Dark Matter Direct Detection
Total Page:16
File Type:pdf, Size:1020Kb
Dark Matter Direct Detection Jocelyn Monroe, Royal Holloway University of London PPAP Community Meeting University of Birmingham September 18, 2012 Outline 1. Dark Matter Direct Detection Overview • What are the top scientific challenges in Particle Physics to be solved in the next 20-30 years? 2. Current and Future UK Efforts 3. DMUK Collaboration Input to PPAP • What current and future facilities will be needed for the UK to make significant contributions to these areas? • What are the technology needs for each key priority? • What is the appropriate programmatic balance between construction, operations, exploitation, and R&D? 4. Conclusions (my opinions) The Standard Model of Cosmology E. Komatsu et al., Astrophys. J. Suppl 192 (2011) 18 evidence from CMB, galaxy clusters, large scale structure, supernova data, distance measurements, gravitational lensing Dark Matter is ~25% of the universe. RHUL Jocelyn Monroe Sept. 18, 2012 We only understand 4% of the universe! E. Komatsu et al., Astrophys. J. Suppl 192 (2011) 18 No good Standard Model dark matter particle candidates... new physics ? required. ?? (NASA) Dark matter is globally acknowledged to be one of the top scientific challenges in Particle Physics to be solved in the next 20-30 years, perhaps the top challenge. RHUL Jocelyn Monroe Sept. 18, 2012 Direct Dark Matter Detection χ Signal: χN ➙χN’ Scintillation χ Heat Ionization Backgrounds: n N ➙ n N’ γ e- ➙ γ e-’ N ➙ N’ + α, e- ν N ➙ ν N’ RHUL Jocelyn Monroe Sept. 18, 2012 Around the World KIMS NEWAGE XMASS, PANDA-X DEAP/CLEAN Picasso COUPP DRIFT LUX CDMS Xenon100 DAMA CRESST DMTPC DarkSide DM-ICE Confirmation of EDELWEISS signal from multiple SIMPLE, ANAIS technologies required. MiMAC, ArDM RHUL Jocelyn Monroe Sept. 18, 2012 1 Dark Matter Scattering E = m v2 χ D 2 D χ kinematics: v/c ~ 8E-4! 2 4mDmT q = 2mT Erecoil r = 2 (mD + mT ) N N (1 cosθ) E = E r − recoil D 2 Spin Independent: χscatters coherently off of the entire nucleus A: σ~A2 F(Q2) D. Z. Freedman, PRD 9, 1389 (1974) Spin Dependent: only unpaired nucleons contribute to scattering amplitude: σ~J(J+1) F(Q2) RHUL Jocelyn Monroe Sept. 18, 2012 Spin-Independent Cross Section: Latest Experiment Results IDM2012, E. Aprile et al., arXiv:1207.5988 1 event/ kg/day 1 event/ 100 kg/day tonne-scale detectors likely required for discovery RHUL Jocelyn Monroe Sept. 18, 2012 Spin-Independent Cross Section: Latest Theory Results O. Buchmuller et al., arXiv:1207.7315 We are Here We are Here New Techniques for Backgrounds Techniques New Scalability of Detector Technology Scalability of Detector CAVEAT: many more exotic models (Asymmetric DM, Dark Forces Models, Magnetic Inelastic DM, Sterile Nus + Freeze-In, Isospin- Violating DM, Emergent DM and L# models ..... need 100-1000 dark matter events to measure Complementary with High-Energy Frontier mass, cross section RHUL Jocelyn Monroe Sept. 18, 2012 Outline 1. Dark Matter Direct Detection Overview • What are the top scientific challenges in Particle Physics to be solved in the next 20-30 years? 2. Current and Future UK Efforts 3. DMUK Collaboration Input to PPAP • What current and future facilities will be needed for the UK to make significant contributions to these areas? • What are the technology needs for each key priority? • What is the appropriate programmatic balance between construction, operations, exploitation, and R&D? 4. Conclusions (my opinions) UK Activity in the Global Dark Matter Programme Technology Current Future 2013 2014 2015 2016 2017 liquid Xe TPC LUX LUX-ZEPLIN cryo. Ge EDELWEISS EURECA Bolometer liquid Ar DEAP/ CLEAN-100 Single Phase CLEAN Directional DRIFT, CYGNUS (Gas TPC) DMTPC Stages: Exploitation of current effort, R&D on future effort (closely connected) Funding proposal period Construction Commissioning Exploitation RHUL Jocelyn Monroe Sept. 18, 2012 Global Dark Matter Programme, Sensitivity Reach CYGNUS (Directional) LZ CLEAN 2018 2018 EURECA Stage-II future SuperCDMS-100 XENON-1T DEAP-3600 LUX EDELWEISS III present 2016 2016 miniCLEAN Proposed XMASS Being designed COUPP-60 SuperCDMS-10 Under construction/in operation Xenon-100 Current results ZEPLIN III EDELWEISS II CDMS II completed 10-2 10-1 1 10 102 Spin-independent sensitivity (x10-46 cm2) results: 2012 2012 results: NB: projected sensitivities (all except green) assume zero background. RHUL Jocelyn Monroe Sept. 18, 2012 UK Groups H. Araujo, 13 LUX (material thanks to H. Araujo) Two-phase LXe TPC, 150 kg fiducial mass, PMT read out • background strategy: self shielding, S1/S2 discrimination • 5-10 keV recoil threshold, sensitivity to light WIMPs R. Gaitskell, UCLADM 2012 • construction complete, operated at surface 2011-12, underground installation in 4850’ level of Homestake now, science run to start late 2012 (main physics 2014) • UK groups contributing expertise from Zeplin to underground commissioning, operations • university support RHUL Jocelyn Monroe Sept. 18, 2012 LUX-ZEPLIN Concept design: 7 tonne active mass LXe TPC, with PMT readout, in LUX water tank in Homestake Davis cavern • modest increase in linear scale from LUX • active shield with instrumented Xe + scintillator + water veto in LUX tank • MOU between ZEPLINIII and LZ LUX350 LUX groups (2008) • LZ in US G2 process (coordinated proposals to DOE/NSF/STFC 120 cm 49 cm late 2013) • UK groups seeking significant construction roles RHUL Jocelyn Monroe (material thanks to H. Araujo) Sept. 18, 2012 EURECA / EDELWEISS Collaboraon KIT-IEK, Karlsruhe, Germany University of Oxford, Oxford, UK J. Blümer, G.A. Cox, G. Heuermann, H. Kluck, B. Schmidt, P. Coulter, S. Henry, H. Kraus, X. Zhang B. Siebenborn KIT-IPE, Karlsruhe, Germany CEA-IRFU, Saclay, France T. Bergmann, M. Kleifges, A. Menshikov, D. Tcherniakhovski, M. Weber E. Armengaud, G. Gerbier, M. Gros, X.-F. Navick, C. Nones, University of Sheffield, Sheffield, UK B. Paul, R.J. Walker V.A. Kudryavtsev, M. Robinson IPNL, CNRS/IN2P3, Lyon, France Max-Planck-InsItut für Physik, Munich, Germany C. Augier, B. Censier, J. Gascon, J. Gironnet, A. Juillard, V. G. Angloher, D. Hauff, P. Huff, M. Kiefer, C. Kister, F. Sanglard Petricca, F. Pröbst, F. Reindl, K. Schäffner, W. Seidel, A. InsItut Ne´el, CNRS, Grenoble, France Tanzke A. Benoit, P. Camus Eberhard-Karls-Universität, Tübingen, Germany CSNSM, Orsay, France M. Bauer, J. Jochum, J. Lobell, K. Ro[ler, C. Sailer, C. A. Broniatowski, L. Dumoulin, A. Giuliani, S. Marnieros Strandhagen, M. Turad, I. Usherov KIT-EK, Karlsruhe, Germany CNRS-ICMCB, Pessac, France J. Blümer, K. Eitel, S. Jokisch, V.Y. Kozlov M. Velazquez, P. Veber, O. Viraphong Universidad de Zaragoza, Zaragoza, Spain TUM-E15, Garching, Germany C. Cuesta, E. García, C. Ginestra, M. MarPnez, Y. OrRgoza, F. von Feilitzsch, A. Gü tlein, J.-C. Lanfranchi, A. Münster, J. Puimedón, T. Rolón, A. Salinas, M.L. Sarsa, J.A. Villar W. Potzel, S. Roth, S. Schönert, S. Scholl, M. v. Sivers, R. JINR, Dubna, Russian FederaIon Strauß, S. Wawoczny, M. Willers, M. Wüstrich, A. Zöller V. Brudanin, D. Filosofov, S. Rozov, E. Yakushev INR, Kyiv, Ukraine CEA-IRAMIS, Saclay, France F.A. Danevich, V.V. Kobychev, V.M. Mokina, A.S. Nikolaiko, P. Pari D.V. Poda, R.B. Podviyanuk, O.G. Polischuk, V.I. Tretyak IAS, CNRS, Orsay, France N. Coron, P. de Marcillac, T. Redon, L. Torres UK Groups EDELWEISS-III (material thanks to H. Kraus) Ge bolometers, readout of phonons and ionization • 40 800 gm Ge detectors (~600 gm fiducial) with interleaved bias electrodes, 2 NTD, 4 ionization channels • background strategy: ionization/phonon energy, fiducializing • 10 keV recoil threshold, light (and heavy) WIMP sensitivity Construction builds on EDELWEISS-II at LSM • upgrades of cabling, DAQ, cryogenics, shielding • operations start 2012 UK workpackages: • cryogenic cabling (largest n source), background simulations • pursuing STFC funds RHUL Jocelyn Monroe Sept. 18, 2012 EURECA Concept design: staged programme of 150 to 1000 kg of EDELWEISS and CRESST detectors, in LSM extension • collaboration founded at Oxford (2005) • EURECA has CDR, working towards TDR 2013, proposals to EU countries / STFC late 2013 • UK groups active in cryostat, electronics, cabling design RHUL Jocelyn Monroe (material thanks to H. Kraus) Sept. 18, 2012 DEAP/CLEAN Collaborators University of Alberta Queen’s University B. Beltran, P. Gorel, A. Hallin, S. Liu, C. Ng, K.S. Olsen, J. Soukup M. Boulay, B. Cai, M. Chen, S. Florian, R. Gagnon, V. Golovko, P. Harvey, M. Kuzniak, J. Lidgard, A. McDonald, T. Noble, Boston University P. Pasuthip, C. Pollman, W. Rau, P. Skensved, T. Sonley, M. Ward D. Gastler, E. Kearns, S. Linden Royal Holloway University of London Carleton University G. Boorman, A. Butcher, E. Grace, J. Monroe, M. Bowcock, K. Graham, P. Gravelle, C. Oullet J. A. Nikkel, J. Taylor, J. Walding Los Alamos National Laboratory Rutherford Appleton Laboratory M. Akashi-Ronquest, R. Bingham, R. Bourque, E. Flores, M. Baldwin, P. Majewski V.M. Gehman, J. Griego, R. Hennings-Yeomans, A. Hime, S. Jaditz, F. Lopez, J. Oertel, K. Rielage, L. Rodriguez, D. Steele SNOLAB Institute M. Batygov, F.A. Duncan, C. Jillings, I. Lawson, O. Li, Massachusetts Institute of Technology P. Liimatainen, K. McFarlane, T. O’Malley, E. Vazquez-Jauregi J.A. Formaggio, J. Kelsey, J. Monroe, K. Palladino University of South Dakota National Institute of Standards and Technology V. Guiseppe, D.-M. Mei, G. Perumpilly, C. Zhang K. Coakley University of Sussex University of New Mexico G. Booker, S. J. M. Peeters M. Bodmer, F. Giuliani, M. Gold, D. Loomba, J. Wang Syracuse University University of North Carolina/TUNL R. Bunker, Y. Chen, R.W.