Downloaded from Brill.Com09/24/2021 10:06:53AM Via Free Access 268 Revue De Synthèse : TOME 139 7E SÉRIE N° 3-4 (2018) Chercheur Pour IBM

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from Brill.Com09/24/2021 10:06:53AM Via Free Access 268 Revue De Synthèse : TOME 139 7E SÉRIE N° 3-4 (2018) Chercheur Pour IBM REVUE DE SYNTHÈSE : TOME 139 7e SÉRIE N° 3-4 (2018) 267-288 brill.com/rds A Task that Exceeded the Technology: Early Applications of the Computer to the Lunar Three-body Problem Allan Olley* Abstract: The lunar Three-Body problem is a famously intractable problem of Newtonian mechanics. The demand for accurate predictions of lunar motion led to practical approximate solutions of great complexity, constituted by trigonometric series with hundreds of terms. Such considerations meant there was demand for high speed machine computation from astronomers during the earliest stages of computer development. One early innovator in this regard was Wallace J. Eckert, a Columbia University professor of astronomer and IBM researcher. His work illustrates some interesting features of the interaction between computers and astronomy. Keywords: history of astronomy – three body problem – history of computers – Wallace J. Eckert Une tâche excédant la technologie : l’utilisation de l’ordinateur dans le problème lunaire des trois corps Résumé : Le problème des trois corps appliqué à la lune est un problème classique de la mécanique newtonienne, connu pour être insoluble avec des méthodes exactes. La demande pour des prévisions précises du mouvement lunaire menait à des solutions d’approximation pratiques qui étaient d’une complexité considérable, avec des séries tri- gonométriques contenant des centaines de termes. Cela a très tôt poussé les astronomes à chercher des outils de calcul et ils ont été parmi les premiers à utiliser des calculatrices rapides, dès les débuts du développement des ordinateurs modernes. Un innovateur des ces années-là est Wallace J. Eckert, professeur d’astronomie à Columbia University et * Allan Olley, born in 1979, he obtained his PhD-degree from the Institute for the History and Philosophy of Science Technology (IHPST), University of Toronto in 2011. His dissertation focused on Computers and Celestial Mechanics in the work of Walace J. Eckert. He is an independent scholar, whose research focuses on the history of computers and celestial mechanics. He has taught on the history of engineering at the University of Toronto, as a sessional lecturer. © fondation « pour la science » & koninklijke brill nv, leiden, 2019 | doi:10.1163/19552343-13900014 Downloaded from Brill.com09/24/2021 10:06:53AM via free access 268 revue de synthèse : TOME 139 7e SÉRIE N° 3-4 (2018) chercheur pour IBM. Ses travaux illustrent des aspects intéressants de l’interaction entre ordinateurs et astronomie. Mots-clés : histoire de l’astronomie – problème des trois corps – histoire de l’ordinateur – Wallace J. Eckert Eine Aufgabe, welche die Technologie übersteigt : Frühe Anwendungen des Computers für das Dreikörperproblems des Mondes Zusammenfassung: Das Dreikörperproblem auf den Mond angewandt ist bekanntlich ein unnachvollziehbarer Aspekt der Newtonschen Mechanik. Die Nachfrage nach präzisen Voraussagen über die Bewegung des Mondes führte zu praktischen Näherungsmethoden grosser Komplexität, die aus trigonometrischen Reihen mit Hunderten von Gliedern bestehen. Es nimmt deshalb nicht Wunder, dass schon von den Anfängen des Computers an, die schnelle Maschinenberechnung von Astronomen beson- ders gefragt war. Wallace J. Eckert, Astronomieprofessor an der Columbia University und Forscher für IBM, war einer der ersten Innovatoren auf diesem Gebiet. Sein Werk zeigt einige interessante Aspekte der Interaktion zwischen Computern und Astronomie auf. Schlagworte: Geschichte der Astronomie – Dreikörperproblem – Geschichte des Computers – Wallace J. Eckert Downloaded from Brill.com09/24/2021 10:06:53AM via free access a. Olley : A Task that Exceeded the Technology 269 ANALYSE ’astronomie entretient depuis toujours une relation étroite avec les mathématiques et le calcul. En particulier, les aspects peu maîtrisables de la mécanique classique, commeL le problème des trois corps, demandent d’énormes calculs approximatifs. La théorie de la lune est un cas particulier de ce problème qui, depuis Newton et sa théorie de gravitation, a donné lieu au développement de nouvelles techniques et algorithmes d’approximation. Au début du XXe siècle, la théorie de Brown-Hill était la théorie la plus perfectionnée. Les équations qu'elle mettait en jeu comportaient toutefois plus de 1400 termes, et leur application au calcul des positions de la lune nécessitait un savoir-faire et une masse de travail extrêmement importants. A travers l’étude de la carrière de Wallace J. Eckert, cet article montre comment l'utili- sation des ordinateurs pour résoudre ce problème a modifié la portée et les objectifs des efforts déployés, tout en insistant sur le rôle majeur qu'ont continué à jouer l'expérience et les pratiques des astronomes dans les choix de méthodes effectués alors. Wallace J. Eckert, un étudiant de Brown, a entrepris dans les années 1930 de reprendre une autre théorie du mouvement de la lune, celle développée par George Bidel Airy à la fin du XIXe siècle. Cette théorie, malheureusement, menait à l’évaluation de séries trigo- nométriques à des centaines de termes. Le calcul de ces séries étant impossible à l’époque, Airy avait abandonné cette théorie, mais Eckert pensait que l’on pouvait la développer plus loin si on utilisait des machines à calculer d’IBM. Dans les années 1930, Eckert a fait une première tentative avec les machines comptables d’IBM, pour l’abandonner ensuite et reprendre le projet en 1957 avec ses assistants Jones et Smith. Eckert a d’abord utilisé un IBM 650, puis un IBM 701 et finalement un IBM 7090 transistorisé. Le problème néces- sitait de résoudre quelques 3000 équations à 3000 inconnus. La quantité des calculs les ont ainsi poussé à utiliser des méthodes subtiles et logiquement complexes comme des méthodes de relaxation pour inverser des matrices de dimensions 300×300. Les résul- tats du projet n’ont été publiés qu’après la mort d’Eckert, dans les années 1970 par Harry Smith. En revanche, Eckert avait commencé vers la fin de sa vie à perfectionner et à amé- liorer la théorie de Brown-Hill, en utilisant des ordinateurs IBM 1620 et IBM 360. Après sa mort en 1971, ce projet a été poursuivi jusqu’en 1979, quand il est devenu apparent que le schéma de calcul fait par Eckert entraînait des marges d’erreurs supérieures à d‘autres projets qui calculaient les mouvement de la lune. Cette étude de cas met ainsi en lumière la manière dont les théories et les méthodes de calcul sont adaptées au fur et à mesure que la technologie se développe. Même si une théo- rie semble impossible à calculer de manière concrète à une époque donnée, elle peut l'être quelques décennies plus tard. Cette accélération dans le calcul change profondément les attitudes des astronomes : alors que l'élaboration d'une théorie de la lune était aupara- vant l'œuvre de toute une vie, un astronome pouvait espérer, au XXe siècle, développer et tester différentes approches au cours de sa carrière. Downloaded from Brill.com09/24/2021 10:06:53AM via free access 270 revue de synthèse : TOME 139 7e SÉRIE N° 3-4 (2018) Mais les travaux d’Eckert pour résoudre le problème des trois corps par ordinateur montrent également que ses choix et ses approches du problème ne dépendaient pas uni- quement de la puissance informatique dont il disposait. Ses travaux reposaient plutôt sur le répertoire des techniques développées par les astronomes ayant travaillé sur ce pro- blème avant lui, et étaient guidés par des valeurs esthétiques et des jugements imprégnés de cette tradition. En soulignant l’importance de cet héritage et le rôle des contingences historiques, cet article nous rappelle que ce ne sont les hommes, et non les ordinateurs, qui décident de la manière dont les équations seront résolues et que, pour ce faire, ils doivent exploiter pleinement le patrimoine mathématique et intellectuel dont ils disposent. Les travaux d‘Eckert montrent comment les théories et les méthodes de calcul sont adaptées au fur et à mesure que la technologie se développe. Même si une théorie semble impossible à calculer de manière concrète à une époque donnée, elle peut l‘être quelques décennies plus tard. Cette accélération dans le calcul change profondément les attitudes des astronomes. Downloaded from Brill.com09/24/2021 10:06:53AM via free access a. Olley : A Task that Exceeded the Technology 271 ince its beginnings in Antiquity, astronomy has had a special relationship with mathematical computing. Astronomy has sometimes acted as a catalyst leading toS innovation in computing practices, think of tables of logarithms or Schickhard’s calculating machines in the 17th century.1 Conversely, new computing practices have helped to verify existing theories or have even led to better or improved astronomical models. There are numerous problems in classical mechanics that are of direct practi- cal interest in astronomy that cannot easily or directly be derived and calculated, but must laboriously be worked upon and approximated through many exacting compu- tations. One classical example is the three body problem in astronomy that consists of finding a general expression for the trajectory of three celestial bodies in mutual gravitational attraction. Unlike the two body problem that admits of various ready solutions, such as the famous Kepler ellipses for the sun and the earth, the three body problem is famously intractable with no definitive solution for the general case and this has made it the focus of a great deal of intellectual effort. The first manifestation of these difficulties was Newton’s attempts to use his theory of gravity to derive adequate predictions of the motion of the Moon. The labour of analyzing the Moon’s motion under gravity was so difficult that it reputedly gave him headaches, and the explana- tion of several elements of the Moon’s motion eluded Newton.2 In the 18th century, research into lunar theory drew reputed mathematicians such as Euler, Clairaut and T. Mayer to compute and recompute lunar tables using observational data and devel- oping and reformulating theories of the moon’s motions, while testing new computing procedures to master the imposing calculations.3 In this paper I will show how when computers were employed in the solution of this problem they changed the scope and goals of efforts.
Recommended publications
  • Wallace Eckert
    Wallace Eckert Nakumbuka Dk Eckert aliniambia, "Siku moja, kila mtu atakuwa na kompyuta kwenye dawati lao." Macho yangu yalifunguka. Hiyo lazima iwe katika miaka mapema ya 1950’s. Aliona mapema. -Eleanor Krawitz Kolchin, mahojiano ya Huffington Post, Februari 2013. Picha: Karibu 1930, Jalada la Columbiana. Wallace John Eckert, 1902-1971. Pamoja na masomo ya kuhitimu huko Columbia, Chuo Kikuu cha Chicago, na Yale, alipokea Ph.D. kutoka Yale mnamo 1931 chini ya Profesa Ernest William Brown (1866-1938), ambaye alitumia kazi yake katika kuendeleza nadharia ya mwongozo wa mwezi. Maarufu zaidi kwa mahesabu ya mzunguko wa mwezi ambayo yaliongoza misheni ya Apollo kwenda kwa mwezi, Eckert alikuwa Profesa wa Sayansi ya Chuo Kikuu cha Columbia kutoka 1926 hadi 1970, mwanzilishi na Mkurugenzi wa Ofisi ya Taasisi ya Taaluma ya Thomas J. Watson katika Chuo Kikuu cha Columbia (1937-40), Mkurugenzi wa Ofisi ya Amerika ya US Naval Observatory Nautical Almanac (1940-45), na mwanzilishi na Mkurugenzi wa Maabara ya Sayansi ya Watson ya Sayansi katika Chuo Kikuu cha Columbia (1945-1966). Kwanza kabisa, na daima ni mtaalam wa nyota, Eckert aliendesha na mara nyingi alisimamia ujenzi wa mashine za kompyuta zenye nguvu kusuluhisha shida katika mechanics ya mbinguni, haswa ili kuhakikisha, kupanua, na kuboresha nadharia ya Brown. Alikuwa mmoja wa kwanza kutumia mashine za kadi za kuchomwa kwa suluhisho la shida tata za kisayansi. Labda kwa maana zaidi, alikuwa wa kwanza kusasisha mchakato wakati, mnamo 1933-34, aliunganisha mahesabu na kompyuta za IBM kadhaa na mzunguko wa vifaa na vifaa vya muundo wake ili kusuluhisha usawa wa aina, njia ambazo baadaye zilibadilishwa na kupanuliwa kwa IBM ya "Aberdeen "Calculator inayoweza kupatikana ya Udhibiti wa Mpangilio, Punch Kuhesabu elektroniki, Calculator ya Kadi iliyopangwa, na SSEC.
    [Show full text]
  • Dirk Brouwer
    NATIONAL ACADEMY OF SCIENCES D I R K B R O U W ER 1902—1966 A Biographical Memoir by G . M . C LEMENCE Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1970 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. DIRK BROUWER September 1, 1902-January 31, 1966 BY G. M. CLEMENCE IRK BROUWER, who contributed more to dynamical astron- D omy than any other astronomer of his time, died on January 31, 1966, after a week in hospital; his death was occa- sioned by an acute disorder of the heart. He is survived by his widow and an only son, James. Brouwer was born in Rotterdam, the Netherlands, on September 1, 1902, the son of a civil service employee. As a stu- dent in the University of Leiden he studied mathematics and astronomy, coming under the influence of Willem de Sitter, who in his own day was the dean of that branch of astronomy in which Brouwer was to do most of his work. Receiving the Ph.D. degree in 1927 under de Sitter, Brouwer came to the United States as a fellow of the International Education Board, spending a year at the University of California in Berkeley and at Yale University, where he was to remain the rest of his life. His initial appointment at Yale was in 1928 as research as- sistant to Ernest W. Brown, who was then the greatest living authority on the motion of the moon.
    [Show full text]
  • EJC Cover Page
    Early Journal Content on JSTOR, Free to Anyone in the World This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR. Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries. We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes. Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early- journal-content. JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact [email protected]. PUBLICATIONS OF THE AstronomicalSociety of the Pacific. Vol. XXI. San Francisco, California, April 10, 1909. No. 125 ADDRESS OF THE RETIRING PRESIDENT OF THE SOCIETY, IN AWARDING THE BRUCE MEDAL TO DR. GEORGE WILLIAM HILL. By Charles Burckhalter. The eighthaward of the BruceGold Medal of thisSociety has beenmade to Dr. GeorgeWilliam Hill. To thosehaving understanding of the statutes,and the methodgoverning the bestowal of the medal,it goes without sayingthat it is always worthilybestowed.
    [Show full text]
  • Moon-Earth-Sun: the Oldest Three-Body Problem
    Moon-Earth-Sun: The oldest three-body problem Martin C. Gutzwiller IBM Research Center, Yorktown Heights, New York 10598 The daily motion of the Moon through the sky has many unusual features that a careful observer can discover without the help of instruments. The three different frequencies for the three degrees of freedom have been known very accurately for 3000 years, and the geometric explanation of the Greek astronomers was basically correct. Whereas Kepler’s laws are sufficient for describing the motion of the planets around the Sun, even the most obvious facts about the lunar motion cannot be understood without the gravitational attraction of both the Earth and the Sun. Newton discussed this problem at great length, and with mixed success; it was the only testing ground for his Universal Gravitation. This background for today’s many-body theory is discussed in some detail because all the guiding principles for our understanding can be traced to the earliest developments of astronomy. They are the oldest results of scientific inquiry, and they were the first ones to be confirmed by the great physicist-mathematicians of the 18th century. By a variety of methods, Laplace was able to claim complete agreement of celestial mechanics with the astronomical observations. Lagrange initiated a new trend wherein the mathematical problems of mechanics could all be solved by the same uniform process; canonical transformations eventually won the field. They were used for the first time on a large scale by Delaunay to find the ultimate solution of the lunar problem by perturbing the solution of the two-body Earth-Moon problem.
    [Show full text]
  • Council Congratulates Exxon Education Foundation
    from.qxp 4/27/98 3:17 PM Page 1315 From the AMS ics. The Exxon Education Foundation funds programs in mathematics education, elementary and secondary school improvement, undergraduate general education, and un- dergraduate developmental education. —Timothy Goggins, AMS Development Officer AMS Task Force Receives Two Grants The AMS recently received two new grants in support of its Task Force on Excellence in Mathematical Scholarship. The Task Force is carrying out a program of focus groups, site visits, and information gathering aimed at developing (left to right) Edward Ahnert, president of the Exxon ways for mathematical sciences departments in doctoral Education Foundation, AMS President Cathleen institutions to work more effectively. With an initial grant Morawetz, and Robert Witte, senior program officer for of $50,000 from the Exxon Education Foundation, the Task Exxon. Force began its work by organizing a number of focus groups. The AMS has now received a second grant of Council Congratulates Exxon $50,000 from the Exxon Education Foundation, as well as a grant of $165,000 from the National Science Foundation. Education Foundation For further information about the work of the Task Force, see “Building Excellence in Doctoral Mathematics De- At the Summer Mathfest in Burlington in August, the AMS partments”, Notices, November/December 1995, pages Council passed a resolution congratulating the Exxon Ed- 1170–1171. ucation Foundation on its fortieth anniversary. AMS Pres- ident Cathleen Morawetz presented the resolution during —Timothy Goggins, AMS Development Officer the awards banquet to Edward Ahnert, president of the Exxon Education Foundation, and to Robert Witte, senior program officer with Exxon.
    [Show full text]
  • A Task That Exceeded the Technology: Early Applications of the Computer to the Lunar Three-Body Problem *
    A task that exceeded the technology: early applications of the computer to the lunar three-body problem * Allan Olley Abstract: The lunar Three-Body problem is a famously intractable aspect of Newto- nian mechanics. The demand for accurate predictions of lunar motion led to practical ap- proximate solutions of great complexity, constituted by trigonometric series with hundreds of terms. Such considerations meant there was demand for high speed machine computation from astronomers during the earliest stages of computer development. One early innovator in this regard was Wallace J. Eckert, a Columbia University professor of astronomer and IBM researcher. His work illustrates some interesting features of the interaction between computers and astronomy. Keywords: history of astronomy, three body problem, history of computers, W. J. Eckert *This is the submitted (ie unreviewed) version of this article, which appears in its official version at Revue de Synth`ese, Vol. 139, iss. 3-4, pp. 267-288 DOI: 10.1163/19552343-13900014 . Allan Olley, born in 1979, is an independent scholar, whose research focuses on the history of computers and celestial mechanics. ([email protected]) 1 The three body problem in astronomy consists of finding a general expression for the trajectory of three celestial bodies in mutual gravitational attraction. Unlike the two body problem that admits of a ready solution, the three body problem is famously intractable with no definitive solution for the general case and this has made it the focus of a great deal of intellectual effort. The first manifestation of these difficulties was Newton's attempts to use his theory of gravity to derive adequate predictions of the motion of the Moon.
    [Show full text]
  • Pre-Med-Law Dance Slated Monday
    SOPHOMORE EDITION STUDENT WEEKLY PUBLICATION RICE INSTITUTE VOL. 16 HOUSTON, TEXAS, FRIDAY. APRIL 17, 1931 NO. 27 PHI BETA KAPPA TOUOLD BANQUET Political Cannons Open Fire » * * » * * + Hi # * '.it i|: * -t- :ti IK * * * * * * * * * * * >i' 'H * « * lit * sT sir * sfi * >|t NEXT WEDNESDAY PETITIONS OF TEN Election of New Senate and PRE-MED-LAW DANCE SLATED MONDAY MORE STUDENTS ARE Governors' Board Scheduled RECEIVED IN R A C E WILEY GEORGE AS THE THRESHER SEES IT FRED GARDNER WILL T11P B411BT „„ r.„ 'itiitmuiii iiimuiiuti THE BALL0T so FAR: Election of a new Senate and a The Thresher has been questioned as to what policy it will have in PLAY FOR AFFAIR AT Between 600 and 700 Votes complete board of governors will be regard to the forthcoming spring elections. It is stated: i DIVED AAITC C| AAD held Wednesday, April 22, at 0 p.m. in For President of the Student Asso- Expected at Election The Thresher will support NO individual candidate. Being a AlvJuIY UfmlYu aLUUll ciation: Jack Scott, Packard Barton, the Faculty Chamber by the Rice Beta On May 4 newspaper of all the students, and not for any particular student, _rt- Reuben Albaugh. chapter of Phi Beta Kappa, it was an- For Vice President of the Student The Thresher feels it would be decidedly unfair to favor one student I Stiffness To Be Taboo at iipO >00 -vutvs Vx- nounced Friday. against another, when each student should have the right of equa ' Association: Helen Forester, Carmen A banquet for all members of Phi Last Big Dance of Season Lewis, Mary Hutton, Marian Mo)linger, pWlcd ti>.
    [Show full text]
  • View This Volume's Front and Back Matter
    Titles in This Series Volume 8 Kare n Hunger Parshall and David £. Rowe The emergenc e o f th e America n mathematica l researc h community , 1876-1900: J . J. Sylvester, Felix Klein, and E. H. Moore 1994 7 Hen k J. M. Bos Lectures in the history of mathematic s 1993 6 Smilk a Zdravkovska and Peter L. Duren, Editors Golden years of Moscow mathematic s 1993 5 Georg e W. Mackey The scop e an d histor y o f commutativ e an d noncommutativ e harmoni c analysis 1992 4 Charle s W. McArthur Operations analysis in the U.S. Army Eighth Air Force in World War II 1990 3 Pete r L. Duren, editor, et al. A century of mathematics in America, part III 1989 2 Pete r L. Duren, editor, et al. A century of mathematics in America, part II 1989 1 Pete r L. Duren, editor, et al. A century of mathematics in America, part I 1988 This page intentionally left blank https://doi.org/10.1090/hmath/008 History of Mathematics Volume 8 The Emergence o f the American Mathematical Research Community, 1876-1900: J . J. Sylvester, Felix Klein, and E. H. Moor e Karen Hunger Parshall David E. Rowe American Mathematical Societ y London Mathematical Societ y 1991 Mathematics Subject Classification. Primary 01A55 , 01A72, 01A73; Secondary 01A60 , 01A74, 01A80. Photographs o n th e cove r ar e (clockwis e fro m right ) th e Gottinge n Mathematisch e Ges - selschafft, Feli x Klein, J. J. Sylvester, and E. H. Moore.
    [Show full text]
  • 1954-06-06 University of Notre Dame Commencement Program
    One Hundred Ninth Annual Commencement JUNE ExERCISES THE UNIVERSITY OF NOTRE DAME NoTRE DAME, INDIANA THE GRADUATE ScHOOL THE CoLLEGE OF ARTS AND LETTERS THE COLLEGE OF SCIENCE THE COLLEGE OF ENGINEERING THE CoLLEGE oF LAw THE CoLLEGE OF CoMMERCE In the University Stadium At 2:00p.m. (Central Daylight Time) June 6, 1954 PROGRAM Processional The Conferring of Degrees, by the Rev. Theodore M. Hesburgh, C.S.C., President of the University I ! Commencement Address, l l 1 by James Rhyne Killian, Jr., President of Massachusetts Institute of Technology The Blessing, by the Most Rev. Allen J. Babcock, I Bishop of Grand Rapids I National Anthem \ i Recessional l j Degrees Conferred The University of Notre Dame announces the conferring of: The Degree of Doctor of Laws, honoris causa, on: Most Reverend Allen J. Babcock, of Grand Rapids, Michigan Mr. Harold S. Vance, of South Bend, Indiana Honorable Ernest E. L. Hammer, of New York City Mr. Thomas W. Pangborn, Hagerstown, Maryland The Degree of Doctor of Literature, honoris causa, on: Mr. Samuel Eliot Morison, of Cambridge, Massachusetts The Degree of Doctor of Science, honoris causa, on: Mr. James Rhyne Killian, Jr., of Cambridge, Massachusetts IN THE GRADUATE SCHOOL The University of Notre Dame confers -the following degrees in course: The Degree of Doctor of Philosophy on: Clifford Scott Barker, Pittsburgh, Pennsylvania B.S., Carnegie Institute of Technology, 1948; M.S., University of Notre Dame, 1952. Major subject: Metallurgy. Dissertation: Study of the Kinetics of Order-Disorder Transformations. 3 Joseph Ming-shun Chiao, Hopie, China B.A., Catholic University of Peking (China}, 1939; M.A., Ibid., 1942.
    [Show full text]
  • RM Calendar 2013
    Rudi Mathematici x4–8220 x3+25336190 x2–34705209900 x+17825663367369=0 www.rudimathematici.com 1 T (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose (1912) Boris Gnedenko 2 W (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 F (1643) Isaac Newton RM071 5 S (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 1998-A1 (1871) Federigo Enriques RM084 (1871) Gino Fano A right circular cone has base of radius 1 and height 3. 6 S (1807) Jozeph Mitza Petzval A cube is inscribed in the cone so that one face of the (1841) Rudolf Sturm cube is contained in the base of the cone. What is the 2 7 M (1871) Felix Edouard Justin Emile Borel side-length of the cube? (1907) Raymond Edward Alan Christopher Paley 8 T (1888) Richard Courant RM156 Scientists and Light Bulbs (1924) Paul Moritz Cohn How many general relativists does it take to change a (1942) Stephen William Hawking light bulb? 9 W (1864) Vladimir Adreievich Steklov Two. One holds the bulb, while the other rotates the (1915) Mollie Orshansky universe. 10 T (1875) Issai Schur (1905) Ruth Moufang Mathematical Nursery Rhymes (Graham) 11 F (1545) Guidobaldo del Monte RM120 Fiddle de dum, fiddle de dee (1707) Vincenzo Riccati A ring round the Moon is ̟ times D (1734) Achille Pierre Dionis du Sejour But if a hole you want repaired 12 S (1906) Kurt August Hirsch You use the formula ̟r 2 (1915) Herbert Ellis Robbins RM156 13 S (1864) Wilhelm Karl Werner Otto Fritz Franz Wien (1876) Luther Pfahler Eisenhart The future science of government should be called “la (1876) Erhard Schmidt cybernétique” (1843 ).
    [Show full text]
  • Rudi Mathematici
    Rudi Mathematici x4-8188x3+25139294x2-34301407052x+17549638999785=0 Rudi Mathematici January 53 1 S (1803) Guglielmo LIBRI Carucci dalla Sommaja Putnam 1999 - A1 (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE Find polynomials f(x), g(x), and h(x) _, if they exist, (1912) Boris GNEDENKO such that for all x 2 S (1822) Rudolf Julius Emmanuel CLAUSIUS f (x) − g(x) + h(x) = (1905) Lev Genrichovich SHNIRELMAN (1938) Anatoly SAMOILENKO −1 if x < −1 1 3 M (1917) Yuri Alexeievich MITROPOLSHY 4 T (1643) Isaac NEWTON = 3x + 2 if −1 ≤ x ≤ 0 5 W (1838) Marie Ennemond Camille JORDAN − + > (1871) Federigo ENRIQUES 2x 2 if x 0 (1871) Gino FANO (1807) Jozeph Mitza PETZVAL 6 T Publish or Perish (1841) Rudolf STURM "Gustatory responses of pigs to various natural (1871) Felix Edouard Justin Emile BOREL 7 F (1907) Raymond Edward Alan Christopher PALEY and artificial compounds known to be sweet in (1888) Richard COURANT man," D. Glaser, M. Wanner, J.M. Tinti, and 8 S (1924) Paul Moritz COHN C. Nofre, Food Chemistry, vol. 68, no. 4, (1942) Stephen William HAWKING January 10, 2000, pp. 375-85. (1864) Vladimir Adreievich STELKOV 9 S Murphy's Laws of Math 2 10 M (1875) Issai SCHUR (1905) Ruth MOUFANG When you solve a problem, it always helps to (1545) Guidobaldo DEL MONTE 11 T know the answer. (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR The latest authors, like the most ancient, strove to subordinate the phenomena of nature to the laws of (1906) Kurt August HIRSCH 12 W mathematics.
    [Show full text]
  • RM Calendar 2010
    Rudi Mathematici x4-8208x3+25262264x2-34553414592x+17721775541520=0 Rudi Mathematici January 1 F (1894) Satyendranath BOSE 4th IMO (1962) - 1 (1878) Agner Krarup ERLANG (1912) Boris GNEDENKO Find the smallest natural number with 6 as (1803) Guglielmo LIBRI Carucci dalla Sommaja the last digit, such that if the final 6 is moved 2 S (1822) Rudolf Julius Emmanuel CLAUSIUS to the front of the number it is multiplied by (1938) Anatoly SAMOILENKO 4. (1905) Lev Genrichovich SHNIRELMAN Gauss Facts (Heath & Dolphin) 3 S (1917) Yuri Alexeievich MITROPOLSHY 1 4 M (1643) Isaac NEWTON RM071 Gauss can trisect an angle with a straightedge 5 T (1871) Federigo ENRIQUES RM084 and compass. (1871) Gino FANO Gauss can get to the other side of a Möbius (1838) Marie Ennemond Camille JORDAN strip. 6 W (1807) Jozeph Mitza PETZVAL (1841) Rudolf STURM From a Serious Place 7 T (1871) Felix Edouard Justin Emile BOREL Q: What is lavender and commutes? (1907) Raymond Edward Alan Christopher PALEY A: An abelian semigrape. 8 F (1924) Paul Moritz COHN (1888) Richard COURANT The description of right lines and circles, upon (1942) Stephen William HAWKING which geometry is founded, belongs to 9 S (1864) Vladimir Adreievich STELKOV mechanics. Geometry does not teach us to 10 S (1905) Ruth MOUFANG draw these lines, but requires them to be (1875) Issai SCHUR drawn. 2 11 M (1545) Guidobaldo DEL MONTE RM120 Isaac NEWTON (1734) Achille Pierre Dionis DU SEJOUR (1707) Vincenzo RICCATI 12 T (1906) Kurt August HIRSCH Mathematics is a game played according to 13 W (1876) Luther Pfahler EISENHART certain simple rules with meaningless marks (1876) Erhard SCHMIDT on paper.
    [Show full text]