<<

Can One Determine TR at the LHC with a or G ? e Leszeek Roszkowski Astro–Particle Theory and Cosmology Group Sheffield, England

with K.-Y. Choi and R. Ruiz de Austri arXiv:0710.3349 → JHEP’08

L. Roszkowski, COSMO’08 – p.1 Non-commercial advert

L. Roszkowski, COSMO’08 – p.2 MCMC scan + Bayesian study of SUSY models new development, led by two groups: B. Allanach (Cambridge), and us prepare tools for data from LHC and dark matter searches e.g.: Constrained MSSM: scan over m1/2, m0, tan β, A0 + 4 SM (nuisance) param’s software package available from SuperBayes.org

SuperBayes

L. Roszkowski, COSMO’08 – p.3 e.g.: Constrained MSSM: scan over m1/2, m0, tan β, A0 + 4 SM (nuisance) param’s software package available from SuperBayes.org

SuperBayes MCMC scan + Bayesian study of SUSY models new development, led by two groups: B. Allanach (Cambridge), and us prepare tools for data from LHC and dark matter searches

L. Roszkowski, COSMO’08 – p.3 software package available from SuperBayes.org

SuperBayes MCMC scan + Bayesian study of SUSY models new development, led by two groups: B. Allanach (Cambridge), and us prepare tools for data from LHC and dark matter searches

e.g.: Constrained MSSM: scan over m1/2, m0, tan β, A0 + 4 SM (nuisance) param’s arXiv:0705.2012 (flat priors)

Roszkowski, Ruiz & Trotta (2007) 4

3.5

3

2.5

(TeV) 2 0

m 1.5

1

0.5 CMSSM µ>0 0.5 1 1.5 2 m (TeV) 1/2 Relative probability density 0 0.2 0.4 0.6 0.8 1

L. Roszkowski, COSMO’08 – p.3 software package available from SuperBayes.org

SuperBayes MCMC scan + Bayesian study of SUSY models new development, led by two groups: B. Allanach (Cambridge), and us prepare tools for data from LHC and dark matter searches

e.g.: Constrained MSSM: scan over m1/2, m0, tan β, A0 + 4 SM (nuisance) param’s arXiv:0705.2012 (flat priors) SI direct detection: σp Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) 4 −4 CMSSM, µ > 0 3.5 −5 EDELWEISS−I

3 ZEPLIN−II −6 XENON−10

2.5 CDMS−II

(pb)] −7 SI p

(TeV) 2 σ 0 −8 m 1.5 Log[ −9 1 −10 0.5 CMSSM µ>0 −11 0.5 1 1.5 2 0.2 0.4 0.6 0.8 1 m (TeV) m (TeV) 1/2 χ

L. Roszkowski, COSMO’08 – p.3 software package available from SuperBayes.org

SuperBayes MCMC scan + Bayesian study of SUSY models new development, led by two groups: B. Allanach (Cambridge), and us prepare tools for data from LHC and dark matter searches

e.g.: Constrained MSSM: scan over m1/2, m0, tan β, A0 + 4 SM (nuisance) param’s arXiv:0705.2012 (flat priors) GLAST and γ–ray flux from GC Roszkowski, Ruiz & Trotta (2007) 4

3.5

3

2.5

(TeV) 2 0

m 1.5

1

0.5 CMSSM µ>0 0.5 1 1.5 2 m (TeV) 1/2

L. Roszkowski, COSMO’08 – p.3 software package available from SuperBayes.org

SuperBayes MCMC scan + Bayesian study of SUSY models new development, led by two groups: B. Allanach (Cambridge), and us prepare tools for data from LHC and dark matter searches

e.g.: Constrained MSSM: scan over m1/2, m0, tan β, A0 + 4 SM (nuisance) param’s arXiv:0705.2012 (flat priors) PAMELA and positron flux Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz, Silk & Trotta (2008) 4 −1 CAPRICE 94 10 HEAT 94+95 3.5 HEAT 00 −2 Moore+ac 10 3 ) −3 NFW+ac

e− 10

2.5 Φ

+ −4 10 e+ NFW

(TeV) 2 Φ 0 −5 /(

m 10 68%

1.5 e+ NFW profile, BF = 1

Φ −6 CMSSM, µ > 0 10 1 −7 95% 10 0.5 CMSSM µ>0 −8 10 0.5 1 1.5 2 0.1 1 10 100 400 m (TeV) E (GeV) 1/2 e+

L. Roszkowski, COSMO’08 – p.3 SuperBayes MCMC scan + Bayesian study of SUSY models new development, led by two groups: B. Allanach (Cambridge), and us prepare tools for data from LHC and dark matter searches e.g.: Constrained MSSM: scan over m1/2, m0, tan β, A0 + 4 SM (nuisance) param’s arXiv:0705.2012 (flat priors) PAMELA and positron flux Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz, Silk & Trotta (2008) 4 −1 CAPRICE 94 10 HEAT 94+95 3.5 HEAT 00 −2 Moore+ac 10 3 ) −3 NFW+ac

e− 10

2.5 Φ

+ −4 10 e+ NFW

(TeV) 2 Φ 0 −5 /(

m 10 68%

1.5 e+ NFW profile, BF = 1

Φ −6 CMSSM, µ > 0 10 1 −7 95% 10 0.5 CMSSM µ>0 −8 10 0.5 1 1.5 2 0.1 1 10 100 400 m (TeV) E (GeV) 1/2 e+ software package available from SuperBayes.org L. Roszkowski, COSMO’08 – p.3 End of advert

L. Roszkowski, COSMO’08 – p.4 SUSY and other superpartners + Higgs discovered; 2 neutralino’s density Ωχh , as determined with LHC data, is consistent with 0.1 WIMP signal detected in DM searches; SI direct detection c.s. σp consistent with value determined from LHC data neutralino is DM! ⇒ Alternatively (potentially more interesting):

WIMP signal not found in DM searches down to σSI 10 10 pb p ∼ − and 2 neutralino seemingly stable but its density Ωχh (determined with LHC data) convincingly different from Ω h2 0.1 (WMAP, etc) CDM ' or lightest superpartner at LHC not electrically neutral (e.g. stau)

DM is made up of exotic WIMP ( a or gravitino G) or another ⇒ E–WIMP/superWIMP e e it may become possible to determine T from LHC data alone ⇒ R

(TR – highest temp. at which, after inflation, the Universe reaches thermal equilibrium)

Possible outcomes from LHC...

L. Roszkowski, COSMO’08 – p.5 Alternatively (potentially more interesting):

WIMP signal not found in DM searches down to σSI 10 10 pb p ∼ − and 2 neutralino seemingly stable but its density Ωχh (determined with LHC data) convincingly different from Ω h2 0.1 (WMAP, etc) CDM ' or lightest superpartner at LHC not electrically neutral (e.g. stau)

DM is made up of exotic WIMP (axino a or gravitino G) or another ⇒ E–WIMP/superWIMP e e it may become possible to determine T from LHC data alone ⇒ R

(TR – highest temp. at which, after inflation, the Universe reaches thermal equilibrium)

Possible outcomes from LHC...

SUSY neutralino and other superpartners + Higgs discovered; 2 neutralino’s density Ωχh , as determined with LHC data, is consistent with 0.1 WIMP signal detected in DM searches; SI direct detection c.s. σp consistent with value determined from LHC data neutralino is DM! ⇒

L. Roszkowski, COSMO’08 – p.5 DM is made up of exotic WIMP (axino a or gravitino G) or another ⇒ E–WIMP/superWIMP e e it may become possible to determine T from LHC data alone ⇒ R

(TR – highest temp. at which, after inflation, the Universe reaches thermal equilibrium)

Possible outcomes from LHC...

SUSY neutralino and other superpartners + Higgs discovered; 2 neutralino’s density Ωχh , as determined with LHC data, is consistent with 0.1 WIMP signal detected in DM searches; SI direct detection c.s. σp consistent with value determined from LHC data neutralino is DM! ⇒ Alternatively (potentially more interesting):

WIMP signal not found in DM searches down to σSI 10 10 pb p ∼ − and 2 neutralino seemingly stable but its density Ωχh (determined with LHC data) convincingly different from Ω h2 0.1 (WMAP, etc) CDM ' or lightest superpartner at LHC not electrically neutral (e.g. stau)

L. Roszkowski, COSMO’08 – p.5 Possible outcomes from LHC...

SUSY neutralino and other superpartners + Higgs discovered; 2 neutralino’s density Ωχh , as determined with LHC data, is consistent with 0.1 WIMP signal detected in DM searches; SI direct detection c.s. σp consistent with value determined from LHC data neutralino is DM! ⇒ Alternatively (potentially more interesting):

WIMP signal not found in DM searches down to σSI 10 10 pb p ∼ − and 2 neutralino seemingly stable but its density Ωχh (determined with LHC data) convincingly different from Ω h2 0.1 (WMAP, etc) CDM ' or lightest superpartner at LHC not electrically neutral (e.g. stau)

DM is made up of exotic WIMP (axino a or gravitino G) or another ⇒ E–WIMP/superWIMP e e it may become possible to determine T from LHC data alone ⇒ R

(TR – highest temp. at which, after inflation, the Universe reaches thermal equilibrium)

L. Roszkowski, COSMO’08 – p.5 axino and gravitino E-WIMPs their properties and relic production LSP relic abundance and LHC

TR for axino LSP upper bound on LSP mass

TR for gravitino LSP distinguishing axinos from gravitinos at LHC summary

Outline

L. Roszkowski, COSMO’08 – p.6 their properties and relic production LSP relic abundance and LHC

TR for axino LSP upper bound on LSP mass

TR for gravitino LSP distinguishing axinos from gravitinos at LHC summary

Outline

axino and gravitino E-WIMPs

L. Roszkowski, COSMO’08 – p.6 LSP relic abundance and LHC

TR for axino LSP upper bound on LSP mass

TR for gravitino LSP distinguishing axinos from gravitinos at LHC summary

Outline

axino and gravitino E-WIMPs their properties and relic production

L. Roszkowski, COSMO’08 – p.6 TR for axino LSP upper bound on LSP mass

TR for gravitino LSP distinguishing axinos from gravitinos at LHC summary

Outline

axino and gravitino E-WIMPs their properties and relic production LSP relic abundance and LHC

L. Roszkowski, COSMO’08 – p.6 upper bound on LSP mass

TR for gravitino LSP distinguishing axinos from gravitinos at LHC summary

Outline

axino and gravitino E-WIMPs their properties and relic production LSP relic abundance and LHC

TR for axino LSP

L. Roszkowski, COSMO’08 – p.6 TR for gravitino LSP distinguishing axinos from gravitinos at LHC summary

Outline

axino and gravitino E-WIMPs their properties and relic production LSP relic abundance and LHC

TR for axino LSP upper bound on LSP mass

L. Roszkowski, COSMO’08 – p.6 distinguishing axinos from gravitinos at LHC summary

Outline

axino and gravitino E-WIMPs their properties and relic production LSP relic abundance and LHC

TR for axino LSP upper bound on LSP mass

TR for gravitino LSP

L. Roszkowski, COSMO’08 – p.6 summary

Outline

axino and gravitino E-WIMPs their properties and relic production LSP relic abundance and LHC

TR for axino LSP upper bound on LSP mass

TR for gravitino LSP distinguishing axinos from gravitinos at LHC

L. Roszkowski, COSMO’08 – p.6 Outline axino and gravitino E-WIMPs their properties and relic production LSP relic abundance and LHC

TR for axino LSP upper bound on LSP mass

TR for gravitino LSP distinguishing axinos from gravitinos at LHC summary

L. Roszkowski, COSMO’08 – p.6 historically first: neutral, Majorana, chiral fermions G: Pagels+Primack, Weinberg (’82) a:eTamvakis+Wyler (’82, pheno only) γ: Goldberg (’83) e χ: Ellis, et al (EHNOS) (’84) (assume usual mediated SUSY breaking) e axino gravitino spin 1/2 3/2 interaction 1/f 2 1/M 2 ∼ a ∼ P mass M M 6∝ SUSY ∝ SUSY mass model dependent f 109 12 GeV – PQ scale a ∼ − take it as free parameter M = 2.4 1018 GeV – reduced Planck mass P × M 100 GeV 1 TeV – soft SUSY mass scale SUSY ∼ −

E–WIMPs: G and a (extremely weakly interacting massive particles) e e

L. Roszkowski, COSMO’08 – p.7 neutral, Majorana, chiral fermions

(assume usual gravity mediated SUSY breaking) axino gravitino spin 1/2 3/2 interaction 1/f 2 1/M 2 ∼ a ∼ P mass M M 6∝ SUSY ∝ SUSY mass model dependent f 109 12 GeV – PQ scale a ∼ − take it as free parameter M = 2.4 1018 GeV – reduced Planck mass P × M 100 GeV 1 TeV – soft SUSY mass scale SUSY ∼ −

E–WIMPs: G and a (extremely weakly interacting massive particles) e historically first: G: Pagels+Preimack, Weinberg (’82) a:eTamvakis+Wyler (’82, pheno only) γ: Goldberg (’83) e χ: Ellis, et al (EHNOS) (’84) e

L. Roszkowski, COSMO’08 – p.7 (assume usual gravity mediated SUSY breaking) axino gravitino spin 1/2 3/2 interaction 1/f 2 1/M 2 ∼ a ∼ P mass M M 6∝ SUSY ∝ SUSY mass model dependent f 109 12 GeV – PQ scale a ∼ − take it as free parameter M = 2.4 1018 GeV – reduced Planck mass P × M 100 GeV 1 TeV – soft SUSY mass scale SUSY ∼ −

E–WIMPs: G and a (extremely weakly interacting massive particles) e e historically first: neutral, Majorana, chiral fermions G: Pagels+Primack, Weinberg (’82) a:eTamvakis+Wyler (’82, pheno only) γ: Goldberg (’83) e χ: Ellis, et al (EHNOS) (’84) e

L. Roszkowski, COSMO’08 – p.7 E–WIMPs: G and a (extremely weakly interacting massive particles) e e historically first: neutral, Majorana, chiral fermions G: Pagels+Primack, Weinberg (’82) a:eTamvakis+Wyler (’82, pheno only) γ: Goldberg (’83) e χ: Ellis, et al (EHNOS) (’84) (assume usual gravity mediated SUSY breaking) e axino gravitino spin 1/2 3/2 interaction 1/f 2 1/M 2 ∼ a ∼ P mass M M 6∝ SUSY ∝ SUSY mass model dependent f 109 12 GeV – PQ scale a ∼ − take it as free parameter M = 2.4 1018 GeV – reduced Planck mass P × M 100 GeV 1 TeV – soft SUSY mass scale SUSY ∼ −

L. Roszkowski, COSMO’08 – p.7 The Big Picture well–motivated particle candidates such that Ω 0.1 ∼

neutrino ν – hot DM neutralino χ “generic” WIMP a axino a gravitinoe G e

L. Roszkowski, COSMO’08 – p.8 Φ = 1 (s + ia) + √2 a θ + F θθ spin 1/2 partner of axion: √2 θ 2 g e α superpotential WPQ = 2 ΦW Wα 16√2π fa neutral, Majorana • interaction 1/f 2 • ∼ a mass • chiral fermion: no mass term M • ∝ SUSY tree: M 2 /f 1 keV (dim 5) • ∼ SUSY a ∼ but easy to generate: MeV GeV • ∼ − ...strong model dependence

Axino a SUSY + e

L. Roszkowski, COSMO’08 – p.9 interaction 1/f 2 • ∼ a mass • chiral fermion: no mass term M • ∝ SUSY tree: M 2 /f 1 keV (dim 5) • ∼ SUSY a ∼ but easy to generate: MeV GeV • ∼ − ...strong model dependence

Axino a SUSY + axions

Φ =e1 (s + ia) + √2 a θ + F θθ spin 1/2 partner of axion: √2 θ 2 g e α superpotential WPQ = 2 ΦW Wα 16√2π fa neutral, Majorana •

L. Roszkowski, COSMO’08 – p.9 mass • chiral fermion: no mass term M • ∝ SUSY tree: M 2 /f 1 keV (dim 5) • ∼ SUSY a ∼ but easy to generate: MeV GeV • ∼ − ...strong model dependence

Axino a SUSY + axions

Φ =e1 (s + ia) + √2 a θ + F θθ spin 1/2 partner of axion: √2 θ 2 g e α superpotential WPQ = 2 ΦW Wα 16√2π fa neutral, Majorana • interaction 1/f 2 • ∼ a

L. Roszkowski, COSMO’08 – p.9 but easy to generate: MeV GeV • ∼ − ...strong model dependence

Axino a SUSY + axions

Φ =e1 (s + ia) + √2 a θ + F θθ spin 1/2 partner of axion: √2 θ 2 g e α superpotential WPQ = 2 ΦW Wα 16√2π fa neutral, Majorana • interaction 1/f 2 • ∼ a mass • chiral fermion: no mass term M • ∝ SUSY tree: M 2 /f 1 keV (dim 5) • ∼ SUSY a ∼

L. Roszkowski, COSMO’08 – p.9 Axino a SUSY + axions

Φ =e1 (s + ia) + √2 a θ + F θθ spin 1/2 partner of axion: √2 θ 2 g e α superpotential WPQ = 2 ΦW Wα 16√2π fa neutral, Majorana • interaction 1/f 2 • ∼ a mass • chiral fermion: no mass term M • ∝ SUSY tree: M 2 /f 1 keV (dim 5) • ∼ SUSY a ∼ but easy to generate: MeV GeV • ∼ − ...strong model dependence

L. Roszkowski, COSMO’08 – p.9 Axino a SUSY + axions

Φ =e1 (s + ia) + √2 a θ + F θθ spin 1/2 partner of axion: √2 θ 2 g e α superpotential WPQ = 2 ΦW Wα 16√2π fa neutral, Majorana • interaction 1/f 2 • ∼ a mass • chiral fermion: no mass term M • ∝ SUSY tree: M 2 /f 1 keV (dim 5) • ∼ SUSY a ∼ but easy to generate: MeV GeV • ∼ − ...strong model dependence

L. Roszkowski, COSMO’08 – p.9 Axino a SUSY + axions

Φ =e1 (s + ia) + √2 a θ + F θθ spin 1/2 partner of axion: √2 θ 2 g e α superpotential WPQ = 2 ΦW Wα 16√2π fa neutral, Majorana • interaction 1/f 2 • ∼ a mass • chiral fermion: no mass term M • ∝ SUSY tree: M 2 /f 1 keV (dim 5) • ∼ SUSY a ∼ but easy to generate: MeV GeV • ∼ − ...strong model dependence

for cosmology: treat ma as parameter e

L. Roszkowski, COSMO’08 – p.9 axino–gluino–gluon (dim–5) • αs ¯ µν b b (ag˜ g˜) = aγ5σ g G L 8π(fa/N) µν e e dominant in a production from scatterings (high TR) e axino–squark–quark (dim–4) • (a˜qq˜) = gL/R qL/R q¯ P γ5a L eff j j R/L e e dominant in a production from q decays (low TR) e e ...plus aγχ interactions... • e dominant in a production from NLSP freezeout and decay e

a Interactions e consider Kim, Shifman, Veinstein, Zakharov model heavy singlet (chiral) quark superfield

L. Roszkowski, COSMO’08 – p.10 axino–squark–quark (dim–4) • (a˜qq˜) = gL/R qL/R q¯ P γ5a L eff j j R/L e e dominant in a production from q decays (low TR) e e ...plus aγχ interactions... • e dominant in a production from NLSP freezeout and decay e

a Interactions e consider Kim, Shifman, Veinstein, Zakharov model heavy singlet (chiral) quark superfield

axino–gluino–gluon (dim–5) • αs ¯ µν b b (ag˜ g˜) = aγ5σ g G L 8π(fa/N) µν e e dominant in a production from scatterings (high TR) e

L. Roszkowski, COSMO’08 – p.10 ...plus aγχ interactions... • e dominant in a production from NLSP freezeout and decay e

a Interactions e consider Kim, Shifman, Veinstein, Zakharov model heavy singlet (chiral) quark superfield

axino–gluino–gluon (dim–5) • αs ¯ µν b b (ag˜ g˜) = aγ5σ g G L 8π(fa/N) µν e e dominant in a production from scatterings (high TR) e axino–squark–quark (dim–4) • (a˜qq˜) = gL/R qL/R q¯ P γ5a L eff j j R/L e e dominant in a production from q decays (low TR) e e

L. Roszkowski, COSMO’08 – p.10 a Interactions e consider Kim, Shifman, Veinstein, Zakharov model heavy singlet (chiral) quark superfield

axino–gluino–gluon (dim–5) • αs ¯ µν b b (ag˜ g˜) = aγ5σ g G L 8π(fa/N) µν e e dominant in a production from scatterings (high TR) e axino–squark–quark (dim–4) • (a˜qq˜) = gL/R qL/R q¯ P γ5a L eff j j R/L e e dominant in a production from q decays (low TR) e e ...plus aγχ interactions... • e dominant in a production from NLSP freezeout and decay

e

L. Roszkowski, COSMO’08 – p.10 consider: Covi+J.E. Kim+Roszkowski, PRL’99 a =LSP • χe =NLSP (LOSP) • χ first freezes out • then decays: χ a γ • → e 3 τ (χ a γ) 0.3 sec 100 GeV . . . → '  mχ  (χ B) e ' ...before BBN! e NTP: nae = nχ NTP 2 mae 2 Ωe h = Ωχh • a mχ can have Ωe 1 while “Ω 1” NTP: non–thermal production a ' χ  plus TP processes: q q a g, q a q, . . . • → → TP: thermal production e e e e 11 2 TP 2 6 1.108 mae 10 GeV TR Ωe h 5.5 g ln 4 a ' s  gs  0.1 GeV   fa  10 GeV  Covi+J.E. Kim+H.-B. Kim+Roszkowski, JHEP’01 TP dominance T f 2/me ⇒ R ∝ a a Brandenburg and Steffen (’04)

Producing Relic Axinos

L. Roszkowski, COSMO’08 – p.11 a =LSP • χe =NLSP (LOSP) • χ first freezes out • then decays: χ a γ • → e 3 τ (χ a γ) 0.3 sec 100 GeV . . . → '  mχ  (χ B) e ' ...before BBN! e NTP: nae = nχ NTP 2 mae 2 Ωe h = Ωχh • a mχ can have Ωe 1 while “Ω 1” NTP: non–thermal production a ' χ  plus TP processes: q q a g, q a q, . . . • → → TP: thermal production e e e e 11 2 TP 2 6 1.108 mae 10 GeV TR Ωe h 5.5 g ln 4 a ' s  gs  0.1 GeV   fa  10 GeV  Covi+J.E. Kim+H.-B. Kim+Roszkowski, JHEP’01 TP dominance T f 2/me ⇒ R ∝ a a Brandenburg and Steffen (’04)

Producing Relic Axinos consider: Covi+J.E. Kim+Roszkowski, PRL’99

L. Roszkowski, COSMO’08 – p.11 χ first freezes out • then decays: χ a γ • → e 3 τ (χ a γ) 0.3 sec 100 GeV . . . → '  mχ  (χ B) e ' ...before BBN! e NTP: nae = nχ NTP 2 mae 2 Ωe h = Ωχh • a mχ can have Ωe 1 while “Ω 1” NTP: non–thermal production a ' χ  plus TP processes: q q a g, q a q, . . . • → → TP: thermal production e e e e 11 2 TP 2 6 1.108 mae 10 GeV TR Ωe h 5.5 g ln 4 a ' s  gs  0.1 GeV   fa  10 GeV  Covi+J.E. Kim+H.-B. Kim+Roszkowski, JHEP’01 TP dominance T f 2/me ⇒ R ∝ a a Brandenburg and Steffen (’04)

Producing Relic Axinos consider: Covi+J.E. Kim+Roszkowski, PRL’99 a =LSP • χe =NLSP (LOSP) •

L. Roszkowski, COSMO’08 – p.11 then decays: χ a γ • → e 3 τ (χ a γ) 0.3 sec 100 GeV . . . → '  mχ  (χ B) e ' ...before BBN! e NTP: nae = nχ NTP 2 mae 2 Ωe h = Ωχh • a mχ can have Ωe 1 while “Ω 1” NTP: non–thermal production a ' χ  plus TP processes: q q a g, q a q, . . . • → → TP: thermal production e e e e 11 2 TP 2 6 1.108 mae 10 GeV TR Ωe h 5.5 g ln 4 a ' s  gs  0.1 GeV   fa  10 GeV  Covi+J.E. Kim+H.-B. Kim+Roszkowski, JHEP’01 TP dominance T f 2/me ⇒ R ∝ a a Brandenburg and Steffen (’04)

Producing Relic Axinos consider: Covi+J.E. Kim+Roszkowski, PRL’99 a =LSP • χe =NLSP (LOSP) • χ first freezes out •

L. Roszkowski, COSMO’08 – p.11 3 τ (χ a γ) 0.3 sec 100 GeV . . . → '  mχ  (χ B) e ' ...before BBN! e NTP: nae = nχ NTP 2 mae 2 Ωe h = Ωχh • a mχ can have Ωe 1 while “Ω 1” NTP: non–thermal production a ' χ  plus TP processes: q q a g, q a q, . . . • → → TP: thermal production e e e e 11 2 TP 2 6 1.108 mae 10 GeV TR Ωe h 5.5 g ln 4 a ' s  gs  0.1 GeV   fa  10 GeV  Covi+J.E. Kim+H.-B. Kim+Roszkowski, JHEP’01 TP dominance T f 2/me ⇒ R ∝ a a Brandenburg and Steffen (’04)

Producing Relic Axinos consider: Covi+J.E. Kim+Roszkowski, PRL’99 a =LSP • χe =NLSP (LOSP) • χ first freezes out • then decays: χ a γ • → e

L. Roszkowski, COSMO’08 – p.11 NTP: nae = nχ NTP 2 mae 2 Ωe h = Ωχh • a mχ can have Ωe 1 while “Ω 1” NTP: non–thermal production a ' χ  plus TP processes: q q a g, q a q, . . . • → → TP: thermal production e e e e 11 2 TP 2 6 1.108 mae 10 GeV TR Ωe h 5.5 g ln 4 a ' s  gs  0.1 GeV   fa  10 GeV  Covi+J.E. Kim+H.-B. Kim+Roszkowski, JHEP’01 TP dominance T f 2/me ⇒ R ∝ a a Brandenburg and Steffen (’04)

Producing Relic Axinos consider: Covi+J.E. Kim+Roszkowski, PRL’99 a =LSP • χe =NLSP (LOSP) • χ first freezes out • then decays: χ a γ • → e 3 τ (χ a γ) 0.3 sec 100 GeV . . . → '  mχ  (χ B) e ' ...before BBN! e

L. Roszkowski, COSMO’08 – p.11 can have Ωe 1 while “Ω 1” NTP: non–thermal production a ' χ  plus TP processes: q q a g, q a q, . . . • → → TP: thermal production e e e e 11 2 TP 2 6 1.108 mae 10 GeV TR Ωe h 5.5 g ln 4 a ' s  gs  0.1 GeV   fa  10 GeV  Covi+J.E. Kim+H.-B. Kim+Roszkowski, JHEP’01 TP dominance T f 2/me ⇒ R ∝ a a Brandenburg and Steffen (’04)

Producing Relic Axinos consider: Covi+J.E. Kim+Roszkowski, PRL’99 a =LSP • χe =NLSP (LOSP) • χ first freezes out • then decays: χ a γ • → e 3 τ (χ a γ) 0.3 sec 100 GeV . . . → '  mχ  (χ B) e ' ...before BBN! e NTP: nae = nχ NTP 2 mae 2 Ωe h = Ωχh • a mχ

L. Roszkowski, COSMO’08 – p.11 plus TP processes: q q a g, q a q, . . . • → → TP: thermal production e e e e 11 2 TP 2 6 1.108 mae 10 GeV TR Ωe h 5.5 g ln 4 a ' s  gs  0.1 GeV   fa  10 GeV  Covi+J.E. Kim+H.-B. Kim+Roszkowski, JHEP’01 TP dominance T f 2/me ⇒ R ∝ a a Brandenburg and Steffen (’04)

Producing Relic Axinos consider: Covi+J.E. Kim+Roszkowski, PRL’99 a =LSP • χe =NLSP (LOSP) • χ first freezes out • then decays: χ a γ • → e 3 τ (χ a γ) 0.3 sec 100 GeV . . . → '  mχ  (χ B) e ' ...before BBN! e NTP: nae = nχ NTP 2 mae 2 Ωe h = Ωχh • a mχ

can have Ωe 1 while “Ω 1” NTP: non–thermal production a ' χ 

L. Roszkowski, COSMO’08 – p.11 Producing Relic Axinos consider: Covi+J.E. Kim+Roszkowski, PRL’99 a =LSP • χe =NLSP (LOSP) • χ first freezes out • then decays: χ a γ • → e 3 τ (χ a γ) 0.3 sec 100 GeV . . . → '  mχ  (χ B) e ' ...before BBN! e NTP: nae = nχ NTP 2 mae 2 Ωe h = Ωχh • a mχ can have Ωe 1 while “Ω 1” NTP: non–thermal production a ' χ  plus TP processes: q q a g, q a q, . . . • → → TP: thermal production e e e e 11 2 TP 2 6 1.108 mae 10 GeV TR Ωe h 5.5 g ln 4 a ' s  gs  0.1 GeV   fa  10 GeV  Covi+J.E. Kim+H.-B. Kim+Roszkowski, JHEP’01 TP dominance T f 2/me ⇒ R ∝ a a Brandenburg andL.SteffRoszkowski,en COSMO’08(’04) – p.11 Yield vs TR mχ = 300 GeV, mτe1 = 474 GeV, mge = mqe = 1 TeV

L. Roszkowski, COSMO’08 – p.12 Axino Relic: NTP vs TP

Covi+H.-B. Kim+J.E. Kim+Roszkowski (CKKR), JHEP ’01 (hep-ph/0101009) general MSSM:

6 ...axino cold DM: low TR < 10 GeV ⇒ ∼ L. Roszkowski, COSMO’08 – p.13 couplings: suppressed by MP, 5-dim goldstino ψ term • G mge µ ν a a = ψ¯G [γ , γ ] g F G √26M m e µν L P G e e G: cold DM e

Gravitino G

e spin–3/2 partner of the graviton in gravity–mediated SUSY breaking models: mass: • m = F G √3MP F 1011 GeV – SUSY breakinge scale ∼ 18 MP = 2.4 10 GeV – reduced Planck mass × soft masses F/MP ∼ natural to expect: m GeV TeV G ∼ − e

L. Roszkowski, COSMO’08 – p.14 Gravitino G

e spin–3/2 partner of the graviton in gravity–mediated SUSY breaking models: mass: • m = F G √3MP F 1011 GeV – SUSY breakinge scale ∼ 18 MP = 2.4 10 GeV – reduced Planck mass × soft masses F/MP ∼ natural to expect: m GeV TeV G ∼ − e couplings: suppressed by MP, 5-dim goldstino ψ term • G mge µ ν a a = ψ¯G [γ , γ ] g F G √26M m e µν L P G e e G: cold DM e L. Roszkowski, COSMO’08 – p.14 NTP: ⇒ NTP: non–thermal production (neglect other possible contr’s) e NTP mG Ω = ΩNLSP G mNLSP

TP: q q G g, q e G q, . . . TP: thermal production ⇒ → → e e 2 e e me(µ) ΩTPh2 0.27 TR 100 GeV g 1010 GeV m e 1 TeV G '    G    e Bolz+Brandenburg+Buchmüller (’00) (corr’s from Rychkov+Strumia not included (’07)) 9 At high TR > 10 GeV, TP is important ∼

Producing Relic Gravitinos

(analogous to a LSP) Roszkowski+Ruiz de Austri+K.-Y. Choi, e hep-ph/0408227 G = LSP • e NLSP (χ or τ1) first freezes out, then decays • 5 mf 2 τ (NLSP eG + γ/τ ) 108 sec 100 GeV G . . . → ∼  mNLSP  100 GeV  e (NLSP = χ( B), τ1) ' ...well after BBN e e

L. Roszkowski, COSMO’08 – p.15 TP: q q G g, q G q, . . . TP: thermal production ⇒ → → e e 2 e e me(µ) ΩTPh2 0.27 TR 100 GeV g 1010 GeV m e 1 TeV G '    G    e Bolz+Brandenburg+Buchmüller (’00) (corr’s from Rychkov+Strumia not included (’07)) 9 At high TR > 10 GeV, TP is important ∼

Producing Relic Gravitinos

(analogous to a LSP) Roszkowski+Ruiz de Austri+K.-Y. Choi, e hep-ph/0408227 G = LSP • e NLSP (χ or τ1) first freezes out, then decays • 5 mf 2 τ (NLSP eG + γ/τ ) 108 sec 100 GeV G . . . → ∼  mNLSP  100 GeV  e (NLSP = χ( B), τ1) ' ...well after BBN e NTP: e ⇒ NTP: non–thermal production (neglect other possible contr’s) e NTP mG Ω = ΩNLSP G mNLSP e

L. Roszkowski, COSMO’08 – p.15 TP: q q G g, q G q, . . . TP: thermal production ⇒ → → e e 2 e e me(µ) ΩTPh2 0.27 TR 100 GeV g 1010 GeV m e 1 TeV G '    G    e Bolz+Brandenburg+Buchmüller (’00) (corr’s from Rychkov+Strumia not included (’07)) 9 At high TR > 10 GeV, TP is important ∼

Producing Relic Gravitinos

(analogous to a LSP) Roszkowski+Ruiz de Austri+K.-Y. Choi, e hep-ph/0408227 G = LSP • e NLSP (χ or τ1) first freezes out, then decays • 5 mf 2 τ (NLSP eG + γ/τ ) 108 sec 100 GeV G . . . → ∼  mNLSP  100 GeV  e (NLSP = χ( B), τ1) ' ...well after BBN e NTP: e ⇒ NTP: non–thermal production (neglect other possible contr’s) e NTP mG Ω = ΩNLSP G mNLSP

e Feng, et al (FST 02-04), MSSM Ellis, et al (EOSS 03), CMSSM

L. Roszkowski, COSMO’08 – p.15 9 At high TR > 10 GeV, TP is important ∼

Producing Relic Gravitinos

(analogous to a LSP) Roszkowski+Ruiz de Austri+K.-Y. Choi, e hep-ph/0408227 G = LSP • e NLSP (χ or τ1) first freezes out, then decays • 5 mf 2 τ (NLSP eG + γ/τ ) 108 sec 100 GeV G . . . → ∼  mNLSP  100 GeV  e (NLSP = χ( B), τ1) ' ...well after BBN e NTP: e ⇒ NTP: non–thermal production (neglect other possible contr’s) e NTP mG Ω = ΩNLSP G mNLSP

TP: q q G g, q e G q, . . . TP: thermal production ⇒ → → e e 2 e e me(µ) ΩTPh2 0.27 TR 100 GeV g 1010 GeV m e 1 TeV G '    G    e Bolz+Brandenburg+Buchmüller (’00) (corr’s from Rychkov+Strumia not included (’07))

L. Roszkowski, COSMO’08 – p.15 Producing Relic Gravitinos

(analogous to a LSP) Roszkowski+Ruiz de Austri+K.-Y. Choi, e hep-ph/0408227 G = LSP • e NLSP (χ or τ1) first freezes out, then decays • 5 mf 2 τ (NLSP eG + γ/τ ) 108 sec 100 GeV G . . . → ∼  mNLSP  100 GeV  e (NLSP = χ( B), τ1) ' ...well after BBN e NTP: e ⇒ NTP: non–thermal production (neglect other possible contr’s) e NTP mG Ω = ΩNLSP G mNLSP

TP: q q G g, q e G q, . . . TP: thermal production ⇒ → → e e 2 e e me(µ) ΩTPh2 0.27 TR 100 GeV g 1010 GeV m e 1 TeV G '    G    e Bolz+Brandenburg+Buchmüller (’00) (corr’s from Rychkov+Strumia not included (’07)) 9 At high TR > 10 GeV, TP is important ∼ L. Roszkowski, COSMO’08 – p.15 Yield vs TR mχ = 300 GeV, mτe1 = 474 GeV, mge = mqe = 1 TeV

L. Roszkowski, COSMO’08 – p.16 Yield vs TR mχ = 300 GeV, mτe1 = 474 GeV, mge = mqe = 1 TeV

L. Roszkowski, COSMO’08 – p.16 total relic density of LSP (axino or gravitino): sum of TP and NTP contributions TP 2 NTP 2 2 ΩLSPh + ΩLSP h = ΩLSPh assuming LSP to make up most of DM in the Universe, this gives mLSP ΩTP h2 T , m , me, m , . . . + Ω h2 = Ω h2 0.1 LSP R LSP g NLSP mNLSP NLSP CDM ' ` ´ 2 2 once (NLSP) neutralino mass mχ and “abundance” ΩNLSPh = Ωχh are determined at LHC, above master formula will give relation between TR and mLSP if Ω h2 0.1: NTP often dominates and Ω h2 0.1 can be achieved by χ  LSP ' adjusting the ratio mLSP/mNLSP if Ω h2 0.1: TP dominates χ  TP can dominate even if Ω h2 0.1, or (accidentally) Ω h2 0.1 χ  χ '

Relic Abundance and LHC

L. Roszkowski, COSMO’08 – p.17 assuming LSP to make up most of DM in the Universe, this gives mLSP ΩTP h2 T , m , me, m , . . . + Ω h2 = Ω h2 0.1 LSP R LSP g NLSP mNLSP NLSP CDM ' ` ´ 2 2 once (NLSP) neutralino mass mχ and “abundance” ΩNLSPh = Ωχh are determined at LHC, above master formula will give relation between TR and mLSP if Ω h2 0.1: NTP often dominates and Ω h2 0.1 can be achieved by χ  LSP ' adjusting the ratio mLSP/mNLSP if Ω h2 0.1: TP dominates χ  TP can dominate even if Ω h2 0.1, or (accidentally) Ω h2 0.1 χ  χ '

Relic Abundance and LHC

total relic density of LSP (axino or gravitino): sum of TP and NTP contributions TP 2 NTP 2 2 ΩLSPh + ΩLSP h = ΩLSPh

L. Roszkowski, COSMO’08 – p.17 2 2 once (NLSP) neutralino mass mχ and “abundance” ΩNLSPh = Ωχh are determined at LHC, above master formula will give relation between TR and mLSP if Ω h2 0.1: NTP often dominates and Ω h2 0.1 can be achieved by χ  LSP ' adjusting the ratio mLSP/mNLSP if Ω h2 0.1: TP dominates χ  TP can dominate even if Ω h2 0.1, or (accidentally) Ω h2 0.1 χ  χ '

Relic Abundance and LHC

total relic density of LSP (axino or gravitino): sum of TP and NTP contributions TP 2 NTP 2 2 ΩLSPh + ΩLSP h = ΩLSPh assuming LSP to make up most of DM in the Universe, this gives

mLSP ΩTP h2 T , m , me, m , . . . + Ω h2 = Ω h2 0.1 LSP R LSP g NLSP mNLSP NLSP CDM ' ` ´

L. Roszkowski, COSMO’08 – p.17 if Ω h2 0.1: NTP often dominates and Ω h2 0.1 can be achieved by χ  LSP ' adjusting the ratio mLSP/mNLSP if Ω h2 0.1: TP dominates χ  TP can dominate even if Ω h2 0.1, or (accidentally) Ω h2 0.1 χ  χ '

Relic Abundance and LHC

total relic density of LSP (axino or gravitino): sum of TP and NTP contributions TP 2 NTP 2 2 ΩLSPh + ΩLSP h = ΩLSPh assuming LSP to make up most of DM in the Universe, this gives

mLSP ΩTP h2 T , m , me, m , . . . + Ω h2 = Ω h2 0.1 LSP R LSP g NLSP mNLSP NLSP CDM ' ` ´ 2 2 once (NLSP) neutralino mass mχ and “abundance” ΩNLSPh = Ωχh are determined at LHC, above master formula will give

relation between TR and mLSP

L. Roszkowski, COSMO’08 – p.17 if Ω h2 0.1: TP dominates χ  TP can dominate even if Ω h2 0.1, or (accidentally) Ω h2 0.1 χ  χ '

Relic Abundance and LHC

total relic density of LSP (axino or gravitino): sum of TP and NTP contributions TP 2 NTP 2 2 ΩLSPh + ΩLSP h = ΩLSPh assuming LSP to make up most of DM in the Universe, this gives

mLSP ΩTP h2 T , m , me, m , . . . + Ω h2 = Ω h2 0.1 LSP R LSP g NLSP mNLSP NLSP CDM ' ` ´ 2 2 once (NLSP) neutralino mass mχ and “abundance” ΩNLSPh = Ωχh are determined at LHC, above master formula will give

relation between TR and mLSP

if Ω h2 0.1: NTP often dominates and Ω h2 0.1 can be achieved by χ  LSP ' adjusting the ratio mLSP/mNLSP

L. Roszkowski, COSMO’08 – p.17 Relic Abundance and LHC

total relic density of LSP (axino or gravitino): sum of TP and NTP contributions TP 2 NTP 2 2 ΩLSPh + ΩLSP h = ΩLSPh assuming LSP to make up most of DM in the Universe, this gives

mLSP ΩTP h2 T , m , me, m , . . . + Ω h2 = Ω h2 0.1 LSP R LSP g NLSP mNLSP NLSP CDM ' ` ´ 2 2 once (NLSP) neutralino mass mχ and “abundance” ΩNLSPh = Ωχh are determined at LHC, above master formula will give

relation between TR and mLSP

if Ω h2 0.1: NTP often dominates and Ω h2 0.1 can be achieved by χ  LSP ' adjusting the ratio mLSP/mNLSP if Ω h2 0.1: TP dominates χ  TP can dominate even if Ω h2 0.1, or (accidentally) Ω h2 0.1 χ  χ '

L. Roszkowski, COSMO’08 – p.17 both panels: TP (NTP) dominant on left (right) side a cold DM: mae > 100 keV (Covi, et al, (CKKR)) T max < 4.∼9(f /1011 GeV)2 105 GeV (+ weak dependence on m ) ⇒e R a × NLSP

5 if axino = CDM, upper bound TR < 10 GeV can be set ⇒ ∼

Example for a LSP

2 assume neutralino χ to be NLSP and its “density”eΩNLSPh determined at LHC

L. Roszkowski, COSMO’08 – p.18 both panels: TP (NTP) dominant on left (right) side a cold DM: mae > 100 keV (Covi, et al, (CKKR)) T max < 4.∼9(f /1011 GeV)2 105 GeV (+ weak dependence on m ) ⇒e R a × NLSP

5 if axino = CDM, upper bound TR < 10 GeV can be set ⇒ ∼

Example for a LSP

2 assume neutralino χ to be NLSP and its “density”eΩNLSPh determined at LHC

L. Roszkowski, COSMO’08 – p.18 Example for a LSP

2 assume neutralino χ to be NLSP and its “density”eΩNLSPh determined at LHC

both panels: TP (NTP) dominant on left (right) side a cold DM: mae > 100 keV (Covi, et al, (CKKR)) T max < 4.∼9(f /1011 GeV)2 105 GeV (+ weak dependence on m ) ⇒e R a × NLSP

5 if axino = CDM, upper bound TR < 10 GeV can be set ⇒ ∼ L. Roszkowski, COSMO’08 – p.18 once mNLSP and (at least lower bound on) 2 ΩNLSPh are known: upper bound on mae can be set

2 e.g., ΩNLSPh > 100 implies mLSP < 1 GeV ∼ ∼ 2 2 only ΩLSPh = (mLSP/mNLSP)ΩNLSPh used above upper bound applies to both axino and gravitino LSP ⇒

Upper bound on LSP mass

2 assume neutralino χ to be NLSP and its “density” ΩNLSPh determined at LHC

L. Roszkowski, COSMO’08 – p.19 2 e.g., ΩNLSPh > 100 implies mLSP < 1 GeV ∼ ∼ 2 2 only ΩLSPh = (mLSP/mNLSP)ΩNLSPh used above upper bound applies to both axino and gravitino LSP ⇒

Upper bound on LSP mass

2 assume neutralino χ to be NLSP and its “density” ΩNLSPh determined at LHC

once mNLSP and (at least lower bound on) 2 ΩNLSPh are known: upper bound on mae can be set

L. Roszkowski, COSMO’08 – p.19 2 2 only ΩLSPh = (mLSP/mNLSP)ΩNLSPh used above upper bound applies to both axino and gravitino LSP ⇒

Upper bound on LSP mass

2 assume neutralino χ to be NLSP and its “density” ΩNLSPh determined at LHC

once mNLSP and (at least lower bound on) 2 ΩNLSPh are known: upper bound on mae can be set

2 e.g., ΩNLSPh > 100 implies mLSP < 1 GeV ∼ ∼

L. Roszkowski, COSMO’08 – p.19 upper bound applies to both axino and gravitino LSP ⇒

Upper bound on LSP mass

2 assume neutralino χ to be NLSP and its “density” ΩNLSPh determined at LHC

once mNLSP and (at least lower bound on) 2 ΩNLSPh are known: upper bound on mae can be set

2 e.g., ΩNLSPh > 100 implies mLSP < 1 GeV ∼ ∼ 2 2 only ΩLSPh = (mLSP/mNLSP)ΩNLSPh used above

L. Roszkowski, COSMO’08 – p.19 Upper bound on LSP mass

2 assume neutralino χ to be NLSP and its “density” ΩNLSPh determined at LHC

once mNLSP and (at least lower bound on) 2 ΩNLSPh are known: upper bound on mae can be set

2 e.g., ΩNLSPh > 100 implies mLSP < 1 GeV ∼ ∼ 2 2 only ΩLSPh = (mLSP/mNLSP)ΩNLSPh used above

upper bound applies to both axino and gravitino LSP ⇒

L. Roszkowski, COSMO’08 – p.19 both panels: TP (NTP) dominant on left (right) side

T m e R ∝ G upper bound on T can be set (indep. of G being CDM) ⇒ R BBNe constraints not imposed

Example for G LSP

2 assume neutralino χ to be NLSP and its “density”eΩNLSPh determined at LHC

L. Roszkowski, COSMO’08 – p.20 both panels: TP (NTP) dominant on left (right) side

T m e R ∝ G upper bound on T can be set (indep. of G being CDM) ⇒ R BBNe constraints not imposed

Example for G LSP

2 assume neutralino χ to be NLSP and its “density”eΩNLSPh determined at LHC

L. Roszkowski, COSMO’08 – p.20 Example for G LSP

2 assume neutralino χ to be NLSP and its “density”eΩNLSPh determined at LHC

both panels: TP (NTP) dominant on left (right) side

T m e R ∝ G

upper bound on T can be set (indep. of G being CDM) ⇒ R BBNe constraints not imposed

L. Roszkowski, COSMO’08 – p.20 e no need to know mG TP 2 use Ω e h G ' 2 TR 100 GeV mge(µ) 0.27 10 , 10 GeV mf 1 TeV “ ” „ G « “ ” NTP 2 2 Ω e h = (m e /mNLSP)ΩNLSPh G G and TP 2 NTP 2 Ω e h + Ω e h = 0.1 G G e find TR as quadratic function of mG, hence derive conservative upper limit on TR: max TR = 8 2 10 GeV 1 TeV mNLSP 1 2 2 , for ΩNLSPh > 0.05 8 0.27 mge 100 GeV 4ΩNLSPh 10 “ ” 2 > 10 GeV 1 TeV ` mNLSP´ 2 2 < 0.1 ΩNLSPh , for ΩNLSPh < 0.05 0.27 mge 100 GeV − “ ” ` ´ ` ´ :> BBN constraints not imposed

2 6 e.g., ΩNLSPh > 100 implies TR < 10 GeV (scales with mNLSP and mge) ∼ ∼

G LSP: upper bound on TR

2 assumeeneutralino χ to be NLSP and its “density” ΩNLSPh determined at LHC

L. Roszkowski, COSMO’08 – p.21 e no need to know mG TP 2 use Ω e h G ' 2 TR 100 GeV mge(µ) 0.27 10 , 10 GeV mf 1 TeV “ ” „ G « “ ” NTP 2 2 Ω e h = (m e /mNLSP)ΩNLSPh G G and TP 2 NTP 2 Ω e h + Ω e h = 0.1 G G e find TR as quadratic function of mG, hence derive conservative upper limit on TR: max TR = 8 2 10 GeV 1 TeV mNLSP 1 2 2 , for ΩNLSPh > 0.05 8 0.27 mge 100 GeV 4ΩNLSPh 10 “ ” 2 > 10 GeV 1 TeV ` mNLSP´ 2 2 < 0.1 ΩNLSPh , for ΩNLSPh < 0.05 0.27 mge 100 GeV − “ ” ` ´ ` ´ :> BBN constraints not imposed

2 6 e.g., ΩNLSPh > 100 implies TR < 10 GeV (scales with mNLSP and mge) ∼ ∼

G LSP: upper bound on TR

2 assumeeneutralino χ to be NLSP and its “density” ΩNLSPh determined at LHC

L. Roszkowski, COSMO’08 – p.21 max TR = 8 2 10 GeV 1 TeV mNLSP 1 2 2 , for ΩNLSPh > 0.05 8 0.27 mge 100 GeV 4ΩNLSPh 10 “ ” 2 > 10 GeV 1 TeV ` mNLSP´ 2 2 < 0.1 ΩNLSPh , for ΩNLSPh < 0.05 0.27 mge 100 GeV − “ ” ` ´ ` ´ :> BBN constraints not imposed

2 6 e.g., ΩNLSPh > 100 implies TR < 10 GeV (scales with mNLSP and mge) ∼ ∼

G LSP: upper bound on TR

2 assumeeneutralino χ to be NLSP and its “density” ΩNLSPh determined at LHC

e no need to know mG TP 2 use Ω e h G ' 2 TR 100 GeV mge(µ) 0.27 10 , 10 GeV mf 1 TeV “ ” „ G « “ ” NTP 2 2 Ω e h = (m e /mNLSP)ΩNLSPh G G and TP 2 NTP 2 Ω e h + Ω e h = 0.1 G G

e find TR as quadratic function of mG, hence derive conservative upper limit on TR:

L. Roszkowski, COSMO’08 – p.21 2 6 e.g., ΩNLSPh > 100 implies TR < 10 GeV (scales with mNLSP and mge) ∼ ∼

G LSP: upper bound on TR

2 assumeeneutralino χ to be NLSP and its “density” ΩNLSPh determined at LHC

e no need to know mG TP 2 use Ω e h G ' 2 TR 100 GeV mge(µ) 0.27 10 , 10 GeV mf 1 TeV “ ” „ G « “ ” NTP 2 2 Ω e h = (m e /mNLSP)ΩNLSPh G G and TP 2 NTP 2 Ω e h + Ω e h = 0.1 G G

e find TR as quadratic function of mG, hence derive conservative upper limit on TR:

max TR = 8 2 10 GeV 1 TeV mNLSP 1 2 2 , for ΩNLSPh > 0.05 8 0.27 mge 100 GeV 4ΩNLSPh 10 “ ” 2 > 10 GeV 1 TeV ` mNLSP´ 2 2 < 0.1 ΩNLSPh , for ΩNLSPh < 0.05 0.27 mge 100 GeV − “ ” ` ´ ` ´ :> BBN constraints not imposed

L. Roszkowski, COSMO’08 – p.21 neutralino χ NLSP region excluded • only τ NLSP region remains allowed • 1 at LHC see charged “stable” LOSP ⇒ e τ1 e confirmed Feng, et al (Apr 04) low T basically excluded (NTP part • R only), must include TP contribution to e 2 ΩGh m e = (100 GeV): (typically) ⇒ G O need high T 109 GeV R ∼

Impact of BBN

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, hep-ph/0509275

7 3 6 7 apply all BBN: D/H + Yp + Li/H + He/D + Li/ Li

e Example: CMSSM with mG = m0

L. Roszkowski, COSMO’08 – p.22 Impact of BBN

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, hep-ph/0509275

7 3 6 7 apply all BBN: D/H + Yp + Li/H + He/D + Li/ Li

e Example: CMSSM with mG = m0

neutralino χ NLSP region excluded •

only τ NLSP region remains allowed • 1 at LHC see charged “stable” LOSP ⇒ e τ1

e confirmed Feng, et al (Apr 04) low T basically excluded (NTP part • R only), must include TP contribution to e 2 ΩGh m e = (100 GeV): (typically) ⇒ G O need high T 109 GeV R ∼

L. Roszkowski, COSMO’08 – p.22 mass m : up to some 400 500 GeV (from missing mass and missing energy) χ − 2 relic abundance Ωχh (assuming neutralino stable): need to measure mχ, Higgs, gluino and lightest squark masses, several BRs and tan β (depending on SUSY framework): Nojiri, Polesello, Tovey ’04: SPA point: 5-10% error achievable

if Ω h2 0.1 or 0.1 can be established, and no WIMP signal detected in DM χ   searches, neutralino unlikely to be DM ⇒ 2 even with fewer measurements a lower bound on Ωχh should be achievable by not finding states that can reduce Ω h2 to 0.1 χ ∼ e.g., no Higgs at 2m , nor other channels ∼ χ

2 Determining mχ and Ωχh at LHC

L. Roszkowski, COSMO’08 – p.23 2 relic abundance Ωχh (assuming neutralino stable): need to measure mχ, Higgs, gluino and lightest squark masses, several BRs and tan β (depending on SUSY framework): Nojiri, Polesello, Tovey ’04: SPA point: 5-10% error achievable

if Ω h2 0.1 or 0.1 can be established, and no WIMP signal detected in DM χ   searches, neutralino unlikely to be DM ⇒ 2 even with fewer measurements a lower bound on Ωχh should be achievable by not finding states that can reduce Ω h2 to 0.1 χ ∼ e.g., no Higgs at 2m , nor other channels ∼ χ

2 Determining mχ and Ωχh at LHC

mass m : up to some 400 500 GeV (from missing mass and missing energy) χ −

L. Roszkowski, COSMO’08 – p.23 if Ω h2 0.1 or 0.1 can be established, and no WIMP signal detected in DM χ   searches, neutralino unlikely to be DM ⇒ 2 even with fewer measurements a lower bound on Ωχh should be achievable by not finding states that can reduce Ω h2 to 0.1 χ ∼ e.g., no Higgs at 2m , nor other channels ∼ χ

2 Determining mχ and Ωχh at LHC

mass m : up to some 400 500 GeV (from missing mass and missing energy) χ − 2 relic abundance Ωχh (assuming neutralino stable): need to measure mχ, Higgs, gluino and lightest squark masses, several BRs and tan β (depending on SUSY framework): Nojiri, Polesello, Tovey ’04: SPA point: 5-10% error achievable

L. Roszkowski, COSMO’08 – p.23 2 even with fewer measurements a lower bound on Ωχh should be achievable by not finding states that can reduce Ω h2 to 0.1 χ ∼ e.g., no Higgs at 2m , nor other channels ∼ χ

2 Determining mχ and Ωχh at LHC

mass m : up to some 400 500 GeV (from missing mass and missing energy) χ − 2 relic abundance Ωχh (assuming neutralino stable): need to measure mχ, Higgs, gluino and lightest squark masses, several BRs and tan β (depending on SUSY framework): Nojiri, Polesello, Tovey ’04: SPA point: 5-10% error achievable

if Ω h2 0.1 or 0.1 can be established, and no WIMP signal detected in DM χ   searches, neutralino unlikely to be DM ⇒

L. Roszkowski, COSMO’08 – p.23 2 Determining mχ and Ωχh at LHC

mass m : up to some 400 500 GeV (from missing mass and missing energy) χ − 2 relic abundance Ωχh (assuming neutralino stable): need to measure mχ, Higgs, gluino and lightest squark masses, several BRs and tan β (depending on SUSY framework): Nojiri, Polesello, Tovey ’04: SPA point: 5-10% error achievable

if Ω h2 0.1 or 0.1 can be established, and no WIMP signal detected in DM χ   searches, neutralino unlikely to be DM ⇒ 2 even with fewer measurements a lower bound on Ωχh should be achievable by not finding states that can reduce Ω h2 to 0.1 χ ∼ e.g., no Higgs at 2m , nor other channels ∼ χ

L. Roszkowski, COSMO’08 – p.23 if more production mechanisms: make upper bounds on TR stronger for axino or gravitino LSP different LHC observables can be selected, e.g. mNLSP and NLSP lifetime e.g., Steffen (arXiv:0806.3266) reproduced our results for G LSP and stau NLSP e no strong assumptions made about specific SUSY model method applies in principle to any DM candidate whose density depends on TR

Remarks

all previous results carry through if replace neutralino with stau as NLSP

except that BBN bounds become weaker

L. Roszkowski, COSMO’08 – p.24 for axino or gravitino LSP different LHC observables can be selected, e.g. mNLSP and NLSP lifetime e.g., Steffen (arXiv:0806.3266) reproduced our results for G LSP and stau NLSP e no strong assumptions made about specific SUSY model method applies in principle to any DM candidate whose density depends on TR

Remarks

all previous results carry through if replace neutralino with stau as NLSP

except that BBN bounds become weaker

if more production mechanisms: make upper bounds on TR stronger

L. Roszkowski, COSMO’08 – p.24 no strong assumptions made about specific SUSY model method applies in principle to any DM candidate whose density depends on TR

Remarks

all previous results carry through if replace neutralino with stau as NLSP

except that BBN bounds become weaker

if more production mechanisms: make upper bounds on TR stronger for axino or gravitino LSP different LHC observables can be selected,

e.g. mNLSP and NLSP lifetime

e.g., Steffen (arXiv:0806.3266) reproduced our results for G LSP and stau NLSP e

L. Roszkowski, COSMO’08 – p.24 method applies in principle to any DM candidate whose density depends on TR

Remarks

all previous results carry through if replace neutralino with stau as NLSP

except that BBN bounds become weaker

if more production mechanisms: make upper bounds on TR stronger for axino or gravitino LSP different LHC observables can be selected,

e.g. mNLSP and NLSP lifetime

e.g., Steffen (arXiv:0806.3266) reproduced our results for G LSP and stau NLSP e no strong assumptions made about specific SUSY model

L. Roszkowski, COSMO’08 – p.24 Remarks all previous results carry through if replace neutralino with stau as NLSP

except that BBN bounds become weaker if more production mechanisms: make upper bounds on TR stronger for axino or gravitino LSP different LHC observables can be selected, e.g. mNLSP and NLSP lifetime

e.g., Steffen (arXiv:0806.3266) reproduced our results for G LSP and stau NLSP e no strong assumptions made about specific SUSY model method applies in principle to any DM candidate whose density depends on TR

L. Roszkowski, COSMO’08 – p.24 If neutralino is NLSP: points towards a but hard to confirm ...only indirectly: discover axion and discover SUSY e If stau is NLSP: study stau decays at LHC (need > 104 staus) Brandenburg+Covi+Hamaguchi+L.R.+Steff∼ en, hep-ph/0501287 PLB’05 →

typically different lifetimes: shorter (< 1 sec) for axino LSP, longer ( 102 10 sec) for ∼ − gravitino LSP ∼ different event distributions may allow one to distinguish a from G and, by comparing 2-body and 3-body decays, determine LSP mass at LHC e e may be possible to distinguish a from G at LHC ⇒ e e

G or a: Will we ever know? e e

L. Roszkowski, COSMO’08 – p.25 If stau is NLSP: study stau decays at LHC (need > 104 staus) Brandenburg+Covi+Hamaguchi+L.R.+Steff∼ en, hep-ph/0501287 PLB’05 →

typically different lifetimes: shorter (< 1 sec) for axino LSP, longer ( 102 10 sec) for ∼ − gravitino LSP ∼ different event distributions may allow one to distinguish a from G and, by comparing 2-body and 3-body decays, determine LSP mass at LHC e e may be possible to distinguish a from G at LHC ⇒ e e

G or a: Will we ever know? If neutralino is NLSP: points towards a but hard to confirm e ...only indirectly: discover axion and discover SUSY e e

L. Roszkowski, COSMO’08 – p.25 typically different lifetimes: shorter (< 1 sec) for axino LSP, longer ( 102 10 sec) for ∼ − gravitino LSP ∼ different event distributions may allow one to distinguish a from G and, by comparing 2-body and 3-body decays, determine LSP mass at LHC e e may be possible to distinguish a from G at LHC ⇒ e e

G or a: Will we ever know? If neutralino is NLSP: points towards a but hard to confirm e ...only indirectly: discover axion and discover SUSY e e If stau is NLSP: study stau decays at LHC (need > 104 staus) Brandenburg+Covi+Hamaguchi+L.R.+Steff∼ en, hep-ph/0501287 PLB’05 →

L. Roszkowski, COSMO’08 – p.25 typically different lifetimes: shorter (< 1 sec) for axino LSP, longer ( 102 10 sec) for ∼ − gravitino LSP ∼ different event distributions may allow one to distinguish a from G and, by comparing 2-body and 3-body decays, determine LSP mass at LHC e e may be possible to distinguish a from G at LHC ⇒ e e

G or a: Will we ever know? If neutralino is NLSP: points towards a but hard to confirm e ...only indirectly: discover axion and discover SUSY e e If stau is NLSP: study stau decays at LHC (need > 104 staus) Brandenburg+Covi+Hamaguchi+L.R.+Steff∼ en, hep-ph/0501287 PLB’05 →

L. Roszkowski, COSMO’08 – p.25 typically different lifetimes: shorter (< 1 sec) for axino LSP, longer ( 102 10 sec) for ∼ − gravitino LSP ∼ different event distributions may allow one to distinguish a from G and, by comparing 2-body and 3-body decays, determine LSP mass at LHC e e may be possible to distinguish a from G at LHC ⇒ e e

G or a: Will we ever know? If neutralino is NLSP: points towards a but hard to confirm e ...only indirectly: discover axion and discover SUSY e e If stau is NLSP: study stau decays at LHC (need > 104 staus) Brandenburg+Covi+Hamaguchi+L.R.+Steff∼ en, hep-ph/0501287 PLB’05 →

L. Roszkowski, COSMO’08 – p.25 G or a: Will we ever know? If neutralino is NLSP: points towards a but hard to confirm e ...only indirectly: discover axion and discover SUSY e e If stau is NLSP: study stau decays at LHC (need > 104 staus) Brandenburg+Covi+Hamaguchi+L.R.+Steff∼ en, hep-ph/0501287 PLB’05 →

typically different lifetimes: shorter (< 1 sec) for axino LSP, longer ( 102 10 sec) for ∼ − gravitino LSP ∼ different event distributions may allow one to distinguish a from G and, by comparing 2-body and 3-body decays, determine LSP mass at LHC e e may be possible to distinguish a from G at LHC ⇒ e e L. Roszkowski, COSMO’08 – p.25 axino or gravitino can be LSP and viable indications: WIMP not found in DM searches, neutralino’s Ω h2 deduced from LHC 0.1 or 0.1 χ   axino LSP: upper bound T max < 4.9(f /1011 GeV)2 105 GeV R a × gravitino LSP: conservative upper bound can be set on TR, independent of BBN either axino or gravitino LSP: 2 upper bound can be set on mLSP in terms of mχ and its “density” Ωχh as determined at LHC DM is cold 100 keV < m < 1 GeV if Ω h2 > 100 ⇒ LSP ⇐ χ ∼ ∼ ∼ the above carries through to stau NLSP, instead of neutralino if stau NLSP: it may be possible to tell if LSP is a or G at LHC, and to determine its mass also TR ⇒ STAY TUNED TOeLHC!e

Summary

neutralino may be discovered at LHC and appear stable but not be LSP and DM

L. Roszkowski, COSMO’08 – p.26 indications: WIMP not found in DM searches, neutralino’s Ω h2 deduced from LHC 0.1 or 0.1 χ   axino LSP: upper bound T max < 4.9(f /1011 GeV)2 105 GeV R a × gravitino LSP: conservative upper bound can be set on TR, independent of BBN either axino or gravitino LSP: 2 upper bound can be set on mLSP in terms of mχ and its “density” Ωχh as determined at LHC DM is cold 100 keV < m < 1 GeV if Ω h2 > 100 ⇒ LSP ⇐ χ ∼ ∼ ∼ the above carries through to stau NLSP, instead of neutralino if stau NLSP: it may be possible to tell if LSP is a or G at LHC, and to determine its mass also TR ⇒ STAY TUNED TOeLHC!e

Summary

neutralino may be discovered at LHC and appear stable but not be LSP and DM axino or gravitino can be LSP and viable cold dark matter

L. Roszkowski, COSMO’08 – p.26 axino LSP: upper bound T max < 4.9(f /1011 GeV)2 105 GeV R a × gravitino LSP: conservative upper bound can be set on TR, independent of BBN either axino or gravitino LSP: 2 upper bound can be set on mLSP in terms of mχ and its “density” Ωχh as determined at LHC DM is cold 100 keV < m < 1 GeV if Ω h2 > 100 ⇒ LSP ⇐ χ ∼ ∼ ∼ the above carries through to stau NLSP, instead of neutralino if stau NLSP: it may be possible to tell if LSP is a or G at LHC, and to determine its mass also TR ⇒ STAY TUNED TOeLHC!e

Summary

neutralino may be discovered at LHC and appear stable but not be LSP and DM axino or gravitino can be LSP and viable cold dark matter indications: WIMP not found in DM searches, neutralino’s Ω h2 deduced from LHC 0.1 or 0.1 χ  

L. Roszkowski, COSMO’08 – p.26 gravitino LSP: conservative upper bound can be set on TR, independent of BBN either axino or gravitino LSP: 2 upper bound can be set on mLSP in terms of mχ and its “density” Ωχh as determined at LHC DM is cold 100 keV < m < 1 GeV if Ω h2 > 100 ⇒ LSP ⇐ χ ∼ ∼ ∼ the above carries through to stau NLSP, instead of neutralino if stau NLSP: it may be possible to tell if LSP is a or G at LHC, and to determine its mass also TR ⇒ STAY TUNED TOeLHC!e

Summary

neutralino may be discovered at LHC and appear stable but not be LSP and DM axino or gravitino can be LSP and viable cold dark matter indications: WIMP not found in DM searches, neutralino’s Ω h2 deduced from LHC 0.1 or 0.1 χ   axino LSP: upper bound T max < 4.9(f /1011 GeV)2 105 GeV R a ×

L. Roszkowski, COSMO’08 – p.26 either axino or gravitino LSP: 2 upper bound can be set on mLSP in terms of mχ and its “density” Ωχh as determined at LHC DM is cold 100 keV < m < 1 GeV if Ω h2 > 100 ⇒ LSP ⇐ χ ∼ ∼ ∼ the above carries through to stau NLSP, instead of neutralino if stau NLSP: it may be possible to tell if LSP is a or G at LHC, and to determine its mass also TR ⇒ STAY TUNED TOeLHC!e

Summary

neutralino may be discovered at LHC and appear stable but not be LSP and DM axino or gravitino can be LSP and viable cold dark matter indications: WIMP not found in DM searches, neutralino’s Ω h2 deduced from LHC 0.1 or 0.1 χ   axino LSP: upper bound T max < 4.9(f /1011 GeV)2 105 GeV R a × gravitino LSP:

conservative upper bound can be set on TR, independent of BBN

L. Roszkowski, COSMO’08 – p.26 DM is cold 100 keV < m < 1 GeV if Ω h2 > 100 ⇒ LSP ⇐ χ ∼ ∼ ∼ the above carries through to stau NLSP, instead of neutralino if stau NLSP: it may be possible to tell if LSP is a or G at LHC, and to determine its mass also TR ⇒ STAY TUNED TOeLHC!e

Summary

neutralino may be discovered at LHC and appear stable but not be LSP and DM axino or gravitino can be LSP and viable cold dark matter indications: WIMP not found in DM searches, neutralino’s Ω h2 deduced from LHC 0.1 or 0.1 χ   axino LSP: upper bound T max < 4.9(f /1011 GeV)2 105 GeV R a × gravitino LSP:

conservative upper bound can be set on TR, independent of BBN either axino or gravitino LSP: 2 upper bound can be set on mLSP in terms of mχ and its “density” Ωχh as determined at LHC

L. Roszkowski, COSMO’08 – p.26 if stau NLSP: it may be possible to tell if LSP is a or G at LHC, and to determine its mass also TR ⇒ STAY TUNED TOeLHC!e

Summary

neutralino may be discovered at LHC and appear stable but not be LSP and DM axino or gravitino can be LSP and viable cold dark matter indications: WIMP not found in DM searches, neutralino’s Ω h2 deduced from LHC 0.1 or 0.1 χ   axino LSP: upper bound T max < 4.9(f /1011 GeV)2 105 GeV R a × gravitino LSP:

conservative upper bound can be set on TR, independent of BBN either axino or gravitino LSP: 2 upper bound can be set on mLSP in terms of mχ and its “density” Ωχh as determined at LHC DM is cold 100 keV < m < 1 GeV if Ω h2 > 100 ⇒ LSP ⇐ χ ∼ ∼ ∼ the above carries through to stau NLSP, instead of neutralino

L. Roszkowski, COSMO’08 – p.26 STAY TUNED TO LHC!

Summary

neutralino may be discovered at LHC and appear stable but not be LSP and DM axino or gravitino can be LSP and viable cold dark matter indications: WIMP not found in DM searches, neutralino’s Ω h2 deduced from LHC 0.1 or 0.1 χ   axino LSP: upper bound T max < 4.9(f /1011 GeV)2 105 GeV R a × gravitino LSP:

conservative upper bound can be set on TR, independent of BBN either axino or gravitino LSP: 2 upper bound can be set on mLSP in terms of mχ and its “density” Ωχh as determined at LHC DM is cold 100 keV < m < 1 GeV if Ω h2 > 100 ⇒ LSP ⇐ χ ∼ ∼ ∼ the above carries through to stau NLSP, instead of neutralino if stau NLSP: it may be possible to tell if LSP is a or G at LHC, and to determine its mass also T ⇒ R e e

L. Roszkowski, COSMO’08 – p.26 Summary

neutralino may be discovered at LHC and appear stable but not be LSP and DM axino or gravitino can be LSP and viable cold dark matter indications: WIMP not found in DM searches, neutralino’s Ω h2 deduced from LHC 0.1 or 0.1 χ   axino LSP: upper bound T max < 4.9(f /1011 GeV)2 105 GeV R a × gravitino LSP:

conservative upper bound can be set on TR, independent of BBN either axino or gravitino LSP: 2 upper bound can be set on mLSP in terms of mχ and its “density” Ωχh as determined at LHC DM is cold 100 keV < m < 1 GeV if Ω h2 > 100 ⇒ LSP ⇐ χ ∼ ∼ ∼ the above carries through to stau NLSP, instead of neutralino if stau NLSP: it may be possible to tell if LSP is a or G at LHC, and to determine its mass also TR ⇒ STAY TUNED TOeLHC!e

L. Roszkowski, COSMO’08 – p.26 Backup...

L. Roszkowski, COSMO’08 – p.27 Yield vs TR mχ = 300 GeV, mτe1 = 474 GeV, mge = mqe = 1 TeV

L. Roszkowski, COSMO’08 – p.28 Dependence on a mass

2 2 2 contours of TR in (mNLSP, ΩNLSPh ) plane such thateΩae h = ΩCDMh = 0.104

L. Roszkowski, COSMO’08 – p.29 Dependence on a mass

2 2 2 contours of TR in (mNLSP, ΩNLSPh ) plane such thateΩae h = ΩCDMh = 0.104

L. Roszkowski, COSMO’08 – p.29 Dependence on a mass

2 2 2 contours of TR in (mNLSP, ΩNLSPh ) plane such thateΩae h = ΩCDMh = 0.104

L. Roszkowski, COSMO’08 – p.29