Bôcher, Osgood, and the Ascendance of American Mathematics at Harvard Steve Batterson

Total Page:16

File Type:pdf, Size:1020Kb

Bôcher, Osgood, and the Ascendance of American Mathematics at Harvard Steve Batterson Bôcher, Osgood, and the Ascendance of American Mathematics at Harvard Steve Batterson he year 1888 is notable to members Bôcher, W. F. Osgood, Leonard Dickson, and G. D. of the American Mathematical Society Birkhoff were internationally respected mathema- (AMS) for the founding of their organi- ticians. Graduate programs at Chicago, Harvard, zation under the name The New York and Princeton offered European-level training TMathematical Society. In this same year that had been unavailable in the United States Maxime Bôcher received his A.B. in mathematics when Bôcher completed his undergraduate stud- from Harvard. The university also awarded Bôcher ies a quarter century earlier. The advancement on a fellowship that enabled him to travel to Göttin- American campuses began in the early 1890s. gen for graduate study. At the time, knowledge- Most significant was the opening of the Univer- able American mathematics students with means sity of Chicago in 1892. Under the leadership of went to Germany to pursue a Ph.D. Opportuni- E. H. Moore, Chicago recruited European emigrés ties for course work and thesis direction in the to implement a high-level mathematics curriculum United States were vastly inferior. The country’s [2]. A steady stream of talented American students only significant mathematical scholars were the thrived in the scholarly environment. Moore’s Ph.D. nonacademically employed George William Hill, students Dickson (1896), Oswald Veblen (1903), the part-time professor Simon Newcomb, and and Birkhoff (1907) would each go on to deliver the reclusive scientist J. Willard Gibbs. Over the plenary addresses to the International Congress 1890–1894 interval just two American universities of Mathematicians. would confer more than two mathematics Ph.D.’s Compare the Chicago ascendance with contem- [1], and neither of these programs was on a favor- poraneous developments at Harvard [4], [5], [2]. able trajectory. Johns Hopkins was in a decline After obtaining their Ph.D.’s in Germany, Osgood that had begun with the recent departure of J. J. and Bôcher became Harvard instructors in 1890 Sylvester. Clark University, after a promising first and 1891 respectively. None of their departmental three years, underwent devastating turmoil and colleagues were engaged in mathematical research. lost many of its best staff [2], [3]. Together Bôcher and Osgood steadily changed the Yet by 1913 the American mathematical brand culture, publishing their scholarly work and invigo- was appreciated in Europe. E. H. Moore, Maxime rating the graduate program. Birkhoff joined the Harvard faculty in 1912 and then discovered his Steve Batterson is associate professor of mathematics and famous proof of Poincaré’s Geometric Theorem. computer science at Emory University. His email address is [email protected]. With Bôcher, Osgood, and Birkhoff, Harvard was the strongest department in the United States. The author is grateful to Don Sarason and Raghavan Narasimhan for clarifying historical points and to Michele Given the 1890 state of American mathematics, Benzi and Albert Lewis for suggestions on the manuscript. the rise of Harvard was remarkable, even if over- Unpublished material is quoted courtesy of the Harvard shadowed by the more rapid advances at Chicago. University Archives; MIT Archives; Library of Congress; This article traces these developments, focusing on and Niedersächsische Staats- und Universitätsbibliothek, the vital roles of Bôcher, Osgood, and the Harvard Göttingen. traveling fellowships. 916 NOTICES OF THE AMS VOLUME 56, NUMBER 8 Mathematics at Harvard Prior to 1880 the superior continental In 1636 Harvard became the first college to be mathematics to students established in the North American British colo- in the United States. In nies. To fulfill its mission of providing the educa- 1824 Harvard juniors tional essentials to prospective Puritan ministers, began studying Farrar’s the curriculum featured Latin, Greek, Hebrew, adaptation of Bezout’s rhetoric, and philosophy. The small presence of calculus [7]. mathematics was restricted to some arithmetic The following year and geometry in the final year. During Harvard’s a brilliant sixteen-year- first century mathematics was often taught by old freshman enrolled minimally trained instructors who held the title at Harvard. Benjamin of tutor [6], [7]. Peirce had already re- The year 1727 marked the endowment of the ceived mathematical Hollis Professorship of Mathematics and Natural training from Nathaniel Philosophy. The first holder was Isaac Greenwood. Bowditch, whose son, Greenwood, being knowledgeable in Newton, sub- Ingersoll, was Peirce’s stantially elevated the Harvard faculty’s level of classmate at the Salem scientific competence. Unfortunately his tenure Grammar School. Peirce ended prematurely when he was dismissed over supplemented his Har- repeated incidents of drunkenness. Greenwood’s vard studies by assist- Maxime Bôcher. successor was his former student John Winthrop. ing Bowditch with the Serving from 1738 to 1779, Winthrop covered Laplace translation. In the broad span of mathematics and the physical addition, Peirce was an sciences. Harvard historian Samuel Morison char- avid reader of The Math- acterized Winthrop as “the first important scien- ematical Diary, solving tist or productive scholar in the teaching staff of problems posed in this Harvard College” [6, page 92]. Winthrop took the early American journal then-novel initiative of setting up an experimental [8]. physics laboratory. His lectures included the topic Peirce completed his of electricity. Winthrop’s astronomical observa- A.B. in 1829. Despite tions of the solar system earned him membership his ample mathematical in the Royal Society. gifts, Peirce’s opportu- When the nineteenth century began, no Ameri- nities for further study can professors were doing mathematical research. were severely limited; At both Harvard and Yale, scholarship in the Ph.D. programs did not subject meant the production of textbooks. By then exist in the United this time mathematics was front loaded into the States. Over the prior Harvard curriculum. Tutors handled arithmetic decade several Harvard and geometry in the freshman year. Subsequent students had returned to topics included algebra, logarithms, trigonometry, campus from advanced surveying, and spherical geometry. work at Göttingen and W. F. Osgood. In 1806 the Hollis chair was offered to Nathaniel other European institu- Bowditch, the author of an important handbook tions [6]. Their presence offered evidence and on navigation. Possessing only a rudimentary for- testimony to the benefits of study abroad. Yet mal education, the self-taught Bowditch was an Peirce remained in Massachusetts to teach at a interesting choice. Following a maritime career, prep school. His biographer speculates that recent he had entered the insurance business, all the family financial reversals forced Peirce to forgo time studying mathematics on his own. Bowditch European study and begin earning an income [8, turned down the professorship but became an page 52]. influential member of the Harvard Corporation, Peirce taught at the prep school for just two which governed the university. Meanwhile, he took years. Then a mathematics tutorship opened up on the ambitious project of translating and elu- for him when Farrar’s health began to fail. The cidating Laplace’s multivolume work on celestial 1831 Harvard appointment of Peirce was the be- mechanics. Its successful completion was arguably ginning of an historic tenure for American science. the most impressive American mathematical ac- Within months he submitted an original theorem complishment up to that time. for publication in The Mathematical Diary. It was In place of Bowditch, the Hollis chair was filled known that if 2n +1 − 1 is prime, then (2n +1 − 1)2n by John Farrar. Farrar was a charismatic lecturer. is perfect. Peirce proved that if a perfect number His contribution to American mathematics was M does not have the above form, then M must to translate French textbooks and introduce have at least four distinct prime factors [9]. Later, SEPTEMBER 2009 NOTICES OF THE AMS 917 a posthumously published paper of Euler showed scholarly prominence placed the Lazzaroni in a po- that any even perfect number has the form stipu- sition to promote national science initiatives. Out lated above. Thus Peirce’s result established that of their efforts came the creation of the American any odd perfect number has at least four distinct Association for the Advancement of Science and prime factors. the National Academy of Sciences. It is unclear whether the Harvard administration Peirce himself continued to do research in had any appreciation for this worthy demonstra- astronomy and mathematics. His astronomical tion of mathematical scholarship. Shortly after- work gained him admission to the Royal Society. ward, however, President Josiah Quincy steered However, Peirce’s magnum opus, Linear Associa- Peirce in a more traditional direction, the writing tive Algebra, was in mathematics. Along the way of textbooks. Peirce sought a clarification of pri- he held key positions with two important govern- orities. He asked whether the Harvard Corpora- ment scientific agencies, The Coast Survey and The tion wanted him to “undertake a Nautical Almanac. task that must engross so much Peirce remained at Harvard until his death in time and is so elementary in its 1880. As a teacher Peirce was generally depicted as nature and so unworthy of one incomprehensible to ordinary
Recommended publications
  • Downloaded from Brill.Com09/24/2021 10:06:53AM Via Free Access 268 Revue De Synthèse : TOME 139 7E SÉRIE N° 3-4 (2018) Chercheur Pour IBM
    REVUE DE SYNTHÈSE : TOME 139 7e SÉRIE N° 3-4 (2018) 267-288 brill.com/rds A Task that Exceeded the Technology: Early Applications of the Computer to the Lunar Three-body Problem Allan Olley* Abstract: The lunar Three-Body problem is a famously intractable problem of Newtonian mechanics. The demand for accurate predictions of lunar motion led to practical approximate solutions of great complexity, constituted by trigonometric series with hundreds of terms. Such considerations meant there was demand for high speed machine computation from astronomers during the earliest stages of computer development. One early innovator in this regard was Wallace J. Eckert, a Columbia University professor of astronomer and IBM researcher. His work illustrates some interesting features of the interaction between computers and astronomy. Keywords: history of astronomy – three body problem – history of computers – Wallace J. Eckert Une tâche excédant la technologie : l’utilisation de l’ordinateur dans le problème lunaire des trois corps Résumé : Le problème des trois corps appliqué à la lune est un problème classique de la mécanique newtonienne, connu pour être insoluble avec des méthodes exactes. La demande pour des prévisions précises du mouvement lunaire menait à des solutions d’approximation pratiques qui étaient d’une complexité considérable, avec des séries tri- gonométriques contenant des centaines de termes. Cela a très tôt poussé les astronomes à chercher des outils de calcul et ils ont été parmi les premiers à utiliser des calculatrices rapides, dès les débuts du développement des ordinateurs modernes. Un innovateur des ces années-là est Wallace J. Eckert, professeur d’astronomie à Columbia University et * Allan Olley, born in 1979, he obtained his PhD-degree from the Institute for the History and Philosophy of Science Technology (IHPST), University of Toronto in 2011.
    [Show full text]
  • EJC Cover Page
    Early Journal Content on JSTOR, Free to Anyone in the World This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR. Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries. We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes. Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early- journal-content. JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact [email protected]. PUBLICATIONS OF THE AstronomicalSociety of the Pacific. Vol. XXI. San Francisco, California, April 10, 1909. No. 125 ADDRESS OF THE RETIRING PRESIDENT OF THE SOCIETY, IN AWARDING THE BRUCE MEDAL TO DR. GEORGE WILLIAM HILL. By Charles Burckhalter. The eighthaward of the BruceGold Medal of thisSociety has beenmade to Dr. GeorgeWilliam Hill. To thosehaving understanding of the statutes,and the methodgoverning the bestowal of the medal,it goes without sayingthat it is always worthilybestowed.
    [Show full text]
  • Moon-Earth-Sun: the Oldest Three-Body Problem
    Moon-Earth-Sun: The oldest three-body problem Martin C. Gutzwiller IBM Research Center, Yorktown Heights, New York 10598 The daily motion of the Moon through the sky has many unusual features that a careful observer can discover without the help of instruments. The three different frequencies for the three degrees of freedom have been known very accurately for 3000 years, and the geometric explanation of the Greek astronomers was basically correct. Whereas Kepler’s laws are sufficient for describing the motion of the planets around the Sun, even the most obvious facts about the lunar motion cannot be understood without the gravitational attraction of both the Earth and the Sun. Newton discussed this problem at great length, and with mixed success; it was the only testing ground for his Universal Gravitation. This background for today’s many-body theory is discussed in some detail because all the guiding principles for our understanding can be traced to the earliest developments of astronomy. They are the oldest results of scientific inquiry, and they were the first ones to be confirmed by the great physicist-mathematicians of the 18th century. By a variety of methods, Laplace was able to claim complete agreement of celestial mechanics with the astronomical observations. Lagrange initiated a new trend wherein the mathematical problems of mechanics could all be solved by the same uniform process; canonical transformations eventually won the field. They were used for the first time on a large scale by Delaunay to find the ultimate solution of the lunar problem by perturbing the solution of the two-body Earth-Moon problem.
    [Show full text]
  • A Task That Exceeded the Technology: Early Applications of the Computer to the Lunar Three-Body Problem *
    A task that exceeded the technology: early applications of the computer to the lunar three-body problem * Allan Olley Abstract: The lunar Three-Body problem is a famously intractable aspect of Newto- nian mechanics. The demand for accurate predictions of lunar motion led to practical ap- proximate solutions of great complexity, constituted by trigonometric series with hundreds of terms. Such considerations meant there was demand for high speed machine computation from astronomers during the earliest stages of computer development. One early innovator in this regard was Wallace J. Eckert, a Columbia University professor of astronomer and IBM researcher. His work illustrates some interesting features of the interaction between computers and astronomy. Keywords: history of astronomy, three body problem, history of computers, W. J. Eckert *This is the submitted (ie unreviewed) version of this article, which appears in its official version at Revue de Synth`ese, Vol. 139, iss. 3-4, pp. 267-288 DOI: 10.1163/19552343-13900014 . Allan Olley, born in 1979, is an independent scholar, whose research focuses on the history of computers and celestial mechanics. ([email protected]) 1 The three body problem in astronomy consists of finding a general expression for the trajectory of three celestial bodies in mutual gravitational attraction. Unlike the two body problem that admits of a ready solution, the three body problem is famously intractable with no definitive solution for the general case and this has made it the focus of a great deal of intellectual effort. The first manifestation of these difficulties was Newton's attempts to use his theory of gravity to derive adequate predictions of the motion of the Moon.
    [Show full text]
  • View This Volume's Front and Back Matter
    Titles in This Series Volume 8 Kare n Hunger Parshall and David £. Rowe The emergenc e o f th e America n mathematica l researc h community , 1876-1900: J . J. Sylvester, Felix Klein, and E. H. Moore 1994 7 Hen k J. M. Bos Lectures in the history of mathematic s 1993 6 Smilk a Zdravkovska and Peter L. Duren, Editors Golden years of Moscow mathematic s 1993 5 Georg e W. Mackey The scop e an d histor y o f commutativ e an d noncommutativ e harmoni c analysis 1992 4 Charle s W. McArthur Operations analysis in the U.S. Army Eighth Air Force in World War II 1990 3 Pete r L. Duren, editor, et al. A century of mathematics in America, part III 1989 2 Pete r L. Duren, editor, et al. A century of mathematics in America, part II 1989 1 Pete r L. Duren, editor, et al. A century of mathematics in America, part I 1988 This page intentionally left blank https://doi.org/10.1090/hmath/008 History of Mathematics Volume 8 The Emergence o f the American Mathematical Research Community, 1876-1900: J . J. Sylvester, Felix Klein, and E. H. Moor e Karen Hunger Parshall David E. Rowe American Mathematical Societ y London Mathematical Societ y 1991 Mathematics Subject Classification. Primary 01A55 , 01A72, 01A73; Secondary 01A60 , 01A74, 01A80. Photographs o n th e cove r ar e (clockwis e fro m right ) th e Gottinge n Mathematisch e Ges - selschafft, Feli x Klein, J. J. Sylvester, and E. H. Moore.
    [Show full text]
  • 1954-06-06 University of Notre Dame Commencement Program
    One Hundred Ninth Annual Commencement JUNE ExERCISES THE UNIVERSITY OF NOTRE DAME NoTRE DAME, INDIANA THE GRADUATE ScHOOL THE CoLLEGE OF ARTS AND LETTERS THE COLLEGE OF SCIENCE THE COLLEGE OF ENGINEERING THE CoLLEGE oF LAw THE CoLLEGE OF CoMMERCE In the University Stadium At 2:00p.m. (Central Daylight Time) June 6, 1954 PROGRAM Processional The Conferring of Degrees, by the Rev. Theodore M. Hesburgh, C.S.C., President of the University I ! Commencement Address, l l 1 by James Rhyne Killian, Jr., President of Massachusetts Institute of Technology The Blessing, by the Most Rev. Allen J. Babcock, I Bishop of Grand Rapids I National Anthem \ i Recessional l j Degrees Conferred The University of Notre Dame announces the conferring of: The Degree of Doctor of Laws, honoris causa, on: Most Reverend Allen J. Babcock, of Grand Rapids, Michigan Mr. Harold S. Vance, of South Bend, Indiana Honorable Ernest E. L. Hammer, of New York City Mr. Thomas W. Pangborn, Hagerstown, Maryland The Degree of Doctor of Literature, honoris causa, on: Mr. Samuel Eliot Morison, of Cambridge, Massachusetts The Degree of Doctor of Science, honoris causa, on: Mr. James Rhyne Killian, Jr., of Cambridge, Massachusetts IN THE GRADUATE SCHOOL The University of Notre Dame confers -the following degrees in course: The Degree of Doctor of Philosophy on: Clifford Scott Barker, Pittsburgh, Pennsylvania B.S., Carnegie Institute of Technology, 1948; M.S., University of Notre Dame, 1952. Major subject: Metallurgy. Dissertation: Study of the Kinetics of Order-Disorder Transformations. 3 Joseph Ming-shun Chiao, Hopie, China B.A., Catholic University of Peking (China}, 1939; M.A., Ibid., 1942.
    [Show full text]
  • RM Calendar 2013
    Rudi Mathematici x4–8220 x3+25336190 x2–34705209900 x+17825663367369=0 www.rudimathematici.com 1 T (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose (1912) Boris Gnedenko 2 W (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 F (1643) Isaac Newton RM071 5 S (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 1998-A1 (1871) Federigo Enriques RM084 (1871) Gino Fano A right circular cone has base of radius 1 and height 3. 6 S (1807) Jozeph Mitza Petzval A cube is inscribed in the cone so that one face of the (1841) Rudolf Sturm cube is contained in the base of the cone. What is the 2 7 M (1871) Felix Edouard Justin Emile Borel side-length of the cube? (1907) Raymond Edward Alan Christopher Paley 8 T (1888) Richard Courant RM156 Scientists and Light Bulbs (1924) Paul Moritz Cohn How many general relativists does it take to change a (1942) Stephen William Hawking light bulb? 9 W (1864) Vladimir Adreievich Steklov Two. One holds the bulb, while the other rotates the (1915) Mollie Orshansky universe. 10 T (1875) Issai Schur (1905) Ruth Moufang Mathematical Nursery Rhymes (Graham) 11 F (1545) Guidobaldo del Monte RM120 Fiddle de dum, fiddle de dee (1707) Vincenzo Riccati A ring round the Moon is ̟ times D (1734) Achille Pierre Dionis du Sejour But if a hole you want repaired 12 S (1906) Kurt August Hirsch You use the formula ̟r 2 (1915) Herbert Ellis Robbins RM156 13 S (1864) Wilhelm Karl Werner Otto Fritz Franz Wien (1876) Luther Pfahler Eisenhart The future science of government should be called “la (1876) Erhard Schmidt cybernétique” (1843 ).
    [Show full text]
  • Rudi Mathematici
    Rudi Mathematici x4-8188x3+25139294x2-34301407052x+17549638999785=0 Rudi Mathematici January 53 1 S (1803) Guglielmo LIBRI Carucci dalla Sommaja Putnam 1999 - A1 (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE Find polynomials f(x), g(x), and h(x) _, if they exist, (1912) Boris GNEDENKO such that for all x 2 S (1822) Rudolf Julius Emmanuel CLAUSIUS f (x) − g(x) + h(x) = (1905) Lev Genrichovich SHNIRELMAN (1938) Anatoly SAMOILENKO −1 if x < −1 1 3 M (1917) Yuri Alexeievich MITROPOLSHY 4 T (1643) Isaac NEWTON = 3x + 2 if −1 ≤ x ≤ 0 5 W (1838) Marie Ennemond Camille JORDAN − + > (1871) Federigo ENRIQUES 2x 2 if x 0 (1871) Gino FANO (1807) Jozeph Mitza PETZVAL 6 T Publish or Perish (1841) Rudolf STURM "Gustatory responses of pigs to various natural (1871) Felix Edouard Justin Emile BOREL 7 F (1907) Raymond Edward Alan Christopher PALEY and artificial compounds known to be sweet in (1888) Richard COURANT man," D. Glaser, M. Wanner, J.M. Tinti, and 8 S (1924) Paul Moritz COHN C. Nofre, Food Chemistry, vol. 68, no. 4, (1942) Stephen William HAWKING January 10, 2000, pp. 375-85. (1864) Vladimir Adreievich STELKOV 9 S Murphy's Laws of Math 2 10 M (1875) Issai SCHUR (1905) Ruth MOUFANG When you solve a problem, it always helps to (1545) Guidobaldo DEL MONTE 11 T know the answer. (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR The latest authors, like the most ancient, strove to subordinate the phenomena of nature to the laws of (1906) Kurt August HIRSCH 12 W mathematics.
    [Show full text]
  • RM Calendar 2010
    Rudi Mathematici x4-8208x3+25262264x2-34553414592x+17721775541520=0 Rudi Mathematici January 1 F (1894) Satyendranath BOSE 4th IMO (1962) - 1 (1878) Agner Krarup ERLANG (1912) Boris GNEDENKO Find the smallest natural number with 6 as (1803) Guglielmo LIBRI Carucci dalla Sommaja the last digit, such that if the final 6 is moved 2 S (1822) Rudolf Julius Emmanuel CLAUSIUS to the front of the number it is multiplied by (1938) Anatoly SAMOILENKO 4. (1905) Lev Genrichovich SHNIRELMAN Gauss Facts (Heath & Dolphin) 3 S (1917) Yuri Alexeievich MITROPOLSHY 1 4 M (1643) Isaac NEWTON RM071 Gauss can trisect an angle with a straightedge 5 T (1871) Federigo ENRIQUES RM084 and compass. (1871) Gino FANO Gauss can get to the other side of a Möbius (1838) Marie Ennemond Camille JORDAN strip. 6 W (1807) Jozeph Mitza PETZVAL (1841) Rudolf STURM From a Serious Place 7 T (1871) Felix Edouard Justin Emile BOREL Q: What is lavender and commutes? (1907) Raymond Edward Alan Christopher PALEY A: An abelian semigrape. 8 F (1924) Paul Moritz COHN (1888) Richard COURANT The description of right lines and circles, upon (1942) Stephen William HAWKING which geometry is founded, belongs to 9 S (1864) Vladimir Adreievich STELKOV mechanics. Geometry does not teach us to 10 S (1905) Ruth MOUFANG draw these lines, but requires them to be (1875) Issai SCHUR drawn. 2 11 M (1545) Guidobaldo DEL MONTE RM120 Isaac NEWTON (1734) Achille Pierre Dionis DU SEJOUR (1707) Vincenzo RICCATI 12 T (1906) Kurt August HIRSCH Mathematics is a game played according to 13 W (1876) Luther Pfahler EISENHART certain simple rules with meaningless marks (1876) Erhard SCHMIDT on paper.
    [Show full text]
  • A Bibliography of Collected Works and Correspondence of Mathematicians Steven W
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eCommons@Cornell A Bibliography of Collected Works and Correspondence of Mathematicians Steven W. Rockey Mathematics Librarian Cornell University [email protected] December 14, 2017 This bibliography was developed over many years of work as the Mathemat- ics Librarian at Cornell University. In the early 1970’s I became interested in enhancing our library’s holdings of collected works and endeavored to comprehensively acquire all the collected works of mathematicians that I could identify. To do this I built up a file of all the titles we held and another file for desiderata, many of which were out of print. In 1991 the merged files became a printed bibliography that was distributed for free. The scope of the bibliography includes the collected works and correspon- dence of mathematicians that were published as monographs and made available for sale. It does not include binder’s collections, reprint collec- tions or manuscript collections that were put together by individuals, de- partments or libraries. In the beginning I tried to include all editions, but the distinction between editions, printings, reprints, translations and now e-books was never easy or clear. In this latest version I have supplied the OCLC identification number, which is used by libraries around the world, since OCLC does a better job connecting the user with the various ver- sion than I possibly could. In some cases I have included a title that has an author’s mathematical works but have not included another title that may have their complete works.
    [Show full text]
  • Ernest William Brown 1866-1938
    NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA BIOGRAPHICAL MEMOIRS VOLUME XXI SIXTH MEMOIR BIOGRAPHICAL MEMOIR OF ERNEST WILLIAM BROWN 1866-1938 BY FRANK SCHLESINGER and DIRK BROUWER PRESENTED TO THE ACADEMY AT THE AUTUMN MEETING, 1939 ERNEST WILLIAM BROWN 1866-1938 BY FRANK SCHLESINGER AND DIRK BROUWER Ernest William Brown's forbears on both sides lived at Hull, England, or in its immediate neighborhood. His father's father, William Brown (born 1806) was in early life a sailor, later a ship owner and a ship broker. His father (1837-1893), also named William, was for part of his life a farmer and later a lumber merchant. In 1863 he married Emma Martin (1839- 1870), by whom he had four children, two boys and two girls. Of these Ernest (1866 November 29 to 1938 July 22) was the second oldest. In 1870 a scarlet fever epidemic carried off his mother and his younger brother. Ernest was not quite four years old at this time and he and his two sisters were looked after by a maiden aunt for about five years, when his father married again. When Ernest was six years old he began to attend a day school in Hull. The master was at once impressed by his talent for music and urged his father to let the boy prepare for a musical career. This plan seems to have been given serious consideration; and later Ernest, and his elder sister Ella, studied the piano under the guidance of their step-mother. But later his tastes turned toward mathematics in which he greatly excelled both at the day school and at the Hull and East Riding College.
    [Show full text]
  • The Charles S. Peirce-Simon Newcomb Correspondence
    The Charles S. Peirce-Simon Newcomb Correspondence Carolyn Eisele Proceedings of the American Philosophical Society, Vol. 101, No. 5. (Oct. 31, 1957), pp. 409-433. Stable URL: http://links.jstor.org/sici?sici=0003-049X%2819571031%29101%3A5%3C409%3ATCSPNC%3E2.0.CO%3B2-L Proceedings of the American Philosophical Society is currently published by American Philosophical Society. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/amps.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Tue Mar 11 07:51:41 2008 THE CHARLES S.
    [Show full text]