Low Mass WIMP and Axion Searches with the EDELWEISS Experiement Thibault Main De Boissière

Total Page:16

File Type:pdf, Size:1020Kb

Low Mass WIMP and Axion Searches with the EDELWEISS Experiement Thibault Main De Boissière Low mass WIMP and axion searches with the EDELWEISS experiement Thibault Main de Boissière To cite this version: Thibault Main de Boissière. Low mass WIMP and axion searches with the EDELWEISS experiement. High Energy Physics - Experiment [hep-ex]. Université Paris Sud - Paris XI, 2015. English. NNT : 2015PA112117. tel-01195586 HAL Id: tel-01195586 https://tel.archives-ouvertes.fr/tel-01195586 Submitted on 8 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universite´ Paris-Sud Ecole´ Doctorale 517 Institut de Recherche sur les lois Fondamentales de l'univers, CEA Saclay Th`ese de doctorat Specialit´ e´ Physique Soutenue le 3 juillet 2015 par Thibault Main de Boissi`ere Recherches de WIMPs de basse masse et d'axions avec l'exp´erienceEDELWEISS Composition du jury : Pr´esident du jury : M. R´ezaAnsari Universit´eParis-Sud Directeur de th`ese: M. Eric Armengaud CEA Saclay Rapporteurs : Mme Laura Baudis Universit´ede Zurich M. Jacques Dumarchez LPNHE Examinateur : M. Jules Gascon IPN Lyon i UNIVERSITE PARIS SUD Abstract Low mass WIMPs and axion searches with the EDELWEISS experiment Thibault Main de Boissiere In spite of the recent successes of observational cosmology, most of the universe remains poorly known. Known particles (which we call baryons) only make up 5% of the total content of the universe. The standard cosmological model contains two other compo- nents: Dark Energy and Dark Matter (respectively 70% and 25% of the total content). Dark Matter, which is generally believed to be a non-relativistic, charge neutral and non-baryonic new form of matter, is the central focus of this work. We studied two likely candidates, namely WIMPs and axions. Our analyses were carried out within the EDELWEISS collaboration which operates detectors sensitive to both WIMP and axion signals. Axions were first introduced to solve the strong CP problem. They can be produced in the Sun through a variety of processes and in some models, they may also contribute to the Dark Matter density. In this work, we used EDELWEISS data to search for axions through four distinct production-detection mechanisms. These mechanisms involve the coupling of axions to nucleons, photons and electrons. No excess over background was found. These null observations allowed us to set stringent constraints on the axion couplings and exclude several orders of magnitude of the axion mass within specific QCD axion models. On the other hand, WIMPs are the canonical dark matter candidate whose mass lies in the GeV-TeV range. With the motivation of recent theoretical developments and possible signal hints, we focused our effort on so-called low mass WIMPs (3 to 25 GeV). This thesis describes a new multivariate analysis specifically designed for this mass range, which we tuned using an unblinded fraction of the data set (35 kg.d) from a single EDELWEISS detector. No significant signal over background excess was found and we set an upper limit on the spin-independent WIMP-nucleon cross section of 1:48 10−6 × pb at 10 GeV. ii UNIVERSITE PARIS SUD R´esum´e Recherches de WIMPs de basse masse et d'axions avec l'exp´erience EDELWEISS Thibault Main de Boissiere En d´epitdes r´ecents succ`esde la cosmologie observationnelle, la majeure partie de l'univers demeure m´econnue: la mati`ereusuelle, dite baryonique, ne repr´esente que 5% du contenu total de l'univers. Dans le mod`elecosmologique standard, deux autres com- posantes compl`etent notre description: l'´energienoire et la mati`erenoire (respectivement 70% et 25% du contenu total). Dans cette th`ese,nous nous int´eressons `ala mati`erenoire, une nouvelle forme de mati`erequi doit ^etrenon-relativiste, non-baryonique et neutre de charge. Nous avons ´etudi´edeux candidats : les WIMPs et les axions. Toutes nos anal- yses ont ´et´emen´eesau sein de la collaboration EDELWEISS, qui op`eredes d´etecteurs sensibles `aun ´eventuel signal de WIMP ou d'axion. Les axions ont d'abord ´et´eintroduits pour r´esoudrele probl`emede la sym´etrieCP en chromodynamique quantique. Ils peuvent ^etreproduits dans le soleil par des processus divers et, dans certains mod`eles,peuvent contribuer `ala densit´ede mati`erenoire. Nous avons utilis´eles donn´eesd'EDELWEISS pour la recherche d'axions suivant quatre modes de production-d´etectiondistincts. Ces m´ecanismesfont intervenir le couplage des axions aux nucl´eons,aux photons et aux ´electrons.Nous n'avons observ´eaucun exc`esde signal par rapport au bruit de fond. Ces constatations nous ont permis d'obtenir des contraintes fortes sur la valeur de chaque couplage d'axion et d'exclure plusieurs ordres de grandeur de la masse de l'axion dans le cadre de mod`elessp´ecifiquesde QCD. Les WIMPs font partie des candidats `ala mati`erenoire les plus ´etudi´es. Ce sont des particules interagissant faiblement avec une masse pouvant aller du GeV au TeV. Des mod`elesth´eoriqueset des r´esultatsexp´erimentaux r´ecents semblent converger vers des masses faibles (de l'ordre de quelques GeV). A la lumi`erede ces d´eveloppements, nous avons donc choisi de privil´egierl'´etudedes WIMPs de basse masse (de 3 `a25 GeV). Nous avons mis en place une analyse multivari´eeparticuli`erement adapt´ee`ala recherche de WIMPs de basse masse. Cette analyse a ´et´eoptimis´eesur une fraction de 35 kg.jour du jeu de donn´eesEDELWEISS complet. Nous n'avons pas observ´ed'exc`esde signal par rapport au bruit de fond attendu. Par cons´equent, nous avons calcul´eune limite sup´erieuresur la section efficace WIMP-nucl´eonspin-ind´ependante de 1:48 10−6 pb `a × 10 GeV. Contents Abstract i R´esum´e ii Contents iii List of Figures vii List of Tables xiii 1 In search of Dark Matter1 1.1 Dark Matter in the Standard Cosmological model..............1 1.1.1 Modern cosmology: an introduction.................2 1.1.2 Cosmological probes..........................6 1.1.3 The matter content: evidence for Cold Dark Matter........9 1.1.4 Dark matter candidates........................ 12 1.2 Detection of WIMP Dark Matter....................... 17 1.2.1 Production at colliders......................... 18 1.2.2 Indirect detection............................ 21 1.2.3 Direct Detection............................ 25 2 The EDELWEISS experiment 37 2.1 Expected backgrounds............................. 38 2.1.1 Muon-induced neutrons........................ 38 2.1.2 External radioactivity......................... 39 2.1.3 Germanium internal radioactivity................... 41 2.1.4 Guidelines for background rejection................. 42 2.2 The Germanium detectors........................... 43 2.2.1 General principle............................ 43 2.2.2 The Germanium detectors: EDELWEISS-II............. 46 2.2.3 The Germanium detectors: EDELWEISS-III............ 47 2.3 The EDELWEISS infrastructure....................... 50 2.3.1 Infrastructure: EDELWEISS-II.................... 50 2.3.2 Infrastructure: EDELWEISS-III................... 52 2.4 Cryogenics.................................... 53 iii Contents iv 2.4.1 Cryogenics: EDELWEISS-II...................... 53 2.4.2 Cryogenics: EDELWEISS-III..................... 53 2.5 Electronics and data stream.......................... 54 2.5.1 Electronics and data stream: EDELWEISS-II............ 54 2.5.2 Electronics and data stream: EDELWEISS-III........... 55 2.6 From EDELWEISS-II to EDELWEISS-III: a summary........... 56 3 Axion searches with EDELWEISS-II data 57 3.1 Axions: a theoretical introduction...................... 58 3.2 Possible axion sources: the Sun and the galactic halo............ 62 3.2.1 Axion production in the Sun..................... 62 3.2.1.1 Production by Primakoff effect............... 63 3.2.1.2 Production via 57Fe nuclear magnetic transition..... 64 3.2.1.3 Compton, bremsstrahlung and axio-RD processes.... 66 3.2.2 Axions as dark matter......................... 66 3.3 Axion interactions in EDELWEISS detectors................ 67 3.4 EDELWEISS-II data and backgrounds.................... 69 3.4.1 Data analysis for axion searches in EDELWEISS-II......... 69 3.4.2 Backgrounds for axion searches in EDELWEISS-II......... 72 3.5 Axion search: Primakoff solar axions..................... 75 3.5.1 Crystalline structure of Germanium................. 75 3.5.2 Event rate computation........................ 78 3.5.3 Statistical analysis: one detector................... 81 3.5.4 Statistical analysis: naive multi-detector analysis.......... 82 3.5.5 Statistical analysis: Monte Carlo procedure for multi-detector anal- ysis................................... 84 3.5.6 Validity of the results......................... 87 3.6 Axion search: 14.4 keV solar axions..................... 91 3.7 Axion search: Compton, bremsstrahlung and axio-RD........... 93 3.8 Axion search: dark matter axions....................... 95 3.9 Derivation of model dependent mass bounds................. 97 4 Low mass WIMP searches with EDELWEISS-III data 98 4.1 The EDELWEISS-III dataset......................... 99 4.1.1 Presentation of Run308........................ 99 4.1.2 EDELWEISS-III trigger........................ 100 4.1.3 EDELWEISS-III offline pulse processing..............
Recommended publications
  • Axions and Other Similar Particles
    1 91. Axions and Other Similar Particles 91. Axions and Other Similar Particles Revised October 2019 by A. Ringwald (DESY, Hamburg), L.J. Rosenberg (U. Washington) and G. Rybka (U. Washington). 91.1 Introduction In this section, we list coupling-strength and mass limits for light neutral scalar or pseudoscalar bosons that couple weakly to normal matter and radiation. Such bosons may arise from the spon- taneous breaking of a global U(1) symmetry, resulting in a massless Nambu-Goldstone (NG) boson. If there is a small explicit symmetry breaking, either already in the Lagrangian or due to quantum effects such as anomalies, the boson acquires a mass and is called a pseudo-NG boson. Typical examples are axions (A0)[1–4] and majorons [5], associated, respectively, with a spontaneously broken Peccei-Quinn and lepton-number symmetry. A common feature of these light bosons φ is that their coupling to Standard-Model particles is suppressed by the energy scale that characterizes the symmetry breaking, i.e., the decay constant f. The interaction Lagrangian is −1 µ L = f J ∂µ φ , (91.1) where J µ is the Noether current of the spontaneously broken global symmetry. If f is very large, these new particles interact very weakly. Detecting them would provide a window to physics far beyond what can be probed at accelerators. Axions are of particular interest because the Peccei-Quinn (PQ) mechanism remains perhaps the most credible scheme to preserve CP-symmetry in QCD. Moreover, the cold dark matter (CDM) of the universe may well consist of axions and they are searched for in dedicated experiments with a realistic chance of discovery.
    [Show full text]
  • Latest Results of the Direct Dark Matter Search with the EDELWEISS-II Experiment
    Latest results of the direct dark matter search with the EDELWEISS-II experiment Gilles Gerbier1 for the EDELWEISS collaboration 1IRFU/SPP, CEA Saclay, , 91191 Gif s Yvette, France DOI: http://dx.doi.org/10.3204/DESY-PROC-2010-03/gerbier gilles The EDELWEISS-II experiment uses cryogenic heat-and-ionization Germanium detectors in order to detect the rare interactions from WIMP dark matter particles of local halo. New-generation detectors with an interleaved electrode geometry were developped and val- idated, enabling an outstanding gamma-ray and surface interaction rejection. We present here preliminary results of a one-year WIMP search carried out with 10 of such detectors in the Laboratoire Souterrain de Modane. A sensitivity to the spin-independent WIMP- 8 nucleon cross-section of 5 10− pb was achieved using a 322 kg.days effective exposure. × We also present the current status of the experiment and prospects to improve the present sensitivity by an order of magnitude in the near future. 1 The Edelweiss II set up and the detectors Weakly Interacting Massive Particles (WIMPs) are a class of particles now widely considered as one of the most likely explanation for the various observations of dark matter from the largest scales of the Universe to galactic scales. The collisions of WIMPs on ordinary matter are ex- pected to generate mostly elastic scatters off nuclei, characterised by low-energy deposits (<100 keV) with an exponential-like spectrum, and a very low interaction rate, currently constrained at the level of 1 event/kg/year. Detecting these events requires an ultralow radioactivity envi- ronment as well as detectors with a low energy threshold and an active rejection of the residual backgrounds [1].
    [Show full text]
  • Ultra-Weak Gravitational Field Theory Daniel Korenblum
    Ultra-weak gravitational field theory Daniel Korenblum To cite this version: Daniel Korenblum. Ultra-weak gravitational field theory. 2018. hal-01888978 HAL Id: hal-01888978 https://hal.archives-ouvertes.fr/hal-01888978 Preprint submitted on 5 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ultra-weak gravitational field theory Daniel KORENBLUM [email protected] April 2018 Abstract The standard model of the Big Bang cosmology model ΛCDM 1 considers that more than 95 % of the matter of the Universe consists of particles and energy of unknown forms. It is likely that General Relativity (GR)2, which is not a quantum theory of gravitation, needs to be revised in order to free the cosmological model of dark matter and dark energy. The purpose of this document, whose approach is to hypothesize the existence of the graviton, is to enrich the GR to make it consistent with astronomical observations and the hypothesis of a fully baryonic Universe while maintaining the formalism at the origin of its success. The proposed new model is based on the quantum character of the gravitational field. This non-intrusive approach offers a privileged theoretical framework for probing the properties of the regime of ultra-weak gravitational fields in which the large structures of the Universe are im- mersed.
    [Show full text]
  • Examples of Term Projects
    Physics 224 Origin and Evolution of the Universe Spring 2010 Examples of Term Projects These examples are just meant as suggestions to get you started thinking about a term project, to be presented as an oral report during the Final Exam week. Projects will all start with reading some relevant papers, but might include – or lead to – some original research. A few term projects in previous years have led to published papers. Please do some further thinking about your project, and plan to meet with me soon to discuss it further. I'll try to help you choose a topic and find suitable articles to get you started. Examples of topics to summarize from the literature: Clues to the nature of dark matter from small scale issues: cusps, satellites, … Dwarf galaxies, and the galaxy luminosity function Tidal streams and implications, including shapes of dark matter halos Feedback effects in galaxy formation Outflows from galaxies Black holes in galactic centers – origins, correlations, and effects Alternatives to the Standard ΛCDM Ωm=0.3 Cosmology, for example Warm Dark Matter, Interacting Dark Matter, Decay-product Dark Matter Modified Newtonian Dynamics (MOND) and other alternatives to GR Big bang nucleosynthesis and implications of possible 7Li and 6Li discrepancies How to test Eternal Inflation theory, multiverses, or string/brane cosmology Primordial black hole formation in the early universe and observational implications CMB polarization measurements and implications for the nature of Cosmic Inflation Redshift Surveys and Implications – Broad
    [Show full text]
  • Can One Determine TR at the LHC with ˜A Or ˜G Dark Matter?
    Can One Determine TR at the LHC with a or G Dark Matter? e Leszeek Roszkowski Astro–Particle Theory and Cosmology Group Sheffield, England with K.-Y. Choi and R. Ruiz de Austri arXiv:0710.3349 ! JHEP'08 L. Roszkowski, COSMO'08 – p.1 Non-commercial advert L. Roszkowski, COSMO'08 – p.2 MCMC scan + Bayesian study of SUSY models new development, led by two groups: B. Allanach (Cambridge), and us prepare tools for data from LHC and dark matter searches e.g.: Constrained MSSM: scan over m1=2, m0, tan β, A0 + 4 SM (nuisance) param's software package available from SuperBayes.org SuperBayes L. Roszkowski, COSMO'08 – p.3 e.g.: Constrained MSSM: scan over m1=2, m0, tan β, A0 + 4 SM (nuisance) param's software package available from SuperBayes.org SuperBayes MCMC scan + Bayesian study of SUSY models new development, led by two groups: B. Allanach (Cambridge), and us prepare tools for data from LHC and dark matter searches L. Roszkowski, COSMO'08 – p.3 software package available from SuperBayes.org SuperBayes MCMC scan + Bayesian study of SUSY models new development, led by two groups: B. Allanach (Cambridge), and us prepare tools for data from LHC and dark matter searches e.g.: Constrained MSSM: scan over m1=2, m0, tan β, A0 + 4 SM (nuisance) param's arXiv:0705.2012 (flat priors) Roszkowski, Ruiz & Trotta (2007) 4 3.5 3 2.5 (TeV) 2 0 m 1.5 1 0.5 CMSSM µ>0 0.5 1 1.5 2 m (TeV) 1/2 Relative probability density 0 0.2 0.4 0.6 0.8 1 L.
    [Show full text]
  • Dark Matter Searches in Europe Recent Results, Prospects, Future Projects
    Dark matter searches in Europe Recent results, prospects, future projects Gilles Gerbier- CEA Saclay/IRFU ASPERA UGL workshop Zaragoza june 30th 2011 1 NB Xenon @ Gran Sasso not covered here, being “US led” project, covered by C Galbiati Outline Introduction Overview Status and prospects of currently running experiments DAMA & low mass WIMP CRESST, ZeplinIII, Simple, Edelweiss, Edelweiss-CDMS Other detectors DRIFT, MiMac, Cygnus ArDM, (Warp) Future large scale -1 t, multi t- projects EURECA Darwin, Cygnus Which dark matter for ΛCDM ? New field(s) of « gravitationnal » nature = modified gravity (MOND etc) - justified by obs. galactic dynamics + Λ + … - no convincing theory yet New « particle-like » field(s), many possibilities among which: « SuperWIMPs » eg. gravitino, axino (SUSY) Supermassive relics (MPl) Axions : Peccei-Quinn axions (QCD) or ALPs The « WIMP miracle » : thermal relic hypothesis : -26 3 ΩDM~ 0.3 ⇒ <σannv> ~ 3x10 cm /s weak interactions, M~100 GeV (Weakly Interacting Massive Particles) neutralino [SUSY models] LKP [UED models] … 4 Principle of WIMP direct detection WIMP Galactic WIMP Interaction in a terrestrial detector velocity v ~ 200 km/s θr local density ρ0 Energy deposition Nuclear recoil Er • Relevant parameters: - mass mχ ~ 10 GeV to 10 TeV for usual extensions of the Standard Model - WIMP-nucleon cross-section σ, weakly 1 evt / kg / yr contrained but of the order of EW scale • Non-relativistic diffusion: 1 evt / ton / yr ~ 1 - 100 keV • Interaction rate: 0 v 100 100 GeV 0 0 v0 1 1 R ~ ~ 0.04
    [Show full text]
  • Constraints on Low-Mass Wimps from the EDELWEISS-III Dark Matter Search
    Prepared for submission to JCAP Constraints on low-mass WIMPs from the EDELWEISS-III dark matter search The EDELWEISS Collaboration E. Armengauda;? Q. Arnaudb;1 C. Augierb A. Beno^ıtb A. Beno^ıtc L. Berg´ed T. Bergmanne J. Billardb J. Bl¨umerf;g T. de Boissi`erea G. Bresc A. Broniatowskid V. Brudaninh P. Camusc A. Cazesb M. Chapellierd F. Charlieuxb L. Dumoulind K. Eitelg D. Filosofovh N. Foersterf N. Fourchesa G. Gardec J. Gasconb G. Gerbiera;1 A. Giulianid M. Grollierc M. Grosa L. Hehng S. Herv´ea G. Heuermannf V. Humbertd M. De J´esusb Y. Jini S. Jokischg A. Juillardb C. K´ef´elianb;f M. Kleifgese V. Kozlovg H. Krausj V. A. Kudryavtsevk H. Le-Sueurd J. Linj M. Mancusod S. Marnierosd A. Menshikove X.-F. Navicka C. Nonesa E. Olivierid P. Paril B. Paula M.-C. Pirod;2 D. V. Podad E. Queguinerb M. Robinsonk H. Rodenasc S. Rozovh V. Sanglardb B. Schmidtg;3 S. Scorzaf B. Siebenborng D. Tcherniakhovskie L. Vagneronb M. Webere E. Yakushevh X. Zhangj aCEA Saclay, DSM/IRFU, 91191 Gif-sur-Yvette Cedex, France bInstitut de Physique Nucl´eairede Lyon-UCBL, IN2P3-CNRS, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex, France cInstitut N´eel,CNRS/UJF, 25 rue des Martyrs, BP 166, 38042 Grenoble, France dCSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universit´eParis-Saclay, 91405 Orsay, France eKarlsruher Institut f¨urTechnologie, Institut f¨urProzessdatenverarbeitung und Elektronik, Postfach 3640, 76021 Karlsruhe, Germany f Karlsruher Institut f¨urTechnologie, Institut f¨ur Experimentelle Kernphysik, Gaedestr. 1, 76128 Karlsruhe, Germany arXiv:1603.05120v2 [astro-ph.CO]
    [Show full text]
  • Dark Matter Search with EDELWEISS Recent Results and Prospects
    Dark matter search with EDELWEISS Recent results and prospects Gilles Gerbier- CEA Saclay/IRFU on behalf of Edelweiss (and CDMS) collaboration(s) and also some personal views PPC2011 CERN -june 15th 2011 1 Expérience pour DEtecter Les Wimps En SIte Souterrainn Outline Edelweiss : “ID technology”, results of 1 year run Combination of data with CDMS : results Prospects of Edelweiss for 2012-2013 Low mass WIMP’s : new result, comments wrt CoGeNT Further future : EURECA @ ULISSE Principle of WIMP direct detection WIMP Galactic WIMP Interaction in a terrestrial detector velocity v ~ 200 km/s θr local density ρ0 Energy deposition Nuclear recoil Er • Relevant parameters: - mass mχ ~ 10 GeV to 10 TeV for usual extensions of the Standard Model - WIMP-nucleon cross-section σ, weakly 1 evt / kg / yr contrained but of the order of EW scale • Non-relativistic diffusion: 1 evt / ton / yr ~ 1 - 100 keV • Interaction rate: 0 v 100 100 GeV 0 0 v0 1 1 R ~ ~ 0.04 8 3 1 kg day m mN A m 10 pb 0.3GeV cm 230 km s 3 Principle of WIMP direct detection WIMP Galactic WIMP Interaction in a terrestrial detector velocity v ~ 200 km/s θr local density ρ0 Energy deposition Nuclear recoil Er • Low-threshold detectors • Relevant parameters: • Ultra-low-background detectors : - mass mχ ~ 10 GeV to 10 TeV for usual extensions of the Standard Model- « Passive » bckgd reduction (shields, - WIMP-nucleon cross-section σ, weakly 1 evt / kg / yr contrained but of the order ofradiopurity, EW scale external vetos..) - « Active » bckgd reduction • Non-relativistic diffusion: (discrimination of electron recoils, multiple scatters..) 1 evt / ton / yr ~ 1 - 100 keV • We consider only the « spin- • Interaction rate: independent » channel here → single 0 v 100 100 GeV WIMP-nucleon0 0 cross-sectionv0 ∀ target1 1 R ~ ~ 0.04 8 3 1 kg day m mN A m 10 pb 0.3GeV cm 230 km s 4 The EDELWEISS collaboration Oxford - sep 10 Karlsruhe - oct 09 FRANCE ITALIE • CEA Saclay (IRFU and IRAMIS) 4800 mwe LSM (Fréjus) • CSNSM Orsay (CNRS/IN2P3 + Univ.
    [Show full text]
  • Prediction for the Neutrino Mass in the KATRIN Experiment from Lensing by the Galaxy Cluster A1689
    Prediction for the neutrino mass in the KATRIN experiment from lensing by the galaxy cluster A1689 Theo M. Nieuwenhuizen Center for Cosmology and Particle Physics, New York University, New York, NY 10003 On leave of: Institute for Theoretical Physics, University of Amsterdam, Science Park 904, P.O. Box 94485, 1090 GL Amsterdam, The Netherlands Andrea Morandi Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel [email protected]; [email protected] ABSTRACT The KATRIN experiment in Karlsruhe Germany will monitor the decay of tritium, which produces an electron-antineutrino. While the present upper bound for its mass is 2 eV/c2, KATRIN will search down to 0.2 eV=c2. If the dark matter of the galaxy cluster Abell 1689 is modeled as degenerate isothermal fermions, the strong and weak lensing data may be explained by degenerate neutrinos with mass of 1.5 eV=c2. Strong lensing data beyond 275 kpc put tension on the standard cold dark matter interpretation. In the most natural scenario, the electron antineutrino will have a mass of 1.5 eV/c2, a value that will be tested in KATRIN. Subject headings: Introduction, NFW profile for cold dark matter, Isothermal neutrino mass models, Applications of the NFW and isothermal neutrino models, Fit to the most recent data sets, Conclusion 1. Introduction arXiv:1103.6270v1 [astro-ph.CO] 31 Mar 2011 The neutrino sector of the Standard Model of elementary particles is one of today's most intense research fields (Kusenko, 2010; Altarelli and Feruglio 2010; Avignone et al.
    [Show full text]
  • Non-Baryonic Dark Matter
    FR9703177 Institut Universite Claude Bernard de Physique IN2P3 - CNRS Nucleaire de Lyon LYCEN 9643 D6cembre 1996 Non-Baryonic Dark Matter Ecole Internationale de Cosmologie, Casablanca, 1-10 decembre 1996 I. Berk&s Institut de Physique Nucleaire de Lyon, IN2P3/CNRS, Universite Claude Bernard, F-69622 Villeuibanne Cedex, France 43, Boulevard du 11 Novembre 1918 - 69622 V1LLEURBANNE Cedex - France NON-BARYONIC DARK MATTER. (*) I. Berkes IPNL, Universite Lyon I et IN2P3, F-69622 VILLEURBANNE CEDEX Abstract. This article discusses the nature of the dark matter and the possibility of the detection of non-baryonic dark matter in an underground experiment. Among the useful detectors the low tem­ perature bolometers are considered in some detail. Resume. Get article expose les differences hypotheses sur la nature de la matiere noire, et la possibility de la detection de la matidre noire non-baryonique dans une experience souterraine. Parmi les de- tecteurs envisages 1'accent est mis sur les bolometres travaillant h. basse temperature. 1) Galactic dark matter. The best known star in our Galaxy is the Sun. Its mass is about Mo=2xl0 j0 kg, and it radiates a power of L©=3.8x10W. The ratio of these two quantities is Mo/Lo = 5200 kg/W. In our Galaxy masses for binary stars can be determined from their relative movement. It comes out, that while M and L vary strongly from a star to another, the ratio M/L varies only slightly for stars in the main sequence. So, the luminosity may be used as a mesure o the mass of a star, super-giants, white dwarfs, black holes and other exoti objects excepted.
    [Show full text]
  • A Cosmological Perspective
    Dark Matter: A Cosmological Perspective Katie Mack North Carolina State University www.astrokatie.com : @AstroKatie entire Standard Model of Particle Physics What We Don’t Know Origin / particle type Particle mass Thermal history Non-trivial evolution? Particle Zoo One component or many? Non-gravitational interactions (self or SM)? Small-scale behavior (mass of smallest halos) Candidates (incomplete list) ✦ Weakly Interacting Massive Particles (WIMPs) ‣ Something not included in the Standard Model of Particle Physics, generally with weak interactions ‣ May be thermally produced (or not) Annihilating (e.g., SUSY neutralino WIMP) Decaying (e.g., sterile neutrino) Warm (WDM) (e.g., axino) Self-interacting (SIDM) (particle + dark sector force) Axion (e.g., QCD axion / string axion) Fuzzy DM (tiny mass, large deBroglie wavelength) MACHO (e.g., primordial black holes) WIMP Miracle Standard thermal WIMP dark matter • freezes out when no longer in thermal equilibrium with baryons • for weak-scale mass and cross-section, predict correct abundance of DM • discovery opportunities: annihilation, scattering, production Kolb & Turner 1990 WIMP Direct Detection 10 −38 ] 2 CRESST-II 10 −40 (2015) CDMSLite (2017) S DAMA −42 u 10 p e r C D M 10 −44 S PICO-2L E (2015) D E L CoGeNT pp 7 (2 W 0 Be 1 − 6 E 46 ) IS (2014) 10 S PICO-60 (2015) 8 DarkSide-50 10 −48 B (2015) PandaX (2016) LUX (2016) hep Solar XENON1T (2017) − SI10 WIMP-nucleon50 cross section [cm -ν LZ 10 −1 DARWIN 200 ton-year 10 0 SN-ν 10 1 Atm WIMP mass [GeV/c -ν 10 2 10 3 2] 10 4 plot via Ciaran O’Hare XENON1T Excess • may be background, or… • solar axions / ALPs? (but stellar constraints) • hidden photon DM? XENON1T Collaboration 2020 • fast (subdominant) DM component? • …? TBD.
    [Show full text]
  • Search for Dark Matter with EDELWEISS-III Using a Multidimensional Maximum Likelihood Method
    Search for dark matter with EDELWEISS-III using a multidimensional maximum likelihood method Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN der Fakultät für Physik des Karlsruher Instituts für Technologie genehmigte DISSERTATION von Dipl.-Phys. Lukas Hehn aus Herrenberg Tag der mündlichen Prüfung: 24.06.2016 Referent: Prof. Dr. Dr. h.c. J. Blümer Korreferent: Prof. Dr. W. de Boer KIT - Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Abstract The nature of dark matter is one of the most fundamental questions in modern physics. From measurements of the Cosmic Microwave Background, a dark matter fraction of 27% of the total energy in the Universe can be derived. The known baryonic matter makes up only 5%, while the rest is attributed to an unknown dark energy. Evidence from the gravitational effects of this dark matter can be found on all cosmological scales, including our Milky Way. The different observations can be explained in a unified picture with a non-relativistic particle, so-called Cold Dark Matter (CDM). Such a particle is not part of the Standard Model (SM) and would require new physics. A generic class of hypothesised candidates are Weakly Interacting Massive Particles (WIMPs) with masses mχ in the GeV{TeV range and interaction cross sections of the order of the weak scale. Such particles can be found e.g. in the proposed SuperSymmetric extension of the SM. This thesis was performed in the context of the EDELWEISS-III experiment, which is designed to detect the elastic scattering of a WIMP from the galactic dark matter halo in an array of detectors.
    [Show full text]