Direct Detection of SUSY Cold Dark Matter in Liquid Xenon

Total Page:16

File Type:pdf, Size:1020Kb

Direct Detection of SUSY Cold Dark Matter in Liquid Xenon “ The XENON Project” Direct Detection of SUSY Cold Dark Matter in Liquid Xenon One Tonne - Have we got what it takes? Columbia University: E. Aprile (PI), E. Baltz, A. Curioni, K-L. Giboni, C. Hailey, L. Hui, M. Kobayashi, P. Majewski and K.Ni Brown University: Richard Gaitskell Princeton University: Tom Shutt Rice University: Uwe Oberlack LLNL: William Craig NESS02 – September 19, 2002 Elena Aprile The XENON Project: Overview • Liquid Xenon is an excellent target material for Cold Dark Matter WIMPs, and likely the only practical one, for a sensitive experiment of the scale required by most SUSY predictions. Driven by the compelling science case and with the confidence in the LXeTPC technology which Columbia has developed for g-ray astrophysics (with NASA support), we submitted a proposal to NSF on Oct 11, 2001, for an accelerated two year research program leading to a demonstration of the XENON design concept with a 10 kg prototype. • The 1- tonne XENON experiment would be realized with an array of ten position sensitive LXeTPCs, each with 100 kg Xe target and sourrounded by several cm of LXe as active scintillator shield. Using both light and charge (amplified in gas phase) and the intrinsic imaging capability of a TPC, the goals for XENON are a low energy threshold (~16 keV) and an excellent electron/nuclear recoil discrimination (>99.5%). With an estimated total background rate of 2 x 10-5 counts/kg/keV/day XENON should reach the sensitivity of 1 event /100 kg/year or s~10-10 pb, probing the lowest SUSY parameter space. • Following a SAGENAP review on March 12, 2002, NSF has funded the 2-year program, starting on September 1, 2002. The outcome of this R&D phase will define the design for the 100 kg unit module, taking into account the low activity materials requirement. For the next phase of construction and underground operation of the XENON array, both the development /support of US National Underground Laboratory, and a strong worldwide collaboration, will be vital for the success of the XENON dark matter experiment. NESS02 – September 19, 2002 Elena Aprile Current & Next Generation Experiments & SUSY Theory Range http://dmtools.berkeley.edu Edelweiss (June 2002) ~0.25 event/kg/d ~1 event/kg/yr ~ 1 event/100 kg/yr NESS02 – September 19, 2002 Elena Aprile Typical WIMP Signal Xe Eth=16 keVr gives 1 event/kg/day • dN Ú dE Er Example cross-section shown is at current (90%) exclusion limits of existing experiments † Experimental Requirements ‡ Energy Threshold : as low as possible ‡Target Mass: as high as possible ‡ Background: as low as possible NESS02 – September 19, 2002 Elena Aprile Liquid Xenon for WIMPs Direct Detection q High mass Xe nucleus (A ~131) good for WIMPs S.I. Interaction ( s ~A2 ) q Odd Isotopes with large spin-dependent enhancement factors q High atomic number (Z=54) and density (r=3g/cc) of liquid state good for compact and flexible detector geometry q Production and purification of Xe with << 1ppb O2 in large quantities for tonne scale experiment. “Easy” cryogenics at –100 oC q Excellent ionizer and scintillator with distinct charge/light ratio for electron/nuclear energy deposits for high background discrimination NESS02 – September 19, 2002 85 Elena Aprile q No long-lived radioactive isotopes. Kr contamination reducible to ppb level … and for Solar n and 0nbb Decay 124Xe 126Xe 128Xe 129Xe 130Xe 131Xe 132Xe 134Xe 136Xe (0.10%) (0.09%) (1.92%) (26.4%) (4.07%) (21.2%) (26.9%) (10.4%) (8.87%) Mostly Odd Mostly Even Separation here bb-nucleus 136 Odd enriched Even enriched:containing Xe • Solar neutrino • 2nbb/0nbb • Dark matter Spin dependent • Dark matter Spin independent XMASS EXO LXe prototype in Kamioka LXe prototype at Stanford NESS02 – September 19, 2002 Elena Aprile Xenon Phase Diagram NESS02 – September 19, 2002 Elena Aprile Properties of LXe vs Ge and Si NESS02 – September 19, 2002 Elena Aprile Ionization and Scintillation in Liquid Xenon I/S (electron) >> I/S (non relativistic particle) Ionization (Xe+, e) Excitation (Xe*) Alpha scintillation ) Electron charge electron scintillation Recombination L/L0 or Q/Q0 (% Alpha charge 1 3 Xe2* ( Su , Su ) fi 2Xe+hn (175 nm) Electric Field (kV/cm) Fast Slow NESS02 – September 19, 2002 Elena Aprile Recombination and Attachment reduce electron signal t=1/ks[S] l= t vd = tmE e- + S Æ S - ks • ‡ High drift field • ‡ High purity gas • ‡ low-outgassing materials choice of purifiers and materials must be compatible with the low cosmogenics requirements NESS02 – September 19, 2002 Elena Aprile Spatial Resolution Technical limits field line distortions, electronic noise, and effects specific to signal readout scheme Physical Limit Electron Diffusion electron cloud Ld r td = vd = mE m = mobility vd r spread in electron cloud: s = 2Dtd E vd transverse D = diffusion coefficient longitudinal diffusion depends on drift path Ld eD 2 eD = k T = < e > T =165K Æ ª 0.3eV m 3 LXe m r r electron energy depends on E Æ D(E) s a few mm ª Ld m NESS02 – September 19, 2002 Elena Aprile Energy Resolution • Statistical limit 1/ N N = E /W - value DE F FW • “Fano Factor” limit = 2.35 = 2.35 E N E WF (liquid argon) is 2.54 DE ª 4keV @ 1MeV WF (liquid xenon) is 0.64 DE ª 2keV @ 1MeV • If all charges are collected and if full energy is absorbed in the liquid, the contributions to the energy resolution of a liquid ionization chamber are: 2 2 2 2 1/ 2 DET = 2.35[DEi + DEn + DEs + DEr ] DEi •Ionization straggling DEn •Electronic noise DEs •Positive ion effect DEr •Rise time effect NESS02 – September 19, 2002 Elena Aprile Columbia Experience with LXe Detectors q A 30 kg Liquid Xenon Time Projection Chamber developed and successfully tested at balloon altitude for Compton Imaging and Spectroscopy of MeV Cosmic Gamma- Ray Sources q NASA supported R&D on LXe detector technology and development of balloon-borne LXeGRIT payload. q Road to LXeGRIT: extensive studies of LXe ionization and scintillation properties, purification techniques to achieve long electron drift for large volume application, energy resolution and 3D NESS02 – September 19, 2002 imaging, electron mobility etc. Elena Aprile The Columbia LXeTPC 30 kg • 30 kg active Xe mass • 20 x 20 cm2 active area • 8 cm drift with 4 kV/cm • Charge and Light readout • 128 wires/anodes digitizers • 4UV PMTs NESS02 – September 19, 2002 Elena Aprile Electron vs Nuclear Recoil Discrimination in XENON Measure both direct scintillation(S1) and charge (proportional scintillation) (S2) Nuclear recoils from •WIMPs •Neutrons Gas Electron recoils from •Gammas s •Electrons μ 1 ~ anode Proportional scintillation depends on type of recoil and grid applied electric field. e- Drift Time electron recoil → S2/ S1 >> 1 Liquid E nuclear recoil → S2/ S1 ~0 40ns but detectable if E large ~ g-ray cathode NESS02 – September 19, 2002 Elena Aprile The XENON Experiment : Design Overview • The XENON design is modular. An array of 10 independent 3D position sensitive LXeTPC modules, each with a 100 kg active Xe mass, is used to make the 1-tonne scale experiment. • The fiducial LXe volume of each module is self-shielded by additional LXe. Active shield very effective for charged and neutral background rejection. • One common vessel of ~ 60 cm diameter and 60 cm height is used to house the TPC teflon and copper rings structure filled with the 100 kg Xe target and the shield LXe (~50 kg ). NESS02 – September 19, 2002 Elena Aprile XENON TPC Signals Time Structure Both Direct and Proportional Scintillation Signals detected by the same PMTs Array t~45 ns 150 µs (300 mm) • Three distinct signals associated with typical event. Amplification of primary scintillation light with CsI photocathode important for low threshold and for triggering. • Event depth of interaction (Z) from timing and XY-location from center of gravity of secondary light signals on PMTs array. • Effective background rejection direct consequence of 3D event localization (TPC) NESS02 – September 19, 2002 Elena Aprile Detection of Xe Light with a CsI Photocathode • Stable performance of reflective CsI photocathodes with high QE of 31% in LXe has been demonstrated by the Columbia measurements • CsI photocathodes can be made in any size/shape with uniform response, and are inexpensive. • LXe negative electron affinity Vo(LXe)= - 0.67 eV and the applied electric field explain the favorable electron extraction at the CsI-liquid interface. Aprile et al. NIMA 338(1994) Aprile et al. NIMA 343(1994) NESS02 – September 19, 2002 Elena Aprile XENON Baseline Readout: PMTs • Hamamatsu Low Temperature Tube (R6041) u Developed for LXe detectors. Shown to work reliably at low T and at P< 5 atm u Metal construction, compact design, recent tests at Columbia with custom designed HV divider show simultaneous light/charge with good yield u Low Background version under study by Hamamatsu u Low Quantum Efficiency~10-15% • Hamamatsu Low Background Tube (R7281) u Being tested by Xmass Collaboration • Room temperature tests only so far u Metal construction, and giving lower backgrounds • ~500 cts/tube/day (XENON baseline goal:~ 100) u Higher Quantum Efficiency~27-30% • Uses longer optics which give better focusing (could be accommdated in XENON) NESS02 – September 19, 2002 Elena Aprile Light Collection Efficiency for XENON Hamamatsu R6041 Assumptions ÿ Wph : 13 eV ÿ lph: 1.7 m ÿ Quenching Factor: 25% ÿ Q.E. of PMTs: 26% ÿ Q.E. of CsI : 31% ÿ R.E of Teflon Wall: 90% ÿ Xe Mass: 100 kg ÿ 37 PMTs (2 inch) array NESS02 – September 19, 2002 Elena Aprile Baseline - Simulation Results 16 keV recoil threshold event • Assumes 25% QE for 37 phototubes, and 31% for CsI photocathode • With a Wph= 13 eV, a 16 keV (true) nuclear recoil gives ~ 24 photoelectrons.
Recommended publications
  • Parallel Sessions
    Identification of Dark Matter July 23-27, 2012 9th International Conference Chicago, IL http://kicp-workshops.uchicago.edu/IDM2012/ PARALLEL SESSIONS http://kicp.uchicago.edu/ http://www.nsf.gov/ http://www.uchicago.edu/ http://www.fnal.gov/ International Advisory Committee Daniel Akerib Elena Aprile Rita Bernabei Case Western Reserve University, Columbia University, USA Universita degli Studi di Roma, Italy Cleveland, USA Gianfranco Bertone Joakim Edsjo Katherine Freese University of Amsterdam Oskar Klein Centre / Stockholm University of Michigan, USA University Richard Gaitskell Gilles Gerbier Anne Green Brown University, USA IRFU/ CEA Saclay, France University of Nottingham, UK Karsten Jedamzik Xiangdong Ji Lawrence Krauss Universite de Montpellier, France University of Maryland, USA Arizona State University, USA Vitaly Kudryavtsev Reina Maruyama Leszek Roszkowski University of Sheffield University of Wisconsin-Madison University of Sheffield, UK Bernard Sadoulet Pierre Salati Daniel Santos University of California, Berkeley, USA University of California, Berkeley, USA LPSC/UJF/CNRS Pierre Sikivie Daniel Snowden-Ifft Neil Spooner University of Florida, USA Occidental College University of Sheffield, UK Max Tegmark Karl van Bibber Kavli Institute for Astrophysics & Space Naval Postgraduate School Monterey, Research at MIT, USA USA Local Organizing Committee Daniel Bauer Matthew Buckley Juan Collar Fermi National Accelerator Laboratory Fermi National Accelerator Laboratory Kavli Institute for Cosmological Physics Scott Dodelson Aimee
    [Show full text]
  • Development of a Liquid Xenon Time Projection Chamber for the XENON Dark Matter Search
    Development of a Liquid Xenon Time Projection Chamber for the XENON Dark Matter Search Kaixuan Ni Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2006 c 2006 Kaixuan Ni All rights reserved Development of a Liquid Xenon Time Projection Chamber for the XENON Dark Matter Search Kaixuan Ni Advisor: Professor Elena Aprile Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2006 c 2006 Kaixuan Ni All rights reserved ABSTRACT Development of a Liquid Xenon Time Projection Chamber for the XENON Dark Matter Search Kaixuan Ni This thesis describes the research conducted for the XENON dark matter direct detection experiment. The tiny energy and small cross-section, from the interaction of dark matter particle on the target, requires a low threshold and sufficient background rejection capability of the detector. The XENON experiment uses dual phase technology to detect scintillation and ionization simultaneously from an event in liquid xenon (LXe). The distinct ratio, be- tween scintillation and ionization, for nuclear recoil and electron recoil events provides excellent background rejection potential. The XENON detector is designed to have 3D position sensitivity down to mm scale, which provides additional event information for background rejection. Started in 2002, the XENON project made steady progress in the R&D phase during the past few years. Those include developing sensitive photon detectors in LXe, improving the energy resolution and LXe purity for detect- ing very low energy events.
    [Show full text]
  • Axions and Other Similar Particles
    1 91. Axions and Other Similar Particles 91. Axions and Other Similar Particles Revised October 2019 by A. Ringwald (DESY, Hamburg), L.J. Rosenberg (U. Washington) and G. Rybka (U. Washington). 91.1 Introduction In this section, we list coupling-strength and mass limits for light neutral scalar or pseudoscalar bosons that couple weakly to normal matter and radiation. Such bosons may arise from the spon- taneous breaking of a global U(1) symmetry, resulting in a massless Nambu-Goldstone (NG) boson. If there is a small explicit symmetry breaking, either already in the Lagrangian or due to quantum effects such as anomalies, the boson acquires a mass and is called a pseudo-NG boson. Typical examples are axions (A0)[1–4] and majorons [5], associated, respectively, with a spontaneously broken Peccei-Quinn and lepton-number symmetry. A common feature of these light bosons φ is that their coupling to Standard-Model particles is suppressed by the energy scale that characterizes the symmetry breaking, i.e., the decay constant f. The interaction Lagrangian is −1 µ L = f J ∂µ φ , (91.1) where J µ is the Noether current of the spontaneously broken global symmetry. If f is very large, these new particles interact very weakly. Detecting them would provide a window to physics far beyond what can be probed at accelerators. Axions are of particular interest because the Peccei-Quinn (PQ) mechanism remains perhaps the most credible scheme to preserve CP-symmetry in QCD. Moreover, the cold dark matter (CDM) of the universe may well consist of axions and they are searched for in dedicated experiments with a realistic chance of discovery.
    [Show full text]
  • Latest Results of the Direct Dark Matter Search with the EDELWEISS-II Experiment
    Latest results of the direct dark matter search with the EDELWEISS-II experiment Gilles Gerbier1 for the EDELWEISS collaboration 1IRFU/SPP, CEA Saclay, , 91191 Gif s Yvette, France DOI: http://dx.doi.org/10.3204/DESY-PROC-2010-03/gerbier gilles The EDELWEISS-II experiment uses cryogenic heat-and-ionization Germanium detectors in order to detect the rare interactions from WIMP dark matter particles of local halo. New-generation detectors with an interleaved electrode geometry were developped and val- idated, enabling an outstanding gamma-ray and surface interaction rejection. We present here preliminary results of a one-year WIMP search carried out with 10 of such detectors in the Laboratoire Souterrain de Modane. A sensitivity to the spin-independent WIMP- 8 nucleon cross-section of 5 10− pb was achieved using a 322 kg.days effective exposure. × We also present the current status of the experiment and prospects to improve the present sensitivity by an order of magnitude in the near future. 1 The Edelweiss II set up and the detectors Weakly Interacting Massive Particles (WIMPs) are a class of particles now widely considered as one of the most likely explanation for the various observations of dark matter from the largest scales of the Universe to galactic scales. The collisions of WIMPs on ordinary matter are ex- pected to generate mostly elastic scatters off nuclei, characterised by low-energy deposits (<100 keV) with an exponential-like spectrum, and a very low interaction rate, currently constrained at the level of 1 event/kg/year. Detecting these events requires an ultralow radioactivity envi- ronment as well as detectors with a low energy threshold and an active rejection of the residual backgrounds [1].
    [Show full text]
  • Ultra-Weak Gravitational Field Theory Daniel Korenblum
    Ultra-weak gravitational field theory Daniel Korenblum To cite this version: Daniel Korenblum. Ultra-weak gravitational field theory. 2018. hal-01888978 HAL Id: hal-01888978 https://hal.archives-ouvertes.fr/hal-01888978 Preprint submitted on 5 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ultra-weak gravitational field theory Daniel KORENBLUM [email protected] April 2018 Abstract The standard model of the Big Bang cosmology model ΛCDM 1 considers that more than 95 % of the matter of the Universe consists of particles and energy of unknown forms. It is likely that General Relativity (GR)2, which is not a quantum theory of gravitation, needs to be revised in order to free the cosmological model of dark matter and dark energy. The purpose of this document, whose approach is to hypothesize the existence of the graviton, is to enrich the GR to make it consistent with astronomical observations and the hypothesis of a fully baryonic Universe while maintaining the formalism at the origin of its success. The proposed new model is based on the quantum character of the gravitational field. This non-intrusive approach offers a privileged theoretical framework for probing the properties of the regime of ultra-weak gravitational fields in which the large structures of the Universe are im- mersed.
    [Show full text]
  • Examples of Term Projects
    Physics 224 Origin and Evolution of the Universe Spring 2010 Examples of Term Projects These examples are just meant as suggestions to get you started thinking about a term project, to be presented as an oral report during the Final Exam week. Projects will all start with reading some relevant papers, but might include – or lead to – some original research. A few term projects in previous years have led to published papers. Please do some further thinking about your project, and plan to meet with me soon to discuss it further. I'll try to help you choose a topic and find suitable articles to get you started. Examples of topics to summarize from the literature: Clues to the nature of dark matter from small scale issues: cusps, satellites, … Dwarf galaxies, and the galaxy luminosity function Tidal streams and implications, including shapes of dark matter halos Feedback effects in galaxy formation Outflows from galaxies Black holes in galactic centers – origins, correlations, and effects Alternatives to the Standard ΛCDM Ωm=0.3 Cosmology, for example Warm Dark Matter, Interacting Dark Matter, Decay-product Dark Matter Modified Newtonian Dynamics (MOND) and other alternatives to GR Big bang nucleosynthesis and implications of possible 7Li and 6Li discrepancies How to test Eternal Inflation theory, multiverses, or string/brane cosmology Primordial black hole formation in the early universe and observational implications CMB polarization measurements and implications for the nature of Cosmic Inflation Redshift Surveys and Implications – Broad
    [Show full text]
  • Dark Matter Working Group Executive Summary (Ness '02)
    Dark Matter Working Group Executive Summary (NeSS ’02) Working Group Leaders: Rick Gaitskell, Brown; and Dick Arnowitt, Texas A&M. (Document Version 020925v21) Working Group Members: Craig Aalseth, PNL; Dan Akerib, CWRU; Elena Aprile, Columbia; Priscilla Cushman, U. Minnesota; John Ellis, CERN; Jonathan Feng, UC Irvine; Gilles Gerbier, Saclay; Alexander Kusenko, UCLA; Kirk McDonald, Princeton; Jeff Martoff, Temple; Richard Schnee, CWRU; and Nigel Smith, RAL. Introduction No currently observed particle is a suitable candidate for cold dark matter. The solution to the non baryonic dark matter problem, both in the universe as a whole, and in our own galaxy, may be resolved by physics found at the intersection of astronomy, high energy particle physics, and cosmology. The main candidates for this dark matter are relic particles generated, in great abundance, shortly after the Big Bang. Currently, there are 20 operating experiments designed to perform the direct detection of these particles being conducted at all the underground physics laboratories worldwide (bar one). One of them is sited at a US underground laboratory, although US sourced funding is made to six experiments. Existing results have put significant constraints on the allowed particle theories of dark matter, with one experiment claiming a positive observation, yet to be confirmed by other experiments. The planned dark matter experiments that were discussed at this workshop would be able to cover most of the parameter space of major theoretical proposals. The new physics required for particle dark matter is also expected to be discovered in the next round of high energy accelerator experiments (LHC, NLC). Theoretically and experimentally there is great complementarity between direct detection and accelerator programs.
    [Show full text]
  • Testing the Purity Monitor for the XENON Dark Matter Search
    Testing the Purity Monitor for the XENON Dark Matter Search Alison Andrews Laboratori Nazionali del Gran Sasso Columbia University REU August 4, 2006 1 Introduction Evidence for dark matter is found in many observed features of the universe. New- q GM(r) tonian gravitation predicts the rotational velocities of galaxies by v(r) = r , where mass is described by M(r) = 4π R ρ(r)r2dr. Actual measurements of the rota- tional velocities of galaxies, however, describe a distribution of mass where M(r) ∝ r. Fritz Zwicky studied this inconsistency in the Coma galaxy cluster in 1933, and he proposed the existence of a non-luminous dark matter. Over thirty years later, Vera Rubin supported Zwickys work with additional observations of galaxy rotational 1 curves. Their studies imply the existence of a halo of dark matter with ρ(r) ∝ r2 . Further evidence of dark matter is gravitational lensing. The General Theory of Relativity predicts the bending of light through areas of gravitational potential. Observations of this phenomenon show that the amount of bending around galaxy clusters corresponds to a greater amount of mass than is visible. Dark matter also helps to explain the formation and temperature distribution of the universe. A favored candidate for cold non-baryonic dark matter is the Weakly Interac- tive Massive Particle (or WIMP). Direct detection of WIMPs in experiments like XENON aim to detect the energy released from the elastic scattering of a WIMP off a terrestrial nucleus. 1 2 The XENON Dark Matter Search The XENON experiment aims to detect dark matter particles by measuring the scintillation and ionization of the nuclear recoils which result from the elastic collision of WIMPs with Xe nuclei using a dual phase (liquid/gas) xenon time projection chamber.
    [Show full text]
  • Elena Aprile Columbia University
    XENON1T: First Results (arXiv:1705.06655) Elena Aprile Columbia University Patras Axion-Wimp 2017 May 15-19 Thessaloniki, Greece 1 XENON World ~130 scientists from 22 institutions Laboratori Nazionali del Gran Sasso (LNGS), Italy XENON1T Elena Aprile (Columbia) XENON1T: First Results @ Patras Axion-WIMP 2017 2 Phases of the XENON program XENON10 XENON100 XENON1T / XENONnT 2005-2007 2008-2016 2013-2018 / 2019-2023 15 cm drift TPC – 25 kg 30 cm drift TPC – 161 kg 100 cm / 144 cm drift TPC - 3200 kg / ~8000 kg Achieved (2007) Achieved (2016) Projected (2018) / Projected (2023) σ -44 2 σ -45 2 σ -47 2 σ -48 2 SI = 8.8 x 10 cm SI = 1.1 x 10 cm SI = 1.6 x 10 cm / SI = 1.6 x 10 cm Elena Aprile (Columbia) XENON1T: First Results @ Patras Axion-WIMP 2017 3 The XENON1T Experiment Elena Aprile (Columbia) XENON1T: First Results @ Patras Axion-WIMP 2017 4 The XENON1T Experiment Elena Aprile (Columbia) XENON1T: First Results @ Patras Axion-WIMP 2017 4 July 2013 Uwe Oberlack LNGS SC Meeting - 29-Oct-2013 17 Aug. 2014 XENON1T Cryostat 7 XENON1T Cryostat 7 XENON1T Cryostat 7 XENON1T Cryostat 7 XENON1T Cryostat 7 Time Projection Chamber Eur. Phys. J. C 75, no. 11, 546 (2015) Elena Aprile (Columbia) XENON1T: First Results @ Patras Axion-WIMP 2017 8 Cryostat in the Water Tank Elena Aprile (Columbia) XENON1T: First Results @ Patras Axion-WIMP 2017 9 Cherenkov Muon Veto • Active shield against muons • 84 high-QE 8'' Hamamatsu R5912 PMTs • Trigger efficiency > 99.5% for neutrons with muons in water tank • Can suppress cosmogenic background to < 0.01 events/ton/year
    [Show full text]
  • Can One Determine TR at the LHC with ˜A Or ˜G Dark Matter?
    Can One Determine TR at the LHC with a or G Dark Matter? e Leszeek Roszkowski Astro–Particle Theory and Cosmology Group Sheffield, England with K.-Y. Choi and R. Ruiz de Austri arXiv:0710.3349 ! JHEP'08 L. Roszkowski, COSMO'08 – p.1 Non-commercial advert L. Roszkowski, COSMO'08 – p.2 MCMC scan + Bayesian study of SUSY models new development, led by two groups: B. Allanach (Cambridge), and us prepare tools for data from LHC and dark matter searches e.g.: Constrained MSSM: scan over m1=2, m0, tan β, A0 + 4 SM (nuisance) param's software package available from SuperBayes.org SuperBayes L. Roszkowski, COSMO'08 – p.3 e.g.: Constrained MSSM: scan over m1=2, m0, tan β, A0 + 4 SM (nuisance) param's software package available from SuperBayes.org SuperBayes MCMC scan + Bayesian study of SUSY models new development, led by two groups: B. Allanach (Cambridge), and us prepare tools for data from LHC and dark matter searches L. Roszkowski, COSMO'08 – p.3 software package available from SuperBayes.org SuperBayes MCMC scan + Bayesian study of SUSY models new development, led by two groups: B. Allanach (Cambridge), and us prepare tools for data from LHC and dark matter searches e.g.: Constrained MSSM: scan over m1=2, m0, tan β, A0 + 4 SM (nuisance) param's arXiv:0705.2012 (flat priors) Roszkowski, Ruiz & Trotta (2007) 4 3.5 3 2.5 (TeV) 2 0 m 1.5 1 0.5 CMSSM µ>0 0.5 1 1.5 2 m (TeV) 1/2 Relative probability density 0 0.2 0.4 0.6 0.8 1 L.
    [Show full text]
  • Astronomy and Astrophysics
    THE DECADE OF DISCOVERY IN ASTRONOMY AND ASTROPHYSICS Astronomy and Astrophysics Survey Committee Board on Physics and Astronomy Commission on Physical Sciences, Mathematics, and Applications National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1991 NATIONAL ACADEMY PRESS • 2101 Constitution Avenue, NW • Washington, DC 20418 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special compe_nces and with regard for appropriate balance. This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee consisting of members of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. This project was supported by the Department of Energy under Grant No. DE-FGO5- 89ER40421, the National Aeronautics and Space Administration and the National Science Foundation under Grant No. AST-8901685, the Naval Research Laboratory under Contract No. N00173-90-M-9744, and the Smithsonian Institution under Purchase Order No. SF0022430000. Additional support was provided by the Maurice Ewing Earth and Planetary Sciences Fund of the National Academy of Sciences created through a gift from the Palisades Geophysical Institute, Inc., and an anonymous donor. Library of Congress Cataloging-in-Publication Data National Research Council (U.S.). Astronomy and Astrophysics Survey Committee. The decade of discovery in astronomy and astrophysics / Astronomy and Astrophysics Survey Committee, Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications, National Research Council.
    [Show full text]
  • Dark Matter Searches in Europe Recent Results, Prospects, Future Projects
    Dark matter searches in Europe Recent results, prospects, future projects Gilles Gerbier- CEA Saclay/IRFU ASPERA UGL workshop Zaragoza june 30th 2011 1 NB Xenon @ Gran Sasso not covered here, being “US led” project, covered by C Galbiati Outline Introduction Overview Status and prospects of currently running experiments DAMA & low mass WIMP CRESST, ZeplinIII, Simple, Edelweiss, Edelweiss-CDMS Other detectors DRIFT, MiMac, Cygnus ArDM, (Warp) Future large scale -1 t, multi t- projects EURECA Darwin, Cygnus Which dark matter for ΛCDM ? New field(s) of « gravitationnal » nature = modified gravity (MOND etc) - justified by obs. galactic dynamics + Λ + … - no convincing theory yet New « particle-like » field(s), many possibilities among which: « SuperWIMPs » eg. gravitino, axino (SUSY) Supermassive relics (MPl) Axions : Peccei-Quinn axions (QCD) or ALPs The « WIMP miracle » : thermal relic hypothesis : -26 3 ΩDM~ 0.3 ⇒ <σannv> ~ 3x10 cm /s weak interactions, M~100 GeV (Weakly Interacting Massive Particles) neutralino [SUSY models] LKP [UED models] … 4 Principle of WIMP direct detection WIMP Galactic WIMP Interaction in a terrestrial detector velocity v ~ 200 km/s θr local density ρ0 Energy deposition Nuclear recoil Er • Relevant parameters: - mass mχ ~ 10 GeV to 10 TeV for usual extensions of the Standard Model - WIMP-nucleon cross-section σ, weakly 1 evt / kg / yr contrained but of the order of EW scale • Non-relativistic diffusion: 1 evt / ton / yr ~ 1 - 100 keV • Interaction rate: 0 v 100 100 GeV 0 0 v0 1 1 R ~ ~ 0.04
    [Show full text]