Direct Detection: a Review of Techniques and Results Giuliana Fiorillo Università Degli Studi Di Napoli “Federico Ii” & Infn

Direct Detection: a Review of Techniques and Results Giuliana Fiorillo Università Degli Studi Di Napoli “Federico Ii” & Infn

3RD SOUTH AMERICAN DARK MATTER WORKSHOP ICTP-SAIFR, SÃO PAULO, BRAZIL DIRECT DETECTION: A REVIEW OF TECHNIQUES AND RESULTS GIULIANA FIORILLO UNIVERSITÀ DEGLI STUDI DI NAPOLI “FEDERICO II” & INFN DECEMBER 2, 2020 MY TAKE-HOME MESSAGE FROM TWO PREVIOUS TALKS ❖ Absence of evidence IS NOT Evidence of absence ❖ Worth to look for DM EVERYWHERE DARK MATTER CANDIDATES ❖ Thermal relics: ❖ WIMP: generic weakly interacting massive particle ❖ ADM: asymmetric dark matter ❖ SIMP: strongly interacting massive particle ❖ … ❖ Non- thermal relics ❖ Axion: very light mass ( 10-5 eV), CDM because produced at rest in the early Universe. Its interaction strength is strongly suppressed 2 relative to the weak strength by a factor (mW/fa ) , 11 where fa ∼10 GeV is the PQ breaking scale ❖ … and many more Baer et al., arXiv:1407.0017 DARK MATTER CANDIDATES APPEC DM Report, to be published Direct searches generally optimised for WIMP sensitivity... Baer et al., arXiv:1407.0017 WIMP DIRECT DETECTION WIMP χN ➙χN elastic scattering off nuclei dR ρχ dσ χ χ = NT × ∫ dv f (v) v dER mχ dER 100 GeV/c2 WIMP mass Spin Independent: 1E-45 cm2 WIMP-nucleon SI σ 10 χ scatters coherently off of the entire nucleus: σ~ A2 Spin Dependent: 1 only unpaired nucleons contribute to scattering amplitude: σ~ J(J+1) 0.1 ‣ Large detector mass, long exposure ‣ Low energy threshold ‣ Low rate ‣ Ultra-low radioactive bg ‣ Nuclear recoil energy ≈ 1÷100 keV ‣ Good bg discrimination MODULATION SIGNATURES Annual event rate modulation: June-December asymmetry ~2-10% Drukier, Freese, Spergel, Phys. Rev. D33:3495 (1986) Sidereal direction modulation: asymmetry ~ 20-100% in forward-backward event rate Spergel, Phys. Rev. D36:1353 (1988) ×3 rate variation of parallel vs perpendicular directions Credits Jocelyn Monroe DAMA MODULATION SIGNAL Standard Halo Model predicted modulation A~0.02-0.1, t0=152.5 days DAMA/NaI + DAMA/LIBRA-phase1 + phase2: A= (0.0103 ± 0.0008) cpd/kg/keV, t0 = (145±5) d in 2.46 t-yr (2 - 6 keV) NUCL. PHYS. AT. ENERGY 19 (2018) 307-325 2.46 ton × yr exposure annual modulation signature observed over 20 annual cycles (12.9 σ) 1804.01231, Baum, Freese, Kelso “Dark Matter implications of DAMA/LIBRA-phase2 results” “the observed annual modulation signal is no longer well fitted by canonical (isospin conserving) spin-independent WIMP nucleon couplings” Data collection expected to go on until the end of 2024, work underway for phase 3, to lower the software energy threshold below 1 keVee MODEL INDEPENDENT CHECK NaI experiments COSINE-100 SABRE NORTH ANAIS-112 PICOLON ANAIS, Phys. Rev. Lett. 123, 031301 COSINUS TAKING DATA COSINE-100, Phys. Rev. Lett. 123, 031302 SABRE SOUTH ANAIS-112 ANNUAL MODULATION Preliminary results of 3 yrs data taking presented by M. Martinez @ Madrid, October 2020 Present sensitivity @ 3 years: 2.6� 3σ sensitivity model independent is at reach in 1 year from now DISCRIMINATINGH"I5!7%,+8(!7+ BACKGROUNDS(+8(%#$!J!KL+$(!MN!KL+$(!7%&8,%-%$'(%#$ !"!#$!%&&'()*+,-./'0,1'2"3&'(4&5/''"+*6'3+77.*'8*9:.-7; Cryogenic Experiments at mK Temperatures !"#$%&"''(# from natural radioactivity: "#$%#&'(%#$45*#$#$ γ - ➙ γ - α, n e e/601 !.+47+(+8(#, • Advantages: high sensitivity to nuclearnuclear recoils recoils nN ➙ nN γ, e- N ➙ N’ + α, β • measuring the full nuclear recoilelectron ener recoilsgy in the phonon channel • low energy threshold (keV to sub-keV), good energy resolution DE#F!G'8@1,#9$2!7'('D • light/phonon and charge/phonon: nuclear vs. electronSignal recoil split discrimination in two components which Active veto shield and fiducialization !"#$%"respond&'(#)*"# differently$#+% to,# NR/ER-+ ➞ identification of neutron recoils ➞ separation of S and B )+&(-+&&9$1!-%(!:+!9(1,#$';%=+*=$@!;<*%=7=%B!>+';%=,$7*;=,?8* @&(AB+C 9"*:";"<;=#)*/>/?@*5'$$'A*'7:*7"6;#=7A CD=7=7A*!"#$%&'* )*+,-#-+(+, WIMP single :%A;%756%AD"A*(";E""7* Efficiency: > 99.9% n/γ double "&"<;#=7*'7:*76<&"'#* electron recoils E > 20keV scatter #"<Background=%&A2 scatter ! F=7region%B';%=7*,%"&:*('7:AG* @67<;%=7'&*@=#$*('A":*=7* .+!/001,!#2+,!3%!/001, ! + " H%7:D'#:*$=:"&*@%;*;=* 7"6;#=7A*@#=$*/>/?@* <'&%(#';%=72 ! ?6;*';*;E=*A;'7:'#:* FV :"I%';%=7A*@=#*76<&"'#* n #"<Expected=%&*A"&"<;%=72 "#$%&'(%#$ ! J6&K*"&"<;#=7*#"<=%&A* nuclear recoils Active '6;signal=$';%<'& &,region*D'I"* ,%"&:L-*'@;"#*<'&%(#';%=72 χ Veto ! !"#$%&'()*+',*-.)*/..0 12*32*45(6#7 ! 8 CRESST EDELWEISS CDMS DETECTOR TECHNOLOGIES CoGENT (Ge), CDEX (Ge), DAMIC (Si), SENSEI (Si) Heat & Charge Cryogenic Light & Charge Detectors Detectors PandaX (LXe), XENON (LXe), SuperCDMS (Ge, Si), LUX/LZ (LXe), DarkSide (LAr) Charge EDELWEISS (Ge) DAMA/LIBRA, CDMSLite ANAIS, (Ge, Si) SABRE, COSINE, Light Heat PICOLON (NaI) Total XMASS (LXe), Energy DEAP (LAr) PICO (C3F8, CF3I) Light & Heat Cryogenic Detectors CRESST (CaWO4), COSINUS (NaI) Too many experiments: only a selection here WIMP DIRECT DETECTION STATUS 10−37 XENON1T Migdal ] 2 10−38 S2-only 2019 CRESST-III 2019 −39 10 DarkSide-50 2018 [cm −40 SI 10 σ 10−41 THRESHOLDLOW CDMSLite 2017 10−42 DEAP-3600 2017 43 10− DEAP-3600 2019 LUX 2017 −44 10 DarkSide-50 2018 PANDAX-II 2017 10−45 XENON1T 2018 XENON1T Ionization Signals 2019 10−46 10−47 LARGE MASS 10−48 −49 Dark Matter-Nucleon 10 Neutrino floor on xenon −50 10 −3 −2 −1 2 10 10 10 2 1 10 10 Mχ [TeV/c ] LOW THRESHOLD WITH CRYOGENIC CRYSTALS T-sensor SUPERCDMS CHARGE & PHONONS: CDMSLITE EDELWEISS T0 E LIGHT & CRESST PHONONS: Target χ E deposition → temperature rise ΔT ~ μK → requires detectors at mK ❖ Crystals: Ge, Si, CaWO4, NaI ❖ T-sensors: ❖ superconductor thermistors (highly doped superconductor): NTD Ge → EDELWEISS ❖ superconducting transition sensors (thin films of SC biased near middle of normal/SC transition): TES → CDMS, CRESST LOW THRESHOLD: CRESST ❖ First CRESST-III run 07/2016 - 02/2018 ❖ Target crystal mass: 23.6g ❖ Gross exposure (before cuts): 5.7 kg days ❖ Unprecedented low nuclear recoil thresholds of 30 eV ❖ Leading sensitivity over one order of magnitude: ❖ 160 MeV/c2 →1.8 GeV/c2 ❖ CRESST-III phase 2 will push further the threshold (10 eV), upgrade to 100 modules for O(2 kg) target mass Phys. Rev. D 100, 102002 Phys. Rev. WIMP DIRECT DETECTION STATUS APPEC DM Report, to be published THRESHOLDLOW LARGE MASS LARGE MASS: NOBLE LIQUIDS ❖ dual-phase Time Projection Chambers with multi-tonne liquid Xe, Ar targets ❖ read out primary scintillation: “S1” + proportional gas scintillation from drifted electrons: “S2” ❖ 3D position reconstruction: drift time ❖ time difference between S1 and S2 gives Z position (few mm resolution) ❖ pattern of S2 light gives XY position (~1cm resolution) ❖ background identification + passive suppression ❖ zeptobarn (10-45 cm2) to yoctobarn (10-48 cm2) sensitivity to WIMP dark matter Xenon100 XENON DETECTORS See dedicated talks on Dec 3 XENON 10 (LNGS) XENON1T: best limit for high WIMP masses 10 kg ZEPLIN II (Boulby) 2010 ZEPLIN III (Boulby) XENON 100 (LNGS) 100 kg LUX (250 kg, SURF), 43 PANDA-X 10° PandaX/LUX sensitivity 101 ] (500 kg, CJPL) 2 Aprile et al, Phys. Rev. Lett. 121, 111302 (2018) Rev. Aprile et al, Phys. 44 100 2015 [cm 10° Normalized SI XMASS s XENON1T sensitivity 1 10° 101 102 103 45 (0.8t, Kamioka) 10° WIMP mass [GeV/c2] PandaX-II (2017) LUX (2017) 10 46 yr, this work) 1000 kg ° £ WIMP-nucleon XENON1T (1 t 47 XENON 1T 10° 101 102 103 (1t, LNGS) WIMP mass [GeV/c2] PandaX-4:(4t, CJPL) 2020 XENONnT: (6t, LNGS) LZ: (7t, SURF) 10000 kg DARWIN: 50 t, ESPPU Document #62 Jocelyn Monroe, ESPP, Granada 2019 ESPP, Jocelyn Monroe, ARGON DETECTORS See A. Kish on Dec 3 DS50 low mass: leading SI limit at 1.8-3.5 GeV/c2 2010 DarkSide-50 DS50 high mass: 10 kg (50 kg, LNGS) background discrimination ArDM 100 kg (1t, LSC) 1000 kg 2015 Phys. Rev. D 98, 102006 (2018) Phys. Rev. Lett.121.081307 (2018) DEAP-3600 (3.6t, SNOLAB) 10000 kg Global Argon Dark Matter Collaboration formed: 2020 DarkSide-20k (50t, LNGS) 100000 kg ARGO: 400 t, ESPPU Document #97 Jocelyn Monroe, ESPP, Granada 2019 ESPP, Jocelyn Monroe, LOW THRESHOLD WITH NOBLE LIQUIDS ❖ S2 only analysis in Xenon1T ❖ effective exposure of (22 ± 3) tonne day ❖ 0.7 keVnr, 0.186 keVee threshold ❖ Known backgrounds: ❖ Beta decays from 214Pb (flat ER)) ❖ CEvNS ❖ Beta decays on the cathode wires ❖ Unmodeled background below 150PE ❖ Also probes WIMP-electron scattering PHYSICAL REVIEW LETTERS 123,251801 (2019) XENON1T: EXCESS ELECTRON RECOIL EVENTS 285 evts observed vs 232 ±15 expected in the range 1-7 keV → ~3σ fluctuation Less than 1 yr data from XENONnT to distinguish axions from 3H >160 CITATIONS! See T. Wolf on Dec 3 WIMP DIRECT DETECTION PROSPECTS Phys. Rev. D 88, 076011 (2013) z PRD 89, 023524 (2014) DarkSide-20k ESPP 2019 APPEC DM Report, to be published DIRECTIONAL DETECTION: BEYOND THE NEUTRINO FLOOR ❖ Mature technology: gaseous TPC (DRIFT, MIMAC, DMTPC, NEWAGE, CYGNO) ➟ CYGNUS (10-1000 m3) ❖ R&D on several other techniques: • NEWSdm • Nanometric track direction measurement in nuclear emulsions • Exploit resonant light scattering using polarised light • Measurement of track slope and length beyond the optical resolution See E. Baracchini on Dec 3 • Unprecedented accuracy of 6 nm achieved on both coordinates • RED • Columnar Recombination in liquid argon TPC • PTOLEMY • Graphene target (nanoribbon or nanotubes) SPIN-DEPENDENT INTERACTIONS superheated target (CNFM), camera + acoustic readout, background rejection based on topology O(10-2), measure counts above threshold when dE/dx > nucleation, SIMPLE (GESA), PICASSO+COUPP = PICO (SNOLAB) PICO-60: leading WIMP-p limit, C4F8 target (60 kg), 500 kg planned competitive limits from neutrino telescopes (IceCube,

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us