<<

3RD SOUTH AMERICAN WORKSHOP ICTP-SAIFR, SÃO PAULO, BRAZIL DIRECT DETECTION: A REVIEW OF TECHNIQUES AND RESULTS GIULIANA FIORILLO UNIVERSITÀ DEGLI STUDI DI NAPOLI “FEDERICO II” & INFN

DECEMBER 2, 2020 MY TAKE-HOME MESSAGE FROM TWO PREVIOUS TALKS

❖ Absence of evidence IS NOT Evidence of absence

❖ Worth to look for DM EVERYWHERE DARK MATTER CANDIDATES

❖ Thermal relics:

❖ WIMP: generic weakly interacting massive

❖ ADM: asymmetric dark matter

❖ SIMP: strongly interacting massive particle

❖ …

❖ Non- thermal relics

: very light mass ( 10-5 eV), CDM because produced at rest in the early Universe. Its interaction strength is strongly suppressed 2 relative to the weak strength by a factor (mW/fa ) , 11 where fa ∼10 GeV is the PQ breaking scale

❖ … and many more

Baer et al., arXiv:1407.0017 DARK MATTER CANDIDATES

APPEC DM Report, to be published

Direct searches generally optimised for WIMP sensitivity...

Baer et al., arXiv:1407.0017 WIMP DIRECT DETECTION WIMP χN ➙χN elastic scattering off nuclei

dR ρχ dσ χ χ = NT × ∫ dv f (v) v dER mχ dER

100 GeV/c2 WIMP mass Spin Independent: 1E-45 cm2 WIMP- SI σ 10 χ scatters coherently off of the entire nucleus: σ~ A2

Spin Dependent: 1 only unpaired contribute to scattering amplitude: σ~ J(J+1)

0.1 ‣ Large detector mass, long exposure ‣ Low energy threshold ‣ Low rate ‣ Ultra-low radioactive bg ‣ Nuclear recoil energy ≈ 1÷100 keV ‣ Good bg discrimination MODULATION SIGNATURES Annual event rate modulation: June-December asymmetry ~2-10% Drukier, Freese, Spergel, Phys. Rev. D33:3495 (1986)

Sidereal direction modulation: asymmetry ~ 20-100% in forward-backward event rate Spergel, Phys. Rev. D36:1353 (1988) ×3 rate variation of parallel vs perpendicular directions Credits Jocelyn Monroe DAMA MODULATION SIGNAL

Standard Halo Model predicted modulation A~0.02-0.1, t0=152.5 days DAMA/NaI + DAMA/LIBRA-phase1 + phase2:

A= (0.0103 ± 0.0008) cpd/kg/keV, t0 = (145±5) d in 2.46 t-yr (2 - 6 keV)

NUCL. PHYS. AT. ENERGY 19 (2018) 307-325

2.46 ton × yr exposure annual modulation signature observed over 20 annual cycles (12.9 σ)

1804.01231, Baum, Freese, Kelso “Dark Matter implications of DAMA/LIBRA-phase2 results” “the observed annual modulation signal is no longer well fitted by canonical (isospin conserving) spin-independent WIMP nucleon couplings”

Data collection expected to go on until the end of 2024, work underway for phase 3, to lower the software energy threshold below 1 keVee MODEL INDEPENDENT CHECK NaI experiments COSINE-100 SABRE NORTH ANAIS-112

PICOLON

ANAIS, Phys. Rev. Lett. 123, 031301 COSINUS

TAKING DATA

COSINE-100, Phys. Rev. Lett. 123, 031302 SABRE SOUTH ANAIS-112 ANNUAL MODULATION Preliminary results of 3 yrs data taking presented by M. Martinez @ Madrid, October 2020

Present sensitivity @ 3 years: 2.6� 3σ sensitivity model independent is at reach in 1 year from now DISCRIMINATINGH"I5!7%,+8(!7+ BACKGROUNDS(+8(%#$!J!KL+$(!MN!KL+$(!7%&8,%-%$'(%#$ !"!#$!%&&'()*+,-./'0,1'2"3&'(4&5/''"+*6'3+77.*'8*9:.-7; Cryogenic Experiments at mK Temperatures !"#$%&"''(# from natural radioactivity: "#$%#&'(%#$45*#$#$ γ - ➙ γ - α, n e e/601 !.+47+(+8(#, • Advantages: high sensitivity to nuclearnuclear recoils recoils nN ➙ nN γ, e- N ➙ N’ + α, β • measuring the full nuclear recoilelectron ener recoilsgy in the channel • low energy threshold (keV to sub-keV), good energy resolution DE#F!G'8@1,#9$2!7'('D • light/phonon and charge/phonon: nuclear vs. electronSignal recoil split discrimination in two components which Active veto shield and fiducialization !"#$%"respond&'(#)*"# differently$#+% to,# NR/ER-+ ➞ identification of recoils ➞ separation of S and B )+&(-+&&9$1!-%(!:+!9(1,#$';%=+*=$@!;<*%=7=%B!>+';%=,$7*;=,?8* @&(AB+C 9"*:";"<;=#)*/>/?@*5'$$'A*'7:*7"6;#=7A CD=7=7A*!"#$%&'* )*+,-#-+(+, WIMP single :%A;%756%AD"A*(";E""7* Efficiency: > 99.9% n/γ double "&"<;#=7*'7:*76<&"'#* electron recoils E > 20keV scatter #"/?@* <'&%(#';%=72

! ?6;*';*;E=*A;'7:'#:* FV :"I%';%=7A*@=#*76<&"'#* n #"

CoGENT (Ge), CDEX (Ge), DAMIC (Si), SENSEI (Si) Heat & Charge Cryogenic Light & Charge Detectors Detectors

PandaX (LXe), XENON (LXe), SuperCDMS (Ge, Si), LUX/LZ (LXe), DarkSide (LAr) Charge EDELWEISS (Ge)

DAMA/LIBRA, CDMSLite ANAIS, (Ge, Si) SABRE, COSINE, Light Heat PICOLON (NaI) Total XMASS (LXe), Energy DEAP (LAr) PICO (C3F8, CF3I)

Light & Heat Cryogenic Detectors

CRESST (CaWO4), COSINUS (NaI) Too many experiments: only a selection here WIMP DIRECT DETECTION STATUS 10−37 XENON1T Migdal ] 2 10−38 S2-only 2019 CRESST-III 2019 −39 10 DarkSide-50 2018 [cm −40

SI 10 σ 10−41 THRESHOLDLOW CDMSLite 2017 10−42 DEAP-3600 2017 43 10− DEAP-3600 2019 LUX 2017 −44 10 DarkSide-50 2018 PANDAX-II 2017 10−45 XENON1T 2018 XENON1T Signals 2019 10−46 10−47 LARGE MASS 10−48 −49

Dark Matter-Nucleon 10 floor on −50 10 −3 −2 −1 2 10 10 10 2 1 10 10 Mχ [TeV/c ] LOW THRESHOLD WITH CRYOGENIC CRYSTALS

T-sensor SUPERCDMS CHARGE & : CDMSLITE EDELWEISS T0 E LIGHT & CRESST PHONONS:

Target

χ E deposition → temperature rise ΔT ~ μK → requires detectors at mK

❖ Crystals: Ge, Si, CaWO4, NaI ❖ T-sensors: ❖ superconductor thermistors (highly doped superconductor): NTD Ge → EDELWEISS ❖ superconducting transition sensors (thin films of SC biased near middle of normal/SC transition): TES → CDMS, CRESST LOW THRESHOLD: CRESST

❖ First CRESST-III run 07/2016 - 02/2018 ❖ Target crystal mass: 23.6g ❖ Gross exposure (before cuts): 5.7 kg days ❖ Unprecedented low nuclear recoil thresholds of 30 eV

❖ Leading sensitivity over one order of magnitude:

❖ 160 MeV/c2 →1.8 GeV/c2

❖ CRESST-III phase 2 will push further the threshold (10 eV), upgrade to 100 modules for O(2 kg) target mass Phys. Rev. D 100, 102002 Phys. Rev. WIMP DIRECT DETECTION STATUS APPEC DM Report, to be published

THRESHOLDLOW

LARGE MASS LARGE MASS: NOBLE LIQUIDS

❖ dual-phase Time Projection Chambers with multi-tonne liquid Xe, Ar targets

❖ read out primary scintillation: “S1” + proportional gas scintillation from drifted : “S2”

❖ 3D position reconstruction: drift time ❖ time difference between S1 and S2 gives Z position (few mm resolution) ❖ pattern of S2 light gives XY position (~1cm resolution)

❖ background identification + passive suppression

❖ zeptobarn (10-45 cm2) to yoctobarn (10-48 cm2) sensitivity to WIMP dark matter Xenon100 XENON DETECTORS See dedicated talks on Dec 3 XENON 10 (LNGS) XENON1T: best limit for high WIMP masses 10 kg ZEPLIN II (Boulby) 2010 ZEPLIN III (Boulby)

XENON 100 (LNGS) 100 kg LUX (250 kg, SURF),

43 PANDA-X 10° PandaX/LUX sensitivity 101 ] (500 kg, CJPL) 2 Aprile et al, Phys. Rev. Lett. 121, 111302 (2018) Rev. Aprile et al, Phys. 44 100

2015 [cm 10° Normalized SI

XMASS s XENON1T sensitivity 1 10° 101 102 103 45 (0.8t, Kamioka) 10° WIMP mass [GeV/c2] PandaX-II (2017) LUX (2017) 10 46 yr, this work) 1000 kg ° £ WIMP-nucleon XENON1T (1 t

47 XENON 1T 10° 101 102 103 (1t, LNGS) WIMP mass [GeV/c2] PandaX-4:(4t, CJPL) 2020 XENONnT: (6t, LNGS) LZ: (7t, SURF) 10000 kg DARWIN: 50 t, ESPPU Document #62 Jocelyn Monroe, ESPP, Granada 2019 ESPP, Jocelyn Monroe, DETECTORS See A. Kish on Dec 3 DS50 low mass: leading SI limit at 1.8-3.5 GeV/c2 2010 DarkSide-50 DS50 high mass: 10 kg (50 kg, LNGS) background discrimination

ArDM 100 kg (1t, LSC)

1000 kg 2015 Phys. Rev. D 98, 102006 (2018) Phys. Rev. Lett.121.081307 (2018)

DEAP-3600 (3.6t, SNOLAB)

10000 kg Global Argon Dark Matter Collaboration formed: 2020 DarkSide-20k (50t, LNGS)

100000 kg

ARGO: 400 t, ESPPU Document #97 Jocelyn Monroe, ESPP, Granada 2019 ESPP, Jocelyn Monroe, LOW THRESHOLD WITH NOBLE LIQUIDS

❖ S2 only analysis in Xenon1T

❖ effective exposure of (22 ± 3) tonne day

❖ 0.7 keVnr, 0.186 keVee threshold

❖ Known backgrounds:

❖ Beta decays from 214Pb (flat ER))

❖ CEvNS

❖ Beta decays on the cathode wires

❖ Unmodeled background below 150PE

❖ Also probes WIMP- scattering PHYSICAL REVIEW LETTERS 123,251801 (2019) XENON1T: EXCESS ELECTRON RECOIL EVENTS 285 evts observed vs 232 ±15 expected in the range 1-7 keV → ~3σ fluctuation

Less than 1 yr data from XENONnT to distinguish from 3H

>160 CITATIONS!

See T. Wolf on Dec 3 WIMP DIRECT DETECTION PROSPECTS Phys. Rev. D 88, 076011 (2013)

z

PRD 89, 023524 (2014)

DarkSide-20k ESPP 2019 APPEC DM Report, to be published DIRECTIONAL DETECTION: BEYOND THE NEUTRINO FLOOR ❖ Mature technology: gaseous TPC (DRIFT, MIMAC, DMTPC, NEWAGE, CYGNO) ➟ CYGNUS (10-1000 m3)

❖ R&D on several other techniques:

• NEWSdm • Nanometric track direction measurement in nuclear emulsions • Exploit resonant light scattering using polarised light • Measurement of track slope and length beyond the optical resolution See E. Baracchini on Dec 3 • Unprecedented accuracy of 6 nm achieved on both coordinates

• RED • Columnar Recombination in liquid argon TPC

• PTOLEMY • Graphene target (nanoribbon or nanotubes) SPIN-DEPENDENT INTERACTIONS superheated target (CNFM), camera + acoustic readout, background rejection based on topology O(10-2), measure counts above threshold when dE/dx > nucleation, SIMPLE (GESA), PICASSO+COUPP = PICO (SNOLAB)

PICO-60: leading WIMP-p limit, C4F8 target (60 kg), 500 kg planned competitive limits from neutrino telescopes (IceCube, Antares, SuperK) leading WIMP-n limits from Xe 2-phase TPCs PHYS. REV. D100,022001 (2019)

PICASSO, SIMPLE, PICO-2, PICO-60 (CF3I), ICECUBE, SUPER-K, PANDAX-II

to b

annihilation to NO WIMPS YET? PARADIGM SHIFT DRIVING SOCIAL CHANGE

Murayama @ TAUP 2019

❖ WIMP should be explored at least down to the neutrino floor ❖ heavier? e.g., wino @ 3TeV ⟹ CTA ❖ … perhaps not necessarily heavier but rather lighter and weaker coupling? ❖ ❖ ❖ LIGHT DARKMATTER (SUB-GEV) dedicated experimentaleffortsdedicated Increasing number of onelectronsAbsorption �(eV) onelectronsScattering �(MeV) ❖ ❖ ❖ ❖ ❖ ❖ ❖ … Superconductors Drift chambers (e.g. UA’(1), DarkSide-LM ) 2-phaseTPC Noble liquid PTOLEMY-G SENSEI DAMIC 3

DM Results

[ ] [ ] ------ bound isestimated using 1908.10881

-

- =

=(

-

-

-

@ -

/

) - @

[

[ ]

]

@ @

-

PHYSICAL REVIEWLETTERS 125,171802 (2020) - @ - -

-

-

[]

- - - - - - ------

- =( @ / )

@

[ [ @ ]

]

@ @

-

@ - - -

-

-

- SUMMARY & CONCLUSIONS

❖ A new era in the search for dark matter: need to explore DM everywhere

❖ WIMP still main paradigm → reach ν floor, add directional sensitivity

❖ Light DM probed via scattering to 1 MeV (and via absorption to ~eV), and possibly much lower

❖ Ultra Light DM: a wealth of dedicated initiatives search for WISP dark matter covering > 10 orders of magnitude in mass (not covered here…)