PhysRevLett 123 (2019) LZ Projected Nuclear Recoil Backgrounds J. Dobson, UCLA DM 2018 circa O(tens) of events/ton-year = 2008 ~ 10-46 cm2 limit JM, P. Fisher, Phys. Rev. D76 (2007) Rev. Phys. Fisher, JM, P. circa An irreducible background,2019 without direction measurement! JM, P. Fisher, Phys. Rev. D 76:033007 (2007) Jocelyn Monroe June 30, 2020 / p. 3 ν Cross Sections 2 2 -44 2 ν-N coherent scattering: ~ A x (Eν/MeV) x 10 cm recoils are O(10 keV) … neutrino floor in DM searches ν ν-e elastic scattering: smaller by ~ (me / Eν) ν but recoils are “high” energy ~ Eν Z and directional! e e LZ Projected Electronic Recoil Backgrounds LZ Projected Nuclear Recoil Backgrounds J.
    [Show full text]
  • Institute of Particle Physics 2022-2026 Long Range Plan IPP Scientific Council1 17 November 2020
    Institute of Particle Physics 2022-2026 Long Range Plan IPP Scientific Council1 17 November 2020 DRAFT for IPP Member Feedback 1Members of the elected IPP Scientific Council from June 2019 to May 2021: E.Caden (SNOLAB), K.Clark (Queen's), M.Hartz (TRI- UMF), B.Jamieson (Winnipeg), R.McPherson (Victoria/IPP), J.M. Roney (Chair, Victoria), B.Stelzer (SFU), D.Stolarski (Carleton), R.Tafirout (TRIUMF). Primary contact for this document is J.M. Roney, [email protected]. Executive Summary The members of the Institute of Particle Physics (IPP), through which Canadian particle physicists are self- organized, are addressing the most important and pressing fundamental scientific questions today. Through the IPP, Canada is having a disproportionately high impact on international particle physics projects and the goal of IPP during the period 2022-2026 is to maintain that leadership in the field. This brief documents how IPP plans to do that. • Big questions in Particle Physics The overarching goal of the IPP community is to continue to make significant progress on answering the \Big Questions" of our time: { Is there new physics at or above the TeV scale accessible to the LHC direct searches and precision measurements or rare decays from multiple experiments? { What is the nature of the dark matter (DM) that comprises 85% of matter in the universe? { Is there a hidden \dark sector" ? { What is the origin and nature of the matter-antimatter asymmetry that produced our matter-dominated universe? { What is the nature of the neutrino and what can we learn by probing neutrino oscillations? { How are gravity and dark energy incorporated into the rest of the particle physics theoretical framework, and how can that knowledge be used to understand the history of the universe? In tackling these questions IPP members train the next generation of scientists in multiple, high-level skills at the cutting edge of science, technology and problem solving in a competitive international environment.
    [Show full text]