<<

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

i I Illlll !••!• II11 iiiP »'••! HB" •• "i" im'-' -- - *DE011795234*

EXPERIMENTS AT CERN IN 1997

GENEVA ISSN 0259-093X NOVEMBER 1997 INiS-DE-0024 The picture on the cover page shows a central collision of a Lead projectile with a Lead nucleus as recorded by the four large volume Time Projection Chambers (TPCs) of the NA49 fixed target Experiment. The 150 GeV per nucleon 208Pb beam from the SPS (total energy 32.8 TeV), coming from the lower left in the picture, interacts with the target 80 cm in front of the first TPC. For momentum determination the first two TPCs are placed inside superconducting magnets of 1.5 and 1.1 T field strength.

Over 80% of the 2000 charged particles created in central events produce tracks in the sensitive volume of the detectors. Their ionization drifts up to the readout chambers, shown as small rectangles, on the top of the detectors. A total of 182,000 readout pads record 512 time samples each of the drifting ionization. Space points, shown here is red, are reconstructed into tracks, purple, and matched over the different TPCs to global tracks, yellow, of up to 14 m length with an accuracy better than 200 microns. The specific ionization for long tracks is determined with better than 4% resolution, permitting particle identification in the relativistic rise.

The aim of the experiment is to study the non-perturbative QCD processes leading to the production and decay of the large partonic systems formed in central Pb+Pb collisions, reaching energy densities of 20 times normal nuclear density for a brief instant of time.

li INTRODUCTION

This book summarises the current experimental programme at CERN. The experiments listed are taking place at one of the following machines: the Large Electron Positron Collider (LEP), the Super Proton Synchrotron (SPS), the 28 GeV Proton Synchrotron (PS), including the Antiproton Decelerator(AD) for slow antiprotons and the ISOLDE facility for short-lived ions. The three experiments now approved for installation at the Large Collider (LHC) and the R&D projects aimed at the development of new defector technologies and data acquisition systems for the LHC experiments are also listed. ~

The experimental programme is established by the Director-General of CERN on the advice of the Research Board. The latter acts on recommendations made by the Experiment Committees which are the SPSC, the LEPC, the ISC and the LHCC. The composition of the Research Board and of the Experiment Committees as of 1st November 1997 is given in Tables 1-5.

Schematic layouts of the experimental areas and of the beam lines at the different machines appear at the beginning of the report. Each experiment, with the exception of the LEP and LHC experiments, is identified by a code consisting of a few characters (denoting the machine and the area) and a serial number. For some experiments a mnemonic has been adopted to facilitate its identification. The 1997 schedules for the experiments at the accelerators are also included.

For each experiment there is a brief description (usually with a figure) together with the list of the participants and of the collaborating institutes. The names of the scientific spokesman and contactman, the approval date(s) and references to the relevant Committee documents are also given. The status of the experiments (preparation/data taking/completed) and of the R&D projects (in progress/completed) corresponds to the situation at the end of 1997. The "completed" status means that data-taking has finished but since the analysis will still be going on, an experiment continues to appear in this book for another two years beyond the completion date. The list of experiments approved (or extended) since January 1994 with approval and completion dates can be found in the last pages, as well as the list of the Universities, Research Institutes, and Industrial Firms in alphabetical order by city (Table 1) and by country (Table 2). The complete list of experiments going back to 1974 (as appeared in earlier editions ) is still available on request. The information concerning experiments is provided by the teams themselves (Spokesmen and Contactmen), it is updated by them once a year and is given under their responsibility. This book is not an official CERN document; the Minutes of the Research Board and of the Experiment Committees are the appropriate official references.

Mrs Maire Doran deserves all the credit for collecting and preparing the material for this year's book and since the work is to be taken over by others, it is also the moment to thank her warmly for the care and devotion she has given to all of the nine editions of the Grey Book which have been published since she was first asked to take charge of it's preparation.

Until the new organisation for the Book has been put in place, requests for further information, for comments and for possible corrections should be sent to myself.

Brian Powell.

in CONTENTS

INTRODUCTION iii

Table 1. Membership of the Research Board 1 Table 2. Membership of the SPSC 2 Table 3. Membership of the LEPC 3 Table 4. Membership of the ISC 4 Table 5. Membership of the LHCC 5 List of SPS Beams North Area 6 West Area 7 Layout of SPS Experimental Areas 8 West Area 9 North Area 10 1997 SPS fixed Target Programme 11 1997 SPS Schedule 12 List of PS Beams East Area 13 Layout of PS Accelerator Complex 14 East Area 15 1997 PS Fixed Target Programme 16 1997 PS Complex Schedule 17 Layout of LEP Experiments 18 1997 LEP Schedule 19 Layout of ISOLDE Experimental Area 20 ISOLDE Beams 21 1997 ISOLDE Schedule 22 Current experiments listed in this book 23 Status of the SPS Programme 33 Status of the PS Programme 131 Status of the AD Programme 175 Status of the ISOLDE Programme 189 Status of the LEP Programme 309 Status of the LHC Programme 337 Status of the R&D Programme 377 List of all experiments approved since January 1994 461 List of all Participating Universities/Research 491 Institutes/Industrial Firms since 1974

IV TABLE 1 MembershiD of the Research Board (1997)

CERN C.H. Llewellyn Smith (Chairman) Directorate L. Evans L.Foa K. Hiibner H. Wenninger

Experiments Committees E. Iarocci (LHCC) B. D'Almagne (SPSC) P. Zerwas (LEPC) A. Richter (ISC)

Leaders of the G. Goggi (PPE) Research & Accelerator D.J. Simon (PS) Divisions A. De Rujula (TH) K.-H. Kissler (SL) M. Turala (ECP) J.May (IT) J.P. Gourber (LHC)

Outside Members C. Jarlskog (Univ. of Lund) R. Klanner (DESY Hamburg)

Board Secretary Massimiliano Ferro-Luzzi

Staff Association Observer S. Weisz

The following Physics Co-ordinators are present during discussion of the relevant agenda points:

Physics Co-ordinators

P. Wells (LEP) E. Tsesmelis (PS/SPS) D. Forkel-Wirth (ISOLDE) TABLE 2

Membership of the SPS and PS Experiments Committee (1997)

(SPSC)

B. D'Almagne (Chairman) D. Drijard (Secretary)

Members

P. Bagnaia J.P. Blaizot W. Braunschweig M. Cavalli-Sforza B. Gavela K. Green J.-F. Grivaz K. Jakobs B. Koene K. Königsmann M. Pennington L. Ristori J. Stachel M. Tyndel G. Wilquet A. Zalewska

Ex-off icio Members

L. Foà G.Goggi P. Grafström K. Hübner D. Jacobs K.-H. Kissler R. Landua C.H. Llewellyn Smith M. Neubert J.-P. Riunaud D.J. Simon M. Turala H. Wenninger

E. Tsesmelis (SPS and PS Co-ordinator) TABLE 3

Membership of the LEP Experiments Committee (1997)

(LEPC)

Zerwas, P. (Chairman) J. Kirkby (Secretary)

Members

S. Bethke J. Dainton J. Drees F. Gasparini Per. O. Hulth W. Lohrmann T. Lohse R. Marshall T. Müller S. Pokorski Y. Sirois I. Videau

Ex-off icio Members

L. Foà G. Goggi K. Hübner G. Kantardjian K.-H. Kissler C.H. Llewellyn Smith M. Mangano J.May S. Myers J. Panman M. Turala H. Wenninger

P. Wells (LEP Co-ordinator) TABLE 4

Membership of the ISOLDE Committee (1997)

(ISO

A. Richter (Chairman) J. Eades (Secretary)

Members

C.A.J. Ammerlaan D.Fick W. Gelletly D.Habs G. Sletten F.-K. Thielemann

Ex-off icio Members

G. Bollen L. Foa G.Goggi K. Peach H. Ravn J.-P. Ruinaud C.H. Llewellyn Smith D. Simon

D. Forkel-Wirth (ISOLDE Co-ordinator) TABLE 5

Membership of the LHC Experiments Committee (1997)

LHCC

E. Iarocci (Chairman) D.M. Sendall (Secretary)

Members

B. Adeva J. Carr J.J. Engelen A. Ereditato B. Foster D.L. Hartills M. Kasmann R.D. Kephart H. Kolanoski S. Komamiya M. Mazzucato N.A. McCubbin A.L. Read A. Rostovtsev A. Schwarz P. Sharp M. Spiro

Ex-officio Members

G. Altarelli L. Evans L. Foà G. Goggi C.H. Llewellyn Smith J.May K. Potter G. Rolandi M. Turala H. Wenninger

E. Tsesmelis (SPS/PS Coordinator) LIST OF SPS BEAMS

1A. BEAMS IN THE NORTH AREA (Situation for 1997)

Beam Maximum Intensity of beam for 1012 Beam name momentum incident protons at 450 GeV/c Type (GeV/c)

H2 400 91077i+ at 200GeV/c 1) high energy hadron or 3107 n- at 200 GeV/c electron beam (also used ! 6 ± i 410 e at 150GeV/c as test beam); i -105 Pb at 158GeV/A * 2) heavy ion beam

H4 375 ~ n+s] fluxes similar to H2 1) high energy hadron or e+ / electron beam; 450 ~107pat450GeV/c 2) attenuated primary proton beam; -5X106 Pbatl58GeV/A* 3) heavy ion beam

H6 205 1 108 n+ at 150 GeV/c medium energy hadron or 4107 % at 150GeV/c electron beam, also used to produce tertiary test beams

H8 450 -106 p at 450GeV/c 1) attenuated primary p or 2 108 n+ at 200 GeV/c high energy hadron or 7107 re' at 200GeV/c electron beam; also used for tertiary test beams ~106 Pb at 158 GeV/A * 2) heavy ion beam

M2 225 2 107 n+ at +100 GeV/c high intensity (polarized) 3106 \T at -200GeV/c muonbeam

P41/P61 450 <10npat450GeV/c primary beam, used to transport: 1) attenuated primary proton beam from T4/T6, <5 107Pbatl58GeV/A * 2) high intensity heavy ion beam via T6 to high intensity area ECN3

P42 450 1.51012pat450GeV/c primary beam from T4, used to 7 + K12 -^~110 K£ (>50GeV/c) produce simultaneous K° and Ksj 3.0107pat450GeV/c beam, (alternate with P41/P61). -.~2102K°s (>50GeV/c)

208Pb82+ LIST OF SPS BEAMS

IB. BEAMS IN THE WEST AREA (Situation for 1997)

Beam Maximum Intensity of beam for 1012 Beam name momentum incident protons at 450 GeV/c Type

H3 250 ~ lO8** at250GeV/c 1) hadron or electron beam; „ id7*' at250GeV/c serves to produce test K^e at250GeV/c beams X5,X7

X5 250 K^-IO4 tertiaries/ test beam: 107 incident H3 particles electrons+ < 106 secondaries +muons

X7 100 K^-IO4 tertiaries / test beam: tertiary 107 incident H3 particles electrons + hadrons

2. BEAMS IN THE WEST AREA NEUTRINO FACILITY

Beam Parent Intensity of beam Beam name momentum Type

Nl 450 25 x 1010 v/m2/1013 inc. protons Broad band 1.3 x lO^v/mfylO13 inc. protons neutrino beam (For 1.44 x 1.44 m2 fiducial) LIU AC

at lit

oo

THE SPS AND ITS EXPERIMENTAL AREAS ••>«.,• ..>.». I 107) iOM oF •:

m SO EHW1 to o

SPS WEST EXPERIMENTAL AREA (Sttuatlon for 1997) TARGET ZONE (TCC 2) H4 HALL EHN1 (see detail) H6 H8 HALL ECN 3

P42/P62-1-T10

0 SO 100 ISO 200 250 m GENERAL LAYOUT

RD19 ALICE NA52 0 10 20 30 40 SO m H6A

DETAIL OF HALL EHN1 SPS NORTH EXPERIMENTAL AREA (Situation for 1997) HDD? 1997 SPS Fixed Target Programme Colour convention: purple (dark shading) = not yet allocated ; yellow (light shading) = not allocatable or Machine Developmen t

P1A P1B P2A P3A P3B P3C

17 18 28 20 21 26 3 Apr 24 Apr 4 Aug 3 Sep 24 Sep 15Oct 21 Apr 13 May 1 Sep 24 Sep 15Oct 10NOV

SPS WA95/WA96. : WA95/WA96 \ \ • \ T9-N1 Setup 36 \ 94: ; \ | ; \ 10 RD 3MS. RD NA CMS SPS set CMS WA96 j NA58 CMS RD NA58 BETS ZEUSJ NA58 DMS Setup up track track 42 track track 42 58 track T1 -X5 8 12 8 8 5 10 5 11 7 5 6 ' 7 6 7 11 ATLAS CMS ATLAS SPS sc}Rip CMS Mu T1 -GIF Setup Mu : MU 36 : 33 10 15 ; 20 '• ! 25 LHC DEL LHC DEL LHC! DEL LHC SPS VW\95 § Ba DEL Ba PHI PHI T1 -X? Setup Bar PHI Bar B PHI B B I 12 1 7 4 : 20 10 14 7 6 6 9 25 : 20 : > CMS SPS 4A48 NA43 CMS CMS CMS CMS CMS CMS ; ! NA49 I T2-H2 Setup &KS CSC. CSC HE-CSC RPC DT RPC; si 4 10 17 : 13 10 10 11 9 8 5 SPS

ATLAS 1 ATLAS ATLAS ATLAS ATLAS vn. ATLAS SPS AS <\TLAS ATLAS ATLAS ATLAS ATLAS Tile mu SCT T4-H8 Setup mu SCT SC;T : mu TRT mu SCT TRT Tile 10 5 6 : c 18 2 6 7 25 13 7 7 13 11 NA50i SPS NA50 I NA48. NA48: ; : Setup T4 ! T4-P0 76 ;; 10 12 2 13 18

SPS NA58 NA58 SIA58 5:K NJA58 NAM

""""•" .''.'..-.-.--• .-.-••••••••• Setup optic Det Det Det T6-M2 4 : ;: 8 9 10 24 - -": •-•• "V.Z:;X:T"-•-"•-• --"-: -'• 6

N1: P301 and M594 parasitic to WA95/WA96. SPS/PS-Coordinator: E.Tsesmelis

GIF: Parasitic - ATLAS Mu in P2A; NA58 Mu in P3B; CMS ECAL regular E-mail: [email protected]

X5: PWO runs 2 times 3 days parasitic to NA58. GSM-tel: int. 16-0120 ext.(89)201-0120

X7: Summer Students running 4 afternoons during DELPHI-run in P2A. CERN-tel: int.78949 ext.(+41 22)7678949

M2: NA54 parasitic to NA58-Det (27/10-5/11). SPS SCHEDULE 1997 Approved by Research Board in December 1996 and updated by Management in January 1997 Updated and approved by Research Board, 12th June 1997

Access system January February validation March 1 _ WEEK 1 2 3 4 5 6 7 8 10 11 | 12 | 13 | T Mo 6 13 20 27 3 10 17 \ * 24 3 Tu " Tests with We I SPS cpc 8iJ8&J88888888jlilJi81ii8 §§§] WINTER SHUTDOWN - ring . Cold |||gj||i|j|jf W Th closed Fr nnm out pvn Sa 1 1 jjgjl § Ru p 1 Bwgwwggjll '" U Easter Su PBBfloSBJHBMBWpcBtflfll Ba rT~™™™~^^^^TmiHiiiiiiiiliiiil 1 SPS security patrol April Ma>| leptons preparation [ | Techn. stop | June

I CPS techn. stop July August September J WEEK 27 28 29 30 31 32 33 34 35 36 37 38 39/ 2* • .- 7 . • 14 21 .. 28 .. v. . 4 , ii 18 Mo : • u

Tu i • •

imrirrnyrrr-r Th •'_"" T" - 't'.

Su •\ • "• • '• .• »;•.'••-" . > ''•

1 LEP stop(including additional week) I October November / December WEEK 40 41 42 43 44 45 Jo 47 48 49 50 51 52 6 17 Mo ,13 • 20 - 27 24 I 8 15 22

-' • ', Tu • • • "1 •"' ,\;:v _ We Th Xmas PROTON RUN '.. SHUTDOWN Fr s Sa •V!5 '".'m (ests I Su

CPSMD SPSMD Wedn.MD CPSWedn.MD p/e PHYSICS 12 LIST OF PS BEAMS (as from November 1997)

I. EAST AREA (primary beam)

Beam Ejection Momentum Particles/magnet cycle Remarks

n e17 SE62 8.-24.GeV/c p:210 primary beam split in (for test beams) 2 branches

II. EAST AREA (counter beams)

Beam Ejection Momentum Particles and flux/cycle Remarks

SE62 <10GeV/c p,jr+,e+ or n',e' production angle: 0 degree (South branch) e+ 7% of + beam (5 GeV/c) beam height 1.28m -50% of + beam (2 GeV/c) beam switched between 2 branches

SE62 < 15 GeV/c production angle: 0 degree (North branch) beam height 2.28 m pos. beam = 10"

SE 62 < 5 GeV/c production angle: 3.53 degrees (North branch) e" = 10%*> beam height 2.5 m pos. beam = 6

5 til SE62 < 3.5 GeV/c n- 3.5 GeV/c « 2 10 production angle: 8.55 degrees (North branch) e"<10%*) beam height 2.5 m pos. beam = 4 *'The percentage of e" in the negative beam is depending on the external target used (converter)

13 "Ml

PS ACCELERATOR COMPLEX AT/VA

12.0S.1992/K.ASK0VIC

PS/CA 05.09.1997/JP VFNTURINI (J AutoCAD

UNA C HI I—i_n ! I., i. .

TEST BEAMS EAST HALL Colour convention: purple (dark shading) = not yet allocated ; yellow (light shading) = not allocatable or Machine Development

P1A P1B P1C P2A P2B P2C

13 26 30 27 33 20

7 Apr 22 Apr 2 Jun 2Jul 30Jul 1 Sep

21 Apr 19 May 2Jul 30Jul 1 Sep 22 Sep •s. PS 'PS211 ATLAS RD ATLAS RD42 RD48 r RD48 XI Setup . (FE) Rad 48 Rad BaBar 13 7 14 21 4 20 7 • r PS M LHC OPT LHC M OPT M LHC M LHC MICRO LHC M CMS BaBar M Neutrino t9 Setup RPC B TRIG B RPC TRIG RPC B RPC B MEGA B HPC EC B SVT RPC 2 .4 23 14 3 15 7 4 3 7 4 10 9 11 7 4 3 7 2 12 4

PS CMS ATLAS BaBar MACRO ATLAS BaBar ELETTRO DIRAC DIRAC HERMES PAMELA RD42 ERMES DIRAC. DIRAC DIRAC HERMES BELLE t10 Setup HIPMIP Neut DC TRD Neut DC 5 14 7 6 7 3 3 7 11 13 9 4 14 13 7 7 7 7 7

PS PPC HMPID PPC vlUOK HMPID PPC SDD PPC HMPID PESTOV SDD HMPID VISE MSD. SDD PHOS ORSAY t11 Setup HMPID PPC SDD PPC viuor\ HMPID V1UONHMPID PPC 19 7 7 3 4 •7 22 5 14 6 7 7 7 6 14 7 4 7

t7: PS211 dismantling (28/7-21/8); RD48 parasitic to ATLAS Rad (2/9-11/9). SPS/PS-Coordinator: E.Tsesmelis t9: Neutrino setting-up 18/8-29/8. MICROMEGAS parasitic to LHC-B (2/7-9/7). E-mail: [email protected] t10: PAMELA parasitic to MACRO TRD (16/6-22/6); AMS-ATC parasitic to BaBar DC (9/6-16/6 + 18/8-25/8). GSM-tel: int.16-0120 ext.(89)201-0120 t11: ALICE tests. CERN-tel: int.78949 ext.(+41 22)7678949 f 1 9 9 7 - P S COMPLEX SCHEDULE ] V J 12 June 1997

Jan

C SHUTDOWN j

e+e- to PS e+e- to SPS

o* o*/o* o* o o* o* o* o

o* o* o* o* o* o* o* o* o o o o LEP stop SPS physics stop

Oct Nov Dec

Wk 40 'n 42 1 43 44 i15 ^45, 47 | 48 49 50 51 52 u t Mo 29 | 13| n 27 3 10 Illlllll 1 8 15 22 SPS Tu tests I if MD possible We 1 M ~X SHUTDOWN 1 j\ tests Hi on PS & Th 1 | MD [[possible II! PSB Xmas. Fr I 1 \ I™IJJJIIIMP Sa PS stop Su 1111111111 28 \ SPS stop ISOLDE stop

MD I im in //1 o Linacs, PSB, Wedn. MD LPI: weeks with LEIR ISOLDE reserve weeks with &PS MD in//with leptons LHC irradiations SU&MO physics for ISOLDE Easr Hall 17 LAYOUT OF THE LEP EXPERIMENTS

ALEPH

OPAL

oo

L3

DELPHI Updated October 1997 LEP SCHEDULE 1997 Approved by Research Board, 21st November 1996

January February March

WEEK 1 2 3 4 5 6 7 8 9 10 11 12 13 6 13 20 27 3 10 17 24 10 17 24 Mo

Tu i We WINTER SHUTDOWN Th

Fr

1 Sa

Su

April May June

WEEK 14 15 16 17 18 19 20 21 22 23 24 25 26 Etster 31 7 14 21 28 5 12 With. 19 26 2 9 16 23 Mo

Tu

We / A Miy-01 Axen. Th / 1 j Fr / Sa / j Whit. Su 1 / j

LEP ring closure 1NB itsa

July September

WEEK 27 28 | 29 | 30 | 31 32 33 | 34 35 | 36 | 37 38 39 30 4 tiyautuuuHiiui Mo '•gBJBJBBJBJBJf. a "IHMBII * a Tu LEP IKP We Cold 1 B Th checkout B depending on injector BB^ illllHHHIIIIHIIK JSW.&

Fr 1 ^m ' i

Sa 11 1 •||IUIIIIIIIIIIIIIIII|I1 I Su

] Lap stop October NovemBeT J December

WEEK | 40 41 42 43 44 45 47 48 49 50 51 52 t 13 uyimHiiiiHiBu 17 24 l g 15 22 Mo IIIIIIIIIIIHIIIlllllll " "..""^9 10 Tu Illllllllllfll

We llllllllll SHUTDOWN Th If 111 II Xmas

Fr Illllllllimi •• • IINIMUIUfMllini Sa

Su

CPSMD SPSMD LEP Physics LEP MD

19 ISOLDE at the PS-Booster: Experimental Hall (building 170)

IALI. ISOI.DF. UATIMENT 170 LIST OF ISOLDE BEAMS (as from November 1997)

The PS-Booster beam parameters:

Beam energy 1 GeV Max. intensity 3.2 1013 p/pulse Pulse length 2.4 us Repetition time (typ.) 1.2-2.4 s Average current on target 2.1 ^A

The separators:

GPS HRS Ion beam energy 60 keV 60 keV Maximum ion current 0.5 mA 3 mA Resolving power 2000 10000

21 c 199 7- ISOLDE SCHEDULE

Apr May Jun

Wk 14 IS 22 23 24 25 26 Mo Eastern Tu We Th liiii Fr Sa lit Su Illi

staggered proton beam from the 30th June!

Oct Nov Dec

staggered proton beam start of winter V shutdown

buffer to catch 9 IIIIIIIII IIIIIIIII m pilllllllniiiuiiiiWj lip lost beam protons time in case of not technical 1JmmB III i available problems SStsSSSs !

22 CURRENT EXPERIMENTS LISTED IN THIS BOOK

EXPERIMENT TITLE PAGE

SPS PROGRAMME

1) WEST AREA

WA95 A New Search for vjj, - Vx Oscillations 35 (CHORUS)

WA96 Search for the Oscillations VJJ, _> vx 39 (NOMAD) WA97 Study of and Antibaryon Spectra 43 in Lead Lead Interactions at 160 GeV/c per Nucleon

WA98 Large Acceptance Measurement of Photons and 47 Charged Particles in Heavy Ion Reactions

WA99/2 Charge Changing Collisions, Energy Loss, and EM 51 Nuclear Reactions of 160 GeV A 2°8Pb

WA100 Exposure of Plastic Track Detectors to Relativistic 55 Pb Beam for the Purpose of Providing Calibration for the DUBLIN-ESTEC Ultra Heavy Cosmic Ray Experiment which was Exposed for Sixty-Nine Months in Earth Orbit

WA101 Study of Various Processes with 160 A GeV Pb Beam 57

WA102 A Search for Centrally Produced non-qq in 59 (O/CENTPROD) Proton-Proton Interactions at 450 GeV/c using the CERN Q. and GAMS-4000

23 EXPERIMENT TITLE PAGE

2) NORTH AREA

N A43/2 Investigations of the Coherent Hard Photon 63 (CHANNELLING) Yields from (50-300) GeV/c Electrons/Positrons in the Strong Crystalline Fields of Diamond, Si and Ge Crystals

NA44 A Focusing Spectrometer for One and Two Particles 67 (IONS/ FOC.SPECTR)

NA45/2 Study of Electron Pair and Photon Production in 71 (IONS/EL.PAIR) Lead Gold Collisions

NA47 Measurement of the Spin-Dependent Structure 75 (SMC) Functions of the Proton and the Deuteron

NA48 A Precision Measurement of e'/e in CP Violating 79 (CP VIOLATION) K°-> 2% Decays

NA49 Large Acceptance Hadron Detector for an 83 (IONS/TPC- Investigation of Pb-induced Reactions at the HADRONS) CERN SPS

NA50 Study of Muon Pairs and Vector Mesons Produced in 87 (DIMUONS) High Energy Pb-Pb Interactions

NA52 A Strangelet and Particle Search in Pb-Pb Collisions 91 (NEWMASS) NA53 Electromagnetic Dissociation of Target Nuclei 93 by 208pb projectiles

NA54 Determination of Cross-Sections of Fast-Muon-Induced 95 Reactions to Cosmogenic Radionuclides

NA55 Investigation of Fast Neutron Production by 100 to 97 250 GeV Muon Interactions on Thin Targets

NA56 Measurement of Pion and Kaon Fluxes Below 99 (SPY) 60 GeV/c Produced by 450 GeV/c Protons on a Beryllium Target

NA57 Study of Strange and Multistrange Particles in 103 (IONS/HYP ERONS) Ultrarelativistic Nucleus-Nucleus Collisions

NA58 COMPASS: COmmon Muon and Proton Apparatus 107 COMPASS for Structure and

24 EXPERIMENT TITLE

3) EMULSION EXPERIMENTS

EMU11 Study of Particle Production and Nuclear 111 (IONS) Fragmentation in Relativistic Heavy-Ion Collisions in Nuclear Emulsions

EMU12 Particle Production Density Fluctuations and 113 (IONS) Break-up of Dense Nuclear Matter in Central Pb+Ag and Pb+Pb Interactions at 30-160 A GeV

EMU14 Study of Multiplicity and Angular Characteristics 117 in Pb + A Interaction at 200 A GeV/c

EMU15 Investigation of Central Pb-Pb Interactions at 119 Energies of 160 GeV/Nucleon with the Help of the Emulsion Magnetic Chamber

EMU16 Isospin Correlations in High Energy Pb + Pb 121 Interactions

EMU18 Exposures of Nuclear Track Detectors to Lead Ions 125 at the CERN-SPS

EMU19 Nuclear Fragmentation Induced by Relativistic 127 Projectiles Studied in the 4rc Configuration of Plastic Track Detectors

EMU20 p-Induced Fission Studies with Plastic Track 129 Detectors using 4rc- Geometry

25 EXPERIMENT TITLE PAGE

PS PROGRAMME

1) PS EXPERIMENTS

PS185/3 A Measurement of Depolarization and Spin 133 (LEAR/ Transfer in pp -> AA HYPERONS) PS194/3 Measurement of Stopping Powers and Single 135 (LEAR/ Ionization Cross-Sections for Antiprotons IONIZATION) at Low Energies

PS195 Tests of CP Violation with K° and K° at LEAR 139 (LEAR/ CP VIOLATION) PS196 Precision Comparison of p and p Masses in 143 (LEAR/ a Penning Trap PENNING TRAP)

PS197 The Crystal Barrel: Spectroscopy at LEAR 145 (LEAR/CRYSTAL) with a 4TC Detector

PS200 Capture, Electron-Cooling and Compression of 149 (LEAR/GRAV) Antiprotons in a Large Penning-Trap for Physics Experiments with an Ultra-Low Energy Extracted Antiproton Beam

PS201 Study of p and fi Annihilations at LEAR with OBELIX, 153 (LEAR/OBIiLIX) a large acceptance and high resolution detector based on the Open Axial Field Spectrometer

PS205 Laser Spectroscopy of Antiprotonic Helium Atoms 157 (HELIUMTRAP) PS207 Precision Measurement of the Energies and Line 161 (LEX) Shapes of Antiprotonic Lyman and Balmer Transitions from Hydrogen and Helium Isotopes

PS208 Decay of Hot Nuclei at Low Spins Produced by 163 (HOTNUCLEI) Antiproton-Annihilation in Heavy Nuclei

PS209 Neutron Halo and Antiproton-Nucleus Potential 165 from Antiprotonic X-rays PS210 Antihydrogen Production in p Z-interaction 167 PS211 (TARC) Experimental Study of the Phenomenology of 169 Spallation Neutrons in a Large Lead Block

26 EXPERIMENT TITLE PAGE

PS212 Lifetime Measurement of rc+Tt" Atoms to Test 173 (DIRAQ Low Energy QCD Predictions

2) ANTIPROTON DECELERATOR EXPERIMENTS

AD-1 Antihydrogen Production and Precision Experiments 177 (ATHENA) The ATHENA Collaboration

AD-2 The Production and Study of Cold Antihydrogen 181 (ATRAP) The Antihydrogen TRAP collaboration (ATRAP)

AD-3 and Collisions Using Slow 185 (ASACUSA) Antiprotons The ASACUSA Collaboration

ISOLDE PROGRAMME

IS300 A Search for Axions and Massive Neutrinos 191

IS301 Effect of Particle-Core-Vibration Coupling Near 193 the Double Closed 132Sn Nucleus from Precise Magnetic Moment Measurements

IS302 High-Accuracy Mass Determination of Unstable 195 Nuclei with a Penning Trap Mass Spectrometer

IS303 Measurement of the Magnetic Moment of ^Mg 197 Using the Tilted-Foil Polarization Technique

IS304 Measurement of Nuclear Moments and Radii 199 by Collinear Fast-Beam Laser Spectroscopy

IS306 Systematic Measurements of the Bohr-Weisskopf 201 Effect at ISOLDE

IS307 Diffusion of Au and Pt in Amorphous Silicon 205

IS308 Meson-Exchange Enhancement of the First 207 Forbidden 0+ *-> 0" Beta Transitions

IS311 The Electronic Structure of Impurities in 209 Semiconductors

IS314 Measurements of Electric Quadrupole Moments 211 of Neutron-Deficient Au, Pt, and Ir Nuclei with NMR-ON in hep-Co

27 EXPERIMENT TITLE PAGE

IS315 COMPLIS: COllinear spectroscopy Measurements 215 using a Pulsed Laser Ion Source

IS318 Surface and Interface Studies with Radioactive Ions 219

15321 Mossbauer and DLTS Investigations of 221 Impurity-Vacancy Complexes in Semiconductors

15322 Octupole Deformed Nuclei in the Actinide Region 223

15323 Nuclear Structure Effects in the Exotic Decay of 225 via 14C Emission

IS325 Combined Electrical, Optical and Nuclear 227 Investigations of Impurities and Defects in II-VI Semiconductors

15328 Electrical Activation of Dopant Atoms in the 229 II-VI Materials M-X (M = Zn, Cd and X = S, Se, Te)

15329 Alpha Anisotropy Studies of Near-Spherical and 231 Deformed Nuclei

15330 Use of Radioactive Ion Beams for Biomedical Research 233 1. in vivo labelling of monoclonal antibodies with radio-lanthanides and "5Ac

15331 Use of Radioactive Ion Beams for Biomedical Research 237 2. in-vivo dosimetry using positron emitting rare earth isotopes with the rotating prototype PET scanner at the Geneva Cantonal Hospital

15332 The Search for M3 Transitions in 183Pt and 181Os 241

15333 Neutron-Rich Silver Isotopes Produced by a 243 Chemically Selective Laser Ion-Source: Test of the R-Process "Waiting-Point" Concept

15334 Study of the ev Correlation in Fermi Beta Decay: 245 A Probe for Scalar Weak Interactions

15335 ISOLDE Beam and Laser Ion-Source Development 247

15338 Single-Particle States in 133Sn 251

15339 The Mechanism of p-Delayed Two-Proton Emission 253

28 EXPERIMENT TITLE PAGE

IS340 Emission Channeling Studies of the Lattice Site of 255 Oversized Alkali Atoms Implanted in Metals

IS341 Emission Channeling Investigation of Implantation 257 Defects and Impurities in II-VI-Semiconductors

IS342 Emission Channeling Studies on the Behaviour of Light 259 Alkali Atoms in Wide-Band-Gap Semiconductors

IS343 Test of a High Power Target Design 263

IS344 Laser Spectroscopy of Bismuth Isotopes 265

IS345 Nuclear Electrical and Optical Studies of Hydrogen 267 in Semiconductors

IS346 Mass Measurement of Very Short Half-Lived Nuclei 271 (MISTRAL ISOLDE)

IS347 Radioactive beam Experiments at ISOLDE: 273 (REX-ISOLDE) Coulomb excitation and neutron transfer reactions of exotic nuclei

IS348 Enzymatic Mercury Detoxification: 277 The Regulatory Protein MerR

IS349 Meson-Exchange Enhancement of First-Forbidden 279 Beta Transitions in the Lead Region

IS350 Speciation of Aquatic Heavy Metals in Humic 281 Substances by "UncdA'^Hg - TDPAC

IS351 Search for raRb and Investigation of Nuclear Decay 283 Modes Near the Z=N Line in the Border Region of the Astrophysical RP-Process Path

IS352 Search for Deformation Signature in the Gamow-Teller 285 Decay of N=Z Even Even Nuclei Above A=60

IS353 Beta Decay of ^Zn. A Critical Test for the 287 Charge-Exchange Reaction as a Probe for the Beta Decay Strength Distribution

IS354 Identification and Decay Studies of New, Neutron-Rich 289 Isotopes of Bismuth, Lead and Thallium by means of a Pulsed Release Element Selective Method

29 EXPERIMENT TITLE PAGE

IS355 Search for Detour Transitions in the Radiative EC 291 Decay of 81Kr

IS356 Search for Physics Beyond the Standard Model via 293 Positron Polarization Measurements with Polarized 17F

IS357 Gold and Platinum in Silicon - Isolated Impurities 295 and Impurity Complexes

IS358 Magnetic Moment of 67Ni and 67Ni -> 67Cu P-Decay 297

IS359 Investigations of Deep-Level Fe-centres in Si by 299 Mossbauer Spectroscopy

IS360 Studies of High-Tc Superconductors Doped with 301 Radioactive Isotopes IS361 Beta Decay Asymmetry in Mirror Nuclei: A = 9 303 IS362 Diffusion in Intrinsic and Highly Doped III-V 305 Semiconductors IS363 Use of Radioactive Ion Beams for Bio-Medical Research 307

LEP PROGRAMME

ALEPH The ALEPH Detector (Apparatus for LEp PHysics) 311

OPAL The OPAL Detector (an Omni Purpose Apparatus for Lep) 317 L3 L3 Experiment 323

DELPHI The DELPHI Detector (DEtector with Lepton Photon and 331 Hadron Identification)

LHC PROGRAMME

ATLAS ATLAS 339

CMS The Compact Muon Solenoid 353

ALICE ALICE - A Large Ion Collider Experiment 369

30 EXPERIMENT TITLE

R & D PROGRAMME

RD-8 Development of GaAs Detectors for Physics 379 (GaAsworks) at the LHC

RD-9 A Demonstrator Analog Signal Processing 381 (soi) Circuit in a Radiation Hard SOI-CMOS Technology

RD-12 Timing, Trigger and Control Systems for 383 LHC Dectectors

RD-16 A digital Front-End and Readout Microsystem 387 (FERMI) for calorimetry at LHC

RD-18 A Study of New Fast and Radiation Hard 389 (CRYSTAL Scintillators for Calorimetry at LHC CLEAR)

RD-19 Development of Hybrid and Monolithic 393 (PIXEL) Silicon Micropattern Detectors

RD23 Optoelectronic Analogue Signal Transfer 397 (OPTO for LHC Detectors ELECTRONICS)

RD24 Application of the Scalable Coherent Interface to 399 (SCI) Data Acquisition at LHC

RD26 Development of a Large Area Advanced Fast RICH 403 (CSIRICH) Detector for Particle Identification at the Large Hadron Collider Operated with Heavy Ions

RD27 First-Level Trigger Systems for LHC Experiments 405

RD28 Development of Gas Micro-Strip Chambers for 409 (GAS Radiation Detection and Tracking at High Rates MICROSTRIPS)

RD29 A Mixed Analog-Digital Radiation Hard Technology 413 (DMILL) for High Energy Physics Electronics: DMILL (Durci Mixte sur Isolant Logico-Lineaire)

RD31 NEBULAS A High Performance Data-Driven 417 (NEBULAS) Event-Building Architecture Based on an Asynchronous Self-Routing Packet-Switching Network

31 EXPERIMENT TITLE PAGE

RD32 Development of a Time Projection Chamber with 419 (ALICE TPC) High Two Track Resolution Capability for Experiments at Heavy Ion Colliders

RD37 Very Forward Hadron Calorimetry at the LHC 421 Using Parallel Plate Chambers

RD38 CICERO: Control Information system Concepts 423 (CICERO) based on Encapsulated Real-time Objects. A study on Generic Control Systems for Large Scale LHC Experiments

RD39 Superconducting Microstrip Detectors 427 (SMSD) RD40 Development of Quartz Fiber Calorimetry 429 (Q-CAL) RD41 Object Oriented Approach to Software Development 431 (MOOSE) for LHC Experiments

RD42 Development of Diamond Tracking Detectors for 435 High Luminosity Experiments at the LHC

RD43 Proposal for Research and Development of a Hadron 437 (BHCAL) Calorimeter for High Magnetic Fields

RDM GEANT 4: an Object-Oriented toolkit for 441 (GEANT 4) simulation in HEP RD45 A Persistent Object Manager for HEP 445 RD46 High Resolution Tracking Devices Based on 449 Capillaries Filled with Liquid Scintillator RD47 High Energy Physics Processing using 451 Commodity components (HEP PC)

RD48 Radiation Hardening of Silicon Detectors 453 (ROSE) RD49 Studying Radiation Tolerant ICs for LHC 457

32 SPS

STATUS OF THE SPS PROGRAMME AS OF NOVEMBER 1997 EMULSION TARGETS HIGH RESOLUTION ST = STREAMER TUBES CALORIMETER T1-T2 = TRIGGER SCINTILLATORS TM = TOROIDAL Fe MAGNET DC = DRIFT CHAMBERS

VETO DC ST \\ n I \

BEAM

ANTI COUNTER

\

DIAMOND FIBRE TRACKERS

- SHIELDING

TEMPERATURE STABILIZED CHAMBER—J 15m-

Figure 2 Experimental set-up with 4 emulsion targets and a scintillating fiber target. Scintillating fiber arrays locate the impact point of the decay track. A hexagonal magnet determines its charge and momentum. A high resolution calorimeter determines the direction and the energy of the hadron shower. The muon spectrometer identifies muons and determines their charge and momentum. Tl and T2 and veto are scintillation hodoscopes for triggering.

Experiment WA95 A New Search for v^-Vx Oscillations CHORUS WA95

Beam: NI Approved: 18/SEP/91 Status: Data-Taking

A New Search for vß — vT Oscillations

Adana, Cukurova Univ., Aichi Educational Univ., Amsterdam NIKHEF, Ankara, Middle East Technical Univ., Bari Univ./INFN, Berlin Humboldt Univ., IIHE ULB-VUB, Brussels, Cagliari Univ./INFN, CERN, Ferrara Univ./INFN, Gyeongsang Nat. Univ. Jinju, Haifa, Technion, Istanbul, Bogazici Univ., Kinki Univ., Kobe Univ., Louvain Cath. Univ., Moscow ITEP, Muenster Univ., Nagoya Univ., Naples Univ./INFN, Osaka City Univ., Rome Univ.I/INFN, Salerno Univ./INFN, Toho Univ., Utsunomiya Univ.

Adana, Cukurova Univ. Eskut E. Kayis A. Onengut G. Aichi Educational Univ. Iwahori M. Kodama K. Ushida N. Amsterdam NIKHEF Konijn J. Melzer O. Oldeman R.G.C. Uiterwijk J.W.E. Visschers J.L. de Jong M. van Dantzig R. van der Poel C.A.F.J. Ankara, Middle East Technical Univ. Ayan A.S. Pesen E. Serin-Zeyrek M. Sever R. Tolun P. Zeyrek M.T. Bari Univ./INFN Armenise N. Cassol F. Catanesi M.G. Muciaccia M.T. Radicioni E. Simone S. Vivolo L. Berlin Humboldt Univ. Butte A. Winter K. IIHE ULB-VUB, Brussels Annis P. El-Aidi R. Van de Vyver B. Vander Donckt M. Vilain P. Wilquet G.

Cagliari Univ./INFN Righini P. Saitta B. CERN Brunner J. Cussans D. Dore U. FabreJ.-P. Ferreira R. Flegel W. Gouiine R. Litmaath M. Ludovici L. Meinhard H. Migliozzi P. Niu E. Overas H. Panman J. Papadopoulos I. Ricciardi S. Rozanov A. Saltzberg D. Santacesaria R. Tzenov R. Weinheimer Ch. Wong Henry Tsz-King.

Ferrara Univ./INFN Di Capua E. Zucchelli P. Gyeongsang Nat. Univ. Jinju Hahn C.H. Jang H.I. Park I.G. Park M.S. Song J.S. Yoon C.S.

References SPSC/90-42/P254, SPSC/92-52/M507, SPSC/93-16/M519, SPSLC/94-23/P254/Add.l, 3PSLC/95-72/M570, SPSLC/96-10/M575, SP5LC/96-4/M571, SPSLC/95-45/M5S9, SPSLC/96-S4/M591, SPSLC/97-14/MS98

35 Haifa, Technion Goldberg J. Hoepfher K. Istanbul, Bogazici Univ. Arik E. Biiol I. Mailov A.A. Kinki Univ. Chikawa M. Kobe Univ. Aoki S. Hata T. Louvain Cath. Univ. Brooijnuins G. Favart D. Grégoire Gh. Herin J. Moscow ITEP Aitamonov A. Gorbunov P. Khovansky V. Shamanov V. Smirnitsky V. Muenster Univ. Bonekaeraper D. Frekeis D. Rondeshagen D. Wolff T. Nagoya Univ. Hoshino K. KomatsuM. KotakaY. KozakiT. NakamoT. NakamuraM. Niu K. Niwa K. ObayashiY. Sato O. Toshito T. Naples Univ./INFN Buontempo S. Cocco A. D'Ambrosio N. Ereditato A. Fiorillo G. Garufi F. Messina M. Palladino V. Sorrentino S. Strolin P. Tioukov V. Osaka City Univ. Nakamuia K. Okusawa T. Rome Univ.I/INFN Capone A. De Pedis D. Di Liberto S. Loverre P.F. Maslennikov A. Mazzoni M.A. Meddi F. Piredda G. Salerno Univ./INFN Bozza C. Grella G. Iovane G. Romano G. Rosa G. di Bartolomeo A. Toho Univ. Ishii Y. Kawamura T. Kazuno M. Ogawa S. Shibuya H. Utsunomiya Univ. SatoY. Tezukal.

Spokesman: Strolin P. Contact: Pamnan J.

The question whether neutrino flavours mix at some level and the related question whether neutrinos have non-zero mass is one of the remaining great challenges of experimental high energy physics.

The aim of the experiment is to search for neutrino oscillations in the v^ — vr sector by detecting the occurrence of the reaction vTN —» r~X in a background of v^ induced charged and neutral events. The r~ is identified by its charge and the characteristic decay topology in its muonic and hadronic decay modes accompanied with transverse momentum imbalance. A sensitivity of sin.2 19 < 2 • 10~4 at the 90% confidence level can be achieved with an 4-year exposure in

36 CHORUS WA95 the wide band neutrino beam of the SPS. For this exposure the prompt vT induced background and other background events occur at such a level to produce less than one event. The experimental setup consists of a target region, an air-core magnet, a high precision calorime- ter and a muon spectrometer. Nuclear emulsion stacks form the 800 kg mass of the fiducial target volume; decays of short lived particles such as the r are visualised with high efficiency in these stacks. Tracks are located into the emulsion with high precision scintillating fibre trackers read out with opto-electronic image intensifiers coupled to CCD cameras.

The hexagonal air-core magnet is pulsed to permit the use of thin aluminium windings. It provides the measurement of the charge-sign of low energy hadrons and muons. The high pre- cision calorimeter tags the r~ decay by its transverse momentum imbalance. The spectrometer identifies muons and measures their momentum and charge.

The experiment took data from May 1994 until November 1997. After two years the emulsion target had been replaced. A total of 800,000 v^ charged current events have been recorded in the emulsion target and the electronic part of the detector. The measurement of the emulsion is being performed and will still take a few years.

Results from the first 2-year exposure have been presented and new results will emerge corre- sponding to the emulsion measurement progress.

37 NEUTRINOS

Muon Charr<>tr

SCALE I/SO Muon Fitter

Muon Chamber M I I I II II l=t=

Fxperiment WA96: Search for the Oscillation v^-

38 NOMAD WA96

Beam: Nl Approved: 18/SEP/91 Status: Data-Taking

Search for the Oscillation !/„—>> vr

Univ. of Massachusetts, Amherst, Annecy LAPP, Cosenza, Calabria Univ./INFN, CERN, Dortmund Univ., Dubna JINR, Florence Univ./INFN, Harvard Univ., Johns Hopkins Univ., Lausanne Univ., UCLA, Melbourne Univ., Moscow, Inst. Nucl. Research (INR), Padova Univ./INFN, Paris VI and VII Univ., Pavia Univ./INFN, Pisa Univ./INFN, Rome, Terza Univ., Saclay CEN DPbPE, Sydney Univ., Univ. Urbino, Urbino & LNFN Florence, Zagreb Rudjer Boskovic Inst.

Univ. of Massachusetts, Amherst Hemando J.D. Annecy LAPP Bassompieite G. Gaillard J.M. Gouaneie M. Mendiburu J.P. Mossuz L. Pessard H. Sillou D.

Cosenza, Calabria Univ./INFN La Rotonda L. Valdata M. CERN Autiero D. Camilleri L. Di Leila L. Do Couto e Silva E. Ferrete D. Ganglei E. Geiser A. Gomez- CadenasJ.J. Giant A. Linssen L. Nedelec P. RubbiaA. Steffen P. Stiegler U. Tsesmelis E. Wilson F. Dortmund Univ. Geppeit D. Goessling C. Lisowsld B. Pollmann D. Schmidt B. Weisse T. Zuber K. Dubna JINR Bunyatov S. Klimov O. Krasnoperov A. Kuznetsov V. Nefedov Yu. Popov B. Tereshchenko S. Valuev S. Florence Univ./INFN Graziani G. Iacopini E. Lupi A. Marchionni A. Harvard Univ. Bueno A. Dignan T. Feldman G. Hurst P. Mishra S. Weber F. Johns Hopkins Univ. Blumenfeld B. Long J.

Lausanne Univ. Benslama K. Degaudenzi H. Joseph C. Juget F. Nguyen M.C. Sozzi G. Steele D.M. Steininger M. TarebM. Tran M.T. Vacavant L. Vieira J.M. UCLA Caidini A. Cousins R. Vinogradova T.

References SPLSLC/91-21/P261, SPLSLC/91-48/P261/Add.l, SPSLC/91-37/M473, SPSLC/91-S3/P261/Add.2, SPSLC/92-51/MS06, SPSLC/93- 19/MS20, SPSLC/93-31/MS25, SPSLC/94-21/M535, SPSLC/94-28/M537, SPSLC/95-61/M566, SPSLC/95-72/M570, SPSLC/96- 2/P261/Add.3, SPSC/97-15/M599, SPSC/97-18/M600

39 NOMAD WA96

Melbourne Unir. Hyett N. Moorhead G. Poulsen C. Sevioi M. Taylor G. Tovey S. Winton L.

Moscow, last. Nad. Research (INR) Gninenko S. Kirsanov M. Kovzelev A. Toropin A. Volkov S.

Padova Univ./INFN Baldo-Ccolin M. Bobisut F. Collazuol G.M. Contalbrigo M. Gibin D. Guglielmi A. Lacaprara S. Laveder M. Mezzetta M. Sconza A. Paris VI and VII Univ. Astier P. Banner M. Dumarchez J. Lachaud C. Letessier-Selvon A. Levy J.-M. Schamaneche K. Touchard A.M. Vannucci F. Pavia Univ./INFN Cattaneo P. Conta C. Ferrari R. Fraternali M. Lanza A. Petti R. Polesello G. Rimoldi A. Salvatore F. Vercesi V. Pisa Univ./INFN Angelini C. Cavasinni V. De Santo A. Del Prete T. Flaminio V. Lazzeroni C. Renzoni G. Roda C. Salvatore P. Rome, Terza Univ. Orestano D. Pastore F. Saday CEN DPhPE Baldisseri A. Bouchez J. Gösset J. Meyer J.P. Pluquet A. Rathouit P. Stolarczyk Th. Vo M. Zaccone H. Sydney Univ. Boyd S. Donnelly I.J. Ellis M. Godley A. Peak L. Soler P. Ulrichs J. Varvell K. Yabsley B.

Univ. Urbino, Urbino & INFN Florence Conforto G. Martelli F. Pennacchio E. Veltri M. Zagreb Rudjer Boskovic Inst. Ljubicic A. Stipcevic M.

Spokesman: Di Leila L. Contact: Camilleri L.

The experiment searches for the oscillation v^ -» vT in the CERN wide-band neutrino beam. It aims at detecting uT charged current interactions by observing the production of the r lepton through its various decay modes by means of kinematical criteria. The detector reconstructs the events kinematics and identifies electrons, muons and photons. It uses the UA1 magnet. The target consists of 44 drift chambers, (132 sensitive planes) each 2.2 % X" thick, with a total mass of 2.9 tons over a fiducial volume of 2.6 x 2.6 x 4 m3. It is followed by transition radiation detectors and an electromagnetic calorimeter which includes a preshower detector. The muons are identified after the return-yoke of the magnet.

NEXT

40 1. target

2. multiplicity detector\

3. silicon telescope

4. pad 6 m chambers L

beam

I I I I I I I I I I I I I I I I 10 15 m

Figure 1: Side and top views of the WA97 experiment (1994)

Experiment WA97: Study of Baryon and Antibaryon Spectra in Lead Lead Interactions at 160 GeV/c per Nudeon

42 OMEGA ION WA97

Beam: PB ION Approved: 18/SEP/91 Status: Completed 31/DEC/96

Study of Baryon and Antibaryon Spectra in Lead Lead Interactions at 160 GeV/c per Nucleon

Athens Univ., Bari Univ./INFN, Bergen Univ., Birmingham Univ., CERN, Genoa Univ./INFN, Kosice Phys. Inst., Legnaro Nat.Lab./INFN, Mulhouse, Univ. de Haute Alsace, Oslo Univ., Padova Univ./INFN, Paris College de France, Prague, FZU-Inst. of Phys. Acad. of Sci., Rome Univ.I/INFN, Salerno Univ./INFN, Serpukhov IHEP, Strasbourg CRN/ULP

Athens Univ. Spyropoulou-Stassinaki M.

Bari Univ./INFN Armenise N. Caliandro R. Catanesi M.G. Di Bari D. Elia D. Fini R.A. Ghidini B. Jacholkowski A. Lenti V. Manzari V. Muciaccia M.T. Nappi E. Navach F. Posa F. Saladino S. Simone S.

Beigen Univ. Andersen E. Fanebust K. Helstrup H. Thorsteinsen T.F.

Birmingham Univ. Evans D. Jones G.T. Jovanovic P. Kinson J.B. Kirk A. Norman P.I. Thompson M. Venables M. Vfflalobos Baillie O. Votrtiba M.F. CERN Beusch W. Holme A.K. Klempt W. Knudson K. Kralik I. Quercigh E. Rotscheidt H. Safarik K. Sandor L. Genoa Univ./INFN Barberis D. Dameri M. Darbo G. Osculati B. Rossi L. Salvo C. Kosice Phys. Inst. Ban J. Ftacnik J. Lietava R. Luptak M. Pastircak B. Urban J.

Legnaro Nat.Lab./INFN Ricd R.A. Mulhoose, Univ. de Haute Alsace Blaes R. Fontaine J.C. Huss D. Mack V. Oslo Univ. Lien J. Lovhoiden G. Sennels P. Storas T. Tveter T.S. Padova Univ./INFN Andrighetto A. Antinori F. Carrer N. Morando M. Pellegrini F. Segato G.

References SPSLC/91-29/P263, SPSLC/96-31/M582 43 OMEGA ION WA97

Paris College de Fiance Sene M. Sene R. Volte A. Prague, FZU-Inst. of Phys. Acad. of Sci. Böhm J. Piska K. Staroba P. Stastny J. Zavada P.

Rome Univ.I/INFN Di Liberto S. Mazzoni M.A. Meddi F. Salerno Univ./INFN Grella G. Guida M. Romano G. Rosa G. Vixgili T.

Serpukhov IHEP Katchanov V. Singovski A.

Strasbourg CRN/ULP Geist W. Kachelhoffer T. Michalon A. Michalon-Mentzer M.B. Voltolini C.

Spokesman: Quercigh E. Contact: Antinori F./Safarik K.

Hyperons are expected to be a useful probe for the dynamics of hadronic matter under extreme conditions. In particular the onset of a - Plasma phase in a heavy ion collision is expected to enhance the hyperon yield with respect to normal hadronic interactions. WA97 aims to measure the spectra of strange particles and in particular of hyperons and anti- hyperons produced in ultrarelativistic lead-lead interactions and to compare them with those from proton initiated reactions. The experiment covers central rapidity down to transverse momenta of a few hundred MeV/c. The experimental setup consists of: an array of multi- plicity counters, a silicon based decay detector made of pixels, located in the CERN-OMEGA Spectrometer, an array of pad cathode MWPCs used as lever arm detectors and a zero degree hadron calorimeter.

NEXT PÂ&EÎS)

44 highly segmented Lead-Glass Calorimeter WA98 Experimental Setup (identification of photons, TC° and 77 -mesons) 160AGeVPb+Pb Collisions at the CERN SPS (1996) Forward- Calorimeter Time of Flight (#2) (PID of positive hadrons) Had.-Calorimeter (transverse energy)

highly segmented Photon- Streamer Tubes Multiplicity-Detector

Pad Chambers

01 Goliath Magnet Charged Particle Veto-Detector

Target Time of Flight (#1) (inside Plastic-Ball) (PID of negative hadrons)

Multistep Avalanche Chambers with CCD-readout (tracking of charged particles)

Plastic-Ball (K+, p,... He in Silicon-Pad and Silicon-Drift Detectors target region) (pseudorapidity-dist. of charged particles)

Experiment WA98 Large Acceptance Measurement of Photons and Charged Particles in Heavy Ion Reactions WA98

Beam: H3 Approved: 16/APR/92 Status: Completed 31/DEC/96

Large Acceptance Measurement of Photons and Charged Particles in Heavy Ion Reactions

Bhubaneswar Inst. ofPhys., VECC Calcutta, CERN, Chandigarh Panjab Univ., Darmstadt GSI, Dubna JINR, Geneva Univ., Groningen Univ., Jaipur Rajasthan Univ., Jammu Univ., Lund Univ., MIT, Moscow Kurchatov Inst., Muenster Univ., Subatech, Nantes, Oak Ridge Nat. Lab., Rez, Nucl. Phys. Inst. (NPI), Tennessee Univ. Knoxville, Tsukuba Univ., Utrecht Univ., Warsaw Inst.Nucl.Studies

Bhubaneswar lust, of Phys. Mahapatra D.P. Maharana J. Mishra G.C. Nandi B.K. Nayak S.K. Phatak S.O. Ramamurty V.S. VECC Calcutta Chattopadhyay S. Das A. Ch. Dutta Majumdar M.R. Ghosh T.K. Mukhopadhyay D.S. Murthy G.S.N. Sinha B.C. Trivedi M.D. Viyogi Y.P. CERN Neumaiei S. Chandigarh Panjab Univ. Aggarwal M.M. Bhatia V.S. Mittra I.S. Saxena P. Singh K. Darmstadt GSI Kolb B.W. Langbein I. Lee Y.Y. Nayak T.K. Purschke M. Schmidt H.-R. Steinhaeuser P. Urbahn J. Dubna JINR Aiefiev V. Astakhov V. Avdeitchikov V. Baldine A. Barabash L. Batiounia B. Chalyshev V. Djoid- jadze V. Ftolov V. Gavtishchuk 0. Guskov B. Kosaiev I. Kuzmin N. Maximov A. Mehdiyev R. Mikalev D. Myalkovsky V. Nikitine V. Nomokonov P. Parfenov A. Pavlyuk A. Rufenov I. Shabra- tova G. Slavine N. Vodopianov A. Geneva Univ. Angelis A.L.S. Donni P. FokaP. Kalechofeky H. Martin M. NaefH.P. Rosselet L. RubioJ. Voros S. Groningen Univ. Loehner H. Jaipur Rajasthan Univ. Agnihotri A. Bhalla K.B. Kumar V. Mooherjee S. Raniwala S. Jammu Univ. BadyalS.K.*DevanandP. Rao N.K. Sambyal S.

References SPSLC/91-17/P260, SPSLC/93-S/P260.Add.l, SPSLC/94-32/MS39, SPSLC/95-3S/MS50

47 WA98

Lund Univ. Carlen L. El Chenawi K. Gatpman S. Gustafeson H.-A. Nystrand J. Oskarsson A. Otterlund I. Soderstrcm K. Stenlund E. Svensson T. MIT Kulinich P. Roland G. Steinberg P. Wyslouch B. van Nieuwenhoizen G.J.

Moscow Kuichatov Inst. Antonenko V. Cherbatchev R. Dubovik Y. Fokin S. Ippolitov M. Karadjev K. Koutcheryaev I. Lebedev A. Manko V. Mgebrishvili G. Nianine A. Nikolaev S. Sibiriak Yu. Tsvetkov A. Vinogradov A.

Muenster Univ. Barlag C. Bathe S. Blume C. Bock D. Bohne E.M. Bücher D. Claussen A. Feldmann H. Glasow R. Kampert K.-H. Kees S. Peitzmann T. Reygers K. Santo R. Schlagheck H. Stueken D.

Snbatech, Nantes Bernier T. Gutbrod H.H. Luquin L. Retiere F. Roy C.

Oak Ridge Nat. Lab. Awes T.C. Kim Hee. Obenshain F.E. Plasil F. Stankns P. Young G.

Re«, Nud. Phys. Inst. (NPI) Eliseev S. Hrivnacova I. Kugler A. Pachr M. Petracek V. Rak J. Sumbera M. Tennessee Univ. Knoxville Morrison D. Sorensen S.P. Tsukuba Univ. Chujo T. Enosawa K. Higuchi R. Kato S. Kurata M. Kurita K. Miake Y. Miyamoto Y. Nishimura S. SatoS. YagiK. YokotaY.

Utrecht Univ. Buijs A. Buis E.J. Decowski P. Geurts F. Kamermans R. Raeven B. Twenhoefel C. Vos M. van Eyndhoven N. van Heeringen E. Warsaw Inst.Nuel.Studies Karpio K. Siemiarczuk T. Stefanek G. Tykarski L.

Spokesman: Awes T.C. Deputy Spokesman: Martin M. Contact: Rosselet L.

The aim of the experiment is the high statistics study of photons and neutral hadrons, as well as of charged particles, and their correlations in Pb - Pb collisions. The photons are measured by:

- a 10 000 module LEADGLASS SPECTROMETER yielding high precision data on ir° and 77 at midrapidity (with transverse momenta 0.3 GeV/c > pr > 4.5 GeV/cfor TT° and 1.5 GeV/c > pr > 4.0 GeV/c for rj covering the "thermal" as well as the "hard scattering" regime beyond 3 GeV/c) and determination of the thermal and direct photon to ir° ratio.

- a pad preshower PHOTON MULTIPLICITY DETECTOR which, by comparing with the charged particle multiplicity measurement allows to determine the photon enrichment in an event or event class. 48 WA98

The charged particle setup contains:

- a 4000 element SILICON PAD DETECTOR and a 4-inch SILICON DRIFT DETECTOR to measure the charged particle multiplicity. - a MULTISTEP AVALANCHE TRACKING SYSTEM with optical readout for momentum measurement of negative tracks. - a MULTISTEP AVALANCHE TRACKING SYSTEM with pad readout for momentum mea- surement of positive tracks. - a TIME-OF-FLIGHT SYSTEM for each tracking system for particle identification.

This allows to correlate electromagnetic and charged hadronic data within event classes and to yield high statistics transverse momentum spectra of identified hadrons as well as Bose-Einstein correlation data.

49 IONS/EL.CAPT WA99/2

Beam: H3 Approved: 20/APR/95 Status: Completed 25/NOV/96

Charge Changing Collisions, Energy Loss, and EM Nuclear Reactions of 160 GeV A 208Pb

Aarhus Univ., CERN, Lund Univ., Manne Siegbahn Inst.of Phys. Stockholm, Oak Ridge Nat. Lab.

Aarhus Univ. Knudsen H. CERN Grafstrom P. Lund Univ. Hutton R. Manne Siegbahn Inst.of Phys. Stockholm Schnch R.H. Oak Ridge Nat. Lab. Data S. Krause H.F. Vane C.R.

Spokesman: Datz S. Contact: Vane C.R.

It is anticipated that heavy-ion colliders (RHIC and LHC) will be operationally limited by beam depleting charge- and mass-changing collisional processes. The strongest loss processes will arise from electromagnetic (EM) interactions occurring in peripheral collisions between the colliding ions. Electron capture from electron-positron pair production (vacuum capture) is expected to be a limiting process, along with a single-neutron and -proton stripping through EM dissociation. Studies of interactions of 160 GeV A Pb ions in thin solid targets were initiated in November 1994 and completed in Novemberl996. Measurements were made using the magnetic components of West Hall beam line H3 and detector signals from the WA98 collaboration experiment, together as as high-resolution magnetic spectrometer. Total energy losses for Pb ions in various thin target materials were obtained at high precision (0.1%) from shifts in peak positions for the transmitted ions. These energy loss data give stopping powers reduced from standard theory by as much as 15%, and in substantial agreement with effects ascribed to finite nuclear size. In the fall of 1996, 160 GeV A Pb ion vacuum capture measurements were made, incorporating improvements, especially in beam normalization and reduction of backgrounds, which substantially improved experimental uncertainty. By tuning the beam line for incident and transmitted one-electron lead ions, precise direct measurements of ionization were also performed. Results support ground-state vacuum capture cross sections very close to

References SPSLC/9S-16/P290, SPSLC/98-32/P290/Add.l 51 IONS/EL.CAPT WA99/2 the current best theoretical estimates for targets of Be, C, Al, Cu, Sn, and Au (e.g., 45 b ± 10% for Pb + Au), and indicate substantial capture of electrons into excited states which will survive in collider environment collisions and increase the effective loss rates. However, measured ionization cross sections for hydrogen-like Pb(ls) ions fall ~ 30% below theoretical calculations. Experiments were also performed in 1996 to determine cross sections for EM single-proton and single-, double-, and triple-neutron stripping of Pb ions in various light and heavy targets. These data are currently being analyzed. We note that our previous measurements of total Pb beam depletion through nuclear dissociation give cross sections approximately 20% in excess of results from well established theory.

NEXT PAGE(S) left BLANK

52 C«n

Experiment WA100 Exposure of Plastic Track Detectors to Relativistic Pb Beam for the Purpose of Providing Calibration for the DUBLIN-ESTEC Ultra Heavy Cosmic Ray Experiment which was Exposed for Sixty-Nine Months in Earth Orbit

54 WA100

Beam: Approved: 25/NOV/93 Status: Completed 31 /DEC/95

Exposure of Plastic Track Detectors to Relativistic Pb Beam for the Purpose of Providing Calibration for the DUBLIN-ESTEC Ultra Heavy Cosmic Ray Experiment Which was Exposed for Sixty-Nine Months in Earth Orbit

Dublin, Inst. for Advanced Studies, ESTEC, Noordwijk

Dublin, Inst. for Advanced Studies O'Sullivan D. Thompson A. ESTEC, Noordwijk Wenzel K.-P.

Spokesman: O'Sullivan D. Contact: O'Sullivan D.

Solid state nuclear track detectors which formed part of the Dublin-ESTEC ultra heavy cos- mic ray experiment aboard LDEF (Long Duration Exposure Facility) and which was deployed in Earth orbit for sixty-nine months, will be exposed to relativistic Pb ions. The experiment was the largest of its kind ever undertaken in space and has successfully accumulated more than fifteen times the world sample of cosmic ray nuclei in the region above Z = 70. The data include the first significant sample of cosmic ray actinide elements and is of major astrophysical importance. The total number of ultra heavy nuclei (Z > 70) in the Dublin-ESTEC sample is ~ 2800. The exposure will be very simple. A stack of detectors (20.5 cm x 26 cm x 3 cm in size) will be irradiated with a low density beam of Pb ions (a few hundred per cm2 would be ideal, but a wide range of densities and areas could be tolerated). The response of the detectors to these ions of known charge and velocity will be measured and the data obtained will be used to determine the charge spectrum of ultra heavy cosmic ray nuclei with high resolution.

References SPSLC/93-14/P37S WA101

Beam: Approved: 25/NOV/93 Status: Completed 31/DEC/96

Study of Various Processes with 160 A GeV Pb Beam

UC Berkeley

UC Berkeley He Yudong. Price B. Westphal A.

Spokesman: He Yudong

Ten modules of BP-1 glass detectors interleaved with various targets ranging from C to Pb were exposed to the 160 A GeV Pb beam in the November-December run of 1994 at CERN SPS. The experiment was carried out at normal incidence at a beam density of ~ 600 cm"2. The dimension of each plate of BP-1 glass was 50 mm x 50 mm x 1 mm. We etched the glass in 70% CH3SO3H at 50 °C or in 48% HF at room temperature. The charge threshold is found to be Zth ~ 68 and 70 respectively. Using the automated scanning and measurement system developed at Berkeley, we have demonstrated that the charge resolution for Pb ions is

We use this detector system to measure cross-sections for various processes in heavy ion colli- sions of 160 A GeV Pb with different targets. The following topics are currently under study:

1. Atomic Collisions of Heavy Ions: We measure cross-sections for electron capture and strip- ping of fully stripped Pb ions in our detectors and in various materials. These measurements permit a unique test of atomic collision theories in the ultrarelativistic regime. They are also of practical interest to RHIC and LHC as their beam lifetimes would be intrinsically limited by the electron capture from pair production. 2. Charge-Changing Fragmentation: A substantial fraction of ultrarelativistic heavy ion col- lisions result in charge-changing spallation of projectile nuclei in collisions involving both nuclear and electromagnetic interactions. We measure total cross-sections for the fragmen- tation of Pb in various targets. We also measure partial cross-sections for fragmentations into limited channels of charge losses from AZ = 1 to 14. 3. Charge-Pickup Interaction: We have identified tens of events in which the projectile nucleus increases its charge by one unit when it interacts with a target nucleus. The cross-sections for 160 A GeV Pb are found to be large in comparison with those measured at lower energies or for lighter projectiles. We also study the target dependence of the charge-pickup cross- section. References SPSLC/93-21/P277 57 Forward p region

00

\\& (10m)

Experiment WA102 A Search for Centrally Produced non-qq Mesons in Proton Proton Interactions at 450 GeV/c using the CERN Q. Spectrometer and GAMS-4000 OMEGA/CENTPROD WA102

Beam: HI Approved: 22/SEP/94 Status: Completed 31/AUG/96

A Search for Centrally Produced non-qq Mesons in Proton Proton Interactions at 450 GeV/c using the CERN Q Spectrometer and GAMS-4000

Annecy LAPP, Athens Univ., Bergen Univ., Brussels, IISN, Birmingham Univ., CERN, Dubna JINR, Oslo Univ., Serpukhov IHEP, Tsukuba, KEK

Annecy LAPP Peigneux J.P. Poulet M. Athens Univ. Spyropoulou-Stassinaki M. Vassiliadis G. Beigen Univ. Myklebost K. Olsen J.M. Brussels, IISN Binon F.G. Freie J.M. Stroot J.P. Birmingham Univ. Earl B. Evans D. Kinson J.B. Norman K. Venables M. Villalobos Baillie O. Votruba M.F. CERN Barberò D. Beusch W. French B.R. Jacholkowski A. Kirk A. Klempt W. Martinengo P. Quercigh E. Rotscheidt H. Sene M. Sene R. Dubna JINR Kulchitsky Y. Maljukov S. Minashvili I. Romanovsky V. Roumiantsev V. Russakovich N. Semenov A. Soloviev A. Tchlatchidze G. Oslo Univ. Danielsen K. Jacobsen T. Serpukhov IHEP Dolgopolov A.V. Donskov S.V. Inyakin A.V. Khaustov G.V. Kolossov V. Kondashov A.A. Lednev A.A. Polovnikov S.A. Polyakov V.A. Prokoshkin Yu.D. Sadovsky S.A. Samoylenko V.D. Shagin P.M. Shtannikov A.V. Singovsky A.V. Sugonyaev V.P.

Tsukuba, KEK Inaba S. Ishida T. Kinashi T. Nakagawa T. Shimizn H. Takamatsu K. Tsuru T. Yasu Y.

Spokesman: Kirk A. Contact: Singovsky A.V.

References SPSLC/94-22/P281 59 OMEGA/CENTPROD WA102

During the last decade evidence for non-qq mesons has grown due to experiments having high statistics in various decay modes. However there are still many channels which have promising signals but any definite conclusion is limited by the available statistics. In order to make a significant contribution to this field we propose to perform two 100 day runs combining the efficient multiphoton detection of GAMS-4000 with the good charged particle detection of the Omega Spectrometer to search for other non-qq mesons in the reaction pp —» pfX°p$ at 450 GeV/c. Although many final states will be studied those decaying to rjrj^r]' and TJ'T]' are of particular interest and the statistics in these channels will be greatly enhanced. This study will act as an important input in helping to understand non-perturbative QCD.

NEXT PAGE(S)

60 Vac. Chamber I Vac. Chamber II with crystal with crystal on goniometer on goniometer

DC1 DC6 E. M. Calorimeter

Z=0 40m 61m 65m 75m 77m 81m

NA43 experimental setup. Scintillators are designated by Sc, drift chambers by DC and deflection magnets by B. Hel etc. are Helium tanks (introduced to reduce the amount of material along the beam line) while C is a calibrated convertor and SSD the solid state detector.

Experiment NA43/2: Investigations of the Coherent Hard Photon Yields from (50-300) GeV/c Electrons/Positrons in the strong Crystalline Fields of Diamond, Si, and Ge Crystals CHANNELLING NA43/2

Beam: H2 Approved: 07/FEB/91 Status: Completed 20/APR/96

Investigations of the Coherent Hard Photon Yields from (50-300) GeV/c Electrons/Positrons in the Strong Crystalline Fields of Diamond, Si, and Ge Crystals

Aarhus Univ., CERN, Florence Univ./INFN, Univ. of Witwatersrand, Johannesburg, PHASE, Strasbourg, Torino Univ./INFN, Yerevan Pbys.Inst.

Aarhus Univ. Kirsebom K. Medenwaldt R. Mikkelsen U. Moller S.P. Sorensen A.H. Uggerhoj E. Worm T. CERN Elsener K. Florence Univ./INFN Ballestrero S. Sona P. Univ. of Witwatersrand, Johannesburg Connell S.H. Sellschop J.P.F. Vilakazi Z. PHASE, Strasbourg Hage-Ali M. Siffert P. Stoquert J.-P. Torino Univ./INFN Biino C. Yerevan Phys.Inst. Avakian R.O. Ispiiian K. Taroian S.P.

Spokesman: Uggerhoj E. Contact: Kirsebom K.

The aim of this experiment is to measure the influence of strong fields on QED-processes like: Emission of coherent radiation and pair-production when multi-hundred GeV electrons/positrons and photons penetrate single crystals near axial/planar directions. The targets will be diamond, Si, Ge and W crystals.

QED is a highly developed theory and has been investigated experimentally in great detail. In recent years it has become technically possible to investigate QED-processes in very strong electromagnetic fields around the characteristic strong field Eo = m2c3/eh = 1.32xlO16 V/cm. The work of such a field over the compton length equals the electron mass. The theoretical description of QED in such fields is beyond the framework of perturbation theory. Such fields are only obtained in laboratories for a) heavy ion collisions b) interactions of multi-GeV electrons

References SPSC/90-31/P234/Add.3, SPSLC/92-61/M512, SPSLC/93-30/M524 63 CHANNELLING NA43/2 with extremely intense laser fields and in oriented crystals. In fact it turns out that crystals are unique for this type of experiment. The point is that the probabilities of processes in axial/planar fields are determined by the magnitude of these fields in the particle's rest frame. iS So the strong field parameter x given by x — 7 E/Eo where E<> is given above, E is the local field from the crystals axis ( - 1011 V/cm) and 7 the Lorentz factor for the particle (105 - 106). So for multi-hundred GeV electrons/positrons x~values of one or more are possible. During the last years dramatic effects on radiation emission, pair production (pp) and shower formation has been found. Radiation is enhanced more than two orders of magnitude, pp is en- hanced around one order of magnitude and radiation lengths along axial directions are shortened 10-15 times compared to Bethe-Heitler values for shower formation. The dramatic enhanced emission could lead to a new 7-source. The photons should be polarized - investigations are in progress.

For investigations of the predicted strong field effects the experimental setup used by NA43 in the H2 beam of the North Hall is unique. The two drift chambers 40m apart on the incident side gives an angular resolution of 3-4 /xrad. There are two positions for crystal mounting on high precision goniometers inside dedicated vacuum chambers. In Vac. Chamber I one probes the crystal with e+/e~, in Vac. Chamber II with photons. These may be tagged with the combination of DC3, Bend3 and DC4. Crystal II may be cooled to liquid nitrogen temperature DC1-DC2-DC3 allows to measure the scattering taking place in crystal I. With C (=converter) and SSD is measured the average photon multiplicity. Finally the pair spectrometer represented by Bend4, DC5 and DC6 is used to determine single photon energies. The NA43 detector therefore is a multi-purpose setup in which may be studied many aspects of strong QED effects. In 1996 is studied pair production for 10-150 GeV photons in aligned crystals (Ge, W and Ir) both at room temperature and cooled to -180 °C. Also measured is radiation in aligned Ge crystals; photon multiplicities, single photon spectra and effects of radiative cooling on beam divergence. Our program on electromagnetic showers generated in crystals, is extended to include several Ge thicknesses, to measuring the shower profiles and to a new heavy compound crystal with Xo = 1 cm.

NEXT PAGE(S) I@ft BLANK

64 z=0 z=5m

Pa a Aerogel Multi-Particle Chamber- cerenkov Threshold Imaging Cerenkov /

—\ z=l Om z=15m z=20m

D: Dipole magnets Q. Superconducting Quadrupole Magnets CX; Cerenkov Beam Counter (35ps resolution) C Threshold Gas Ceienkov Counter H: Sdntillator Hodoscopes (60,50,60 vertical slats) UCAL: Uranium-Cu-Scintillator Calorimeter

Experiment NA44: A Focusing Spectrometer for One and Two Particles

66 IONS/FOC.SPECTR. NA44

Beam: H4 Approved: 09/FEB/89 Status: Completed 31/DEC/96

A Focusing Spectrometer for One and Two Particles

Brookhaven Nat.Lab., CERN, Columbia Univ., Copenhagen Niels Bohr List., Creighton Univ., Hiroshima Univ., Tsukuba, KEK, Los Alamos Nat.Lab., Lund Univ., Subatech, Nantes, Ohio State Univ., Tbilisi State Univ., Texas A&M Univ., Zagreb Rudjer Boskovic Inst.

Brookhaven Nat.Lab. Polychronakos V. CERN Bussmann K. Di Tote G. Fabjan C.W. Frans A. Hobser B.E. Hummel P. Malina R. Paic G. Pins F. Poniard G. Spegel M. Williams T. Columbia Univ. Dodd J.R. Leltchouk M. Medvedev A. Potekhin M. Willis W.J. Copenhagen Niels Bohr Inst. Beaiden I. Boggild H. Gaaidhoje J.J. Hansen A. Hansen 0. Cieighton Univ. Cherney M. Noteboom E. Hiroshima Univ. Esumi S. Kaimi K. Kaneta M. Kohama T. Maeda N. Nishimuia S. Ohnishi H. Sakaguchi A. SugitateT. Sumi Y. Tsukuba, KEK Kobayasbi T. Los Alamos Nat.Lab. Boissevain J. Fields D.E. Jacak B.V. Kopytine M. Simon-Gillo J. Sondheim W. Sullivan J.P. Xu N. van Hecke H. Lund Univ. Loistad B. Miyabayashi A. Soiensen J. Subatech, Nantes Erasmus B. Martin L. Pluta J. Ohio State Univ. Haidtke D. Humanic T.J. Jayanti R. Pandey S.U. Reichhold D.

Tbilisi State Univ. KvatadseR.

References SPSC/B8-3T/PS39, SPSC/S9-03/M439, SPSI/C/91-7/iM«0, SPSLC/91-22/M465, SPSLC/S3-22/MS21, SPSLC/96-34/MS83 67 IONS/FOC.SPECTR. NA44

Texas A&M Uiiiv. Hamelin M. Murray M. Wolf K. Zsgteb Ru^jer Boskovic Inst. Ferenc D. Ijubicic A. Jt. Tustonic T.

Spokesman: BoggUd H. Contact: Franz A.

The focusing spectrometer is a device based on existing magnets and proven technology that solves the problem of extracting physics in the high-particle-multiplicity environment of high energy heavy-ion collisions (from S on S up to Pb on Pb) as well as in proton-proton collisions. It sweeps a small central acceptance over interesting regions of phase space, thereby dealing with only a few particles at a time. Because of its resulting excellent momentum resolution, ability to identify particles (TT^ , JiT^, j?, p,

A system of Cerenkov counters together with the TOF system selects singles and pairs of identified particles and a Si-multiplicity counter provide information on the impact parameter of the collisions.

NEXT PAGE(S)

68 TPC coils NA45/CERES experimental setup with radial drift TPC

pad chamber UV detector 2 correction coils

mam coiis

W-shjeld

SiDC1/SiDC2 TPC radiator/drift gas

UV detector 1

multiplier array

TPC read-out chamber

-1 0 5m

Experiment NA45/2 Study of Electron Pair and Photon Production in Lead Gold Collisions IONS/EL.PAIR NA45/2

Beam: H8 Approved: 20/APR/95 Status: Data-Taking

Study of Electron Pair and Photon Production in Lead Gold Collisions

Brookhaven Nat.Lab., CERN, Darmstadt GSI, Dubna JINR, Heidelberg MPI, Heidelberg Univ., Rez, Nucl. Phys. lust. (NPI), Weizmann lust. Rehovot

Brookhaven Nat.Lab. Rehak P. CERN Schukraft J. Darmstadt GSI Biaun-Munzingei P. Hering G. Maiin A. Miskowiec D. Sharma Â. Stiller P.

Dubna JINR Agakichiev G. Chimanski S. Iourevitch V. Panebrattsev Y. Razine S. Savejjic N. Heidelberg MPI Ceretto F. Rak J. Slivova J. Wurm J.P. Heidelberg Univ. Appelshaeuser H. Baur R. Drees A. Ernst P. Esumi S. Glaessel P. Lenkeit B. Messer M. Pfeiffer A. Schmitz W. Specht H.J. Stachel J. Tilsner H. Voigt C. Wessels J.P. Wienold T.

Rez, Nucl. Phys. Inst. (NPI) Hrivnacova I. Kushpil V. Petracek V. Sumbera M. Weizmann Inst. Rehovot Cherlin A. Fraenkel Z. Gnaenski A. Milov A. Ravinovich I. Socol E. Tserruya I.

Spokesman: Stachel J. Contact: Schukraft J.

The NA45/CERES experiment investigates primarily the production of electron-positron pairs and of direct photons in proton-nucleus and nucleus-nucleus collisions. For electron-positron pairs the experiment studies the continuum in the mass region of about 0.05 to 2 GeV/c2 and the vector mesons Q, U>, and, 4>. Since for electromagnetic probes final state interactions are practically negligible these observables are unique for studying the evolution and dynamics of ultrarelativistic heavy-ion collisions from the hot and dense early stage where a quark-gluon plasma is expected to be formed to the final freeze-out stage when hadrons decouple.

The experiment also studies the spectral distributions of charged particles, their distribution relative to the reaction plane, and identified high momentum pions. Another topic of investi- gation are QED pairs produced in peripheral nuclear collisions. References SPSLC/94-1/P280, SPSLC/95-20/M542, 3PSLC/96-35.P280.Add.l 71 IONS/EL.PAIR NA45/2

The first phase of the experiment, NA45, has been concluded with two main results: i) There is a significant excess, by a factor of about 5, of dielectron pairs in the mass range between 0.2 and 1 GeV/c2 in S-Au collisions at central rapidities as compared to the hadronic background established in p-Be and p-Au collisions, ii) The measurement of photons in S-Au collisions by the conversion method provides an upper limit (90 % CL) of 7% for direct photons relative to photons from hadron decays.

For the Pb beam program the experiment is upgraded in steps (NA45/2). In a first stage the multiplicity- and rate-capability where increased and the experiment found that i) also in Pb-Au collisions there is an enhancement in the number of dielectron pairs comparable to what was found with the S-beam and ii) the enhancement grows much steeper than linearly with the charged particle multiplicity in the event. Driven by these results the experiment is upgraded further by the addition of a TPC to improve the momentum resolution.

The experimental set-up consists of a double spectrometer covering a region near mid-rapidity (2.1 < r\ < 2.7) with full azimuthal coverage. A set of silicon drift chambers (SiDCl/2) is used to reconstruct the vertex and to measure the polar and azimuthal angles of each produced particle. Electrons are identified in two Ring Imaging Cherenkov detectors (RICH). They operate at a threshold of 7=32 and are essentially blind to the produced hadrons. In a pad chamber downstream of the second RICH another spacepoint is measured for every particle. A first momentum measurement is derived from the deflection in azimuth in a magnetic field generated by two superconducting coils (main coils) as indicated by the dashed lines in the figure. In the upgrade, the pad chamber is replaced by a TPC continously tracking particles over 2m in a magnetic field generated by two large coils (TPC coils), again with opposite current directions to deflect particles mostly in azimuth. The aim is to achieve a mass resolution in the Q,u, region of 2%.

72 ST67 a) DT67 H3V/H H4H ,V3 HIV/H H2 FSM W2 W45

HS H6B9 n a Beam V4 Po Target P1P2P3 POB POC POD POE PO t- Abs 11 Abs t It Abs 11 SI Hl' S2H3'S3 H4'S4

-30 -20 -10 10 20 Distance from FSM-Centrc (m)

Fé HMU b) PPC6 PPC4.

BVU BVD SW MNP26 PPC2 SVH Magnetised Vacuum Pipe Target | PBC7 HMS

Pb Q34Q35 PBC1 PBC2 PBC4 PBC5 PBC3 PPC1 PBC6 PPC5 PPC3 ^1 VLG HLO Pb LG

30 40 50 60 70 80 Distance from FSM-Centre (m) I Chamber S Veto iHodoscope

a) Spectrometer, b) Muon Polarimeter

Experiment NA47 Measurement of the Spin-Dependent Structure Functions of the Proton and the Deuteron

74 Beam: M2 Approved: 06/APR/89 Status: Completed 30/SEP/96

Measurement of the Spin-Dependent Structure Functions of the Proton and the Deuteron

Amsterdam NIKHEF, Bielefeld Univ., Bochum, Ruhr-University, CERN, Dubna JINR, Freiburg Univ., GKSS - Geesthacht, Helsinki Univ. of Technology, Univ. of Houston, Istanbul, Bogazici Univ., Istanbul, Technical Univ., UCLA, Mainz Univ., Mons Univ.- Hainaut, Munich Univ., Nagoya Univ., Northwestern Univ., Saclay DAPNIA, Santiago de Compostela Univ., Warsaw, Soltan Inst. Nucl. Studies, Tel-Aviv Univ., Trieste Univ./INFN, Uppsala Univ., Virginia Poly./Univ., Blacksburg, Warsaw Univ., Yale Univ.

Amsterdam NIKHEF Dulya C. Ketel T.J. Kok E. ObersH J.E.J. Postma H. Sichtermann E.P. van Dantzig R. van Mid- delkoop G. Bielefeld Univ. Baum G. Kyynarainen J. Tripet A. Bochum, Ruhr-University Goertz S. Meyer W. Reicherz G. CERN Hautle P. Heusch C.A. Kroeger W. Niinikoski T.O. Radel G. Ryllart A. Stiegler U. Voss R.

Dubna JINR Kaiev A. Kisselev Yu. Krivokhyine V. Medved K. Nagajcev A. Peshekhonov D. Pose D. Savin I. Smirnov G. Freiburg Univ. Gilly H. Kessler H.-J. Landgraf U.

GKSS - Geesthacht Stuhrmann H. Willumeit R. Zhao J. Helsinki Univ. of Technology Berglund P. Ylostalo J. Univ. of Houston Mayes B. Pinsky L. Istanbul, Bogazici Univ. Arik E. Cuhadar T. Istanbul, Technical Univ. Akdogan T. Ozben C. Unel G.

References SPSC/88-47/P242, SPSLC/94-13/P242/Add.l, SPSLC/95-28/P242/Add.2 75 UCLA Derro B. Igo G. Whitten C. Mainz Univ. Bravai A. Kabuss E.M. Mallot G.K. Pietz J. Steinmetz A. von Hariach D. Mons Univ.- Hainaut Windmoldeis R. Munich Univ. Betev L. Haft K. Staude A. Vogt J.

Nagoya Univ. Hasegawa T. Hayashi N. Horikawa N. Ishimoto S. Iwata T. Kageya T. KisM A. Matsuda T. Miyaehi Y. Mori K. Ogawa A. Northwestern Univ. Miller D. Saclay DAPNIA Burtin E. Feinstein F. Frois B. Le Goff Jean-Marc Lehar F. Magnon A. Martino J. Perrot-Kunne F. Platchkov S. de Botton N. de Lesquen A. Santiago de Compostela Univ. Adeva B. Fernandez C. Gallas A. Garzon J.A. Gomez A. Gracia G. Lopez-Ponte S. Perez C.A. Pio M. Saborido J. Warsaw, Soltan Ins t. Nucl. Studies Nassalski J. Rondio E. Sandacz A. Wislicki W. Tel-Aviv Univ. Lichtensfcadt J. Sabo I. Trieste Univ./INFN Birsa R. Bradamante F. Bressan A. Clocchiatti M. Cranshaw J. Dalla Torre S. Giorgi M. Lamanna M. Martin A. Penzo A. Puntaferro R. Schiavon P. Simeoni F. Tessarotto F. Zanetti A. Uppsala Univ. Rodriguez M.

Virginia Poly./Univ., Blacksburg Crabb D. McCarthy J. Warsaw Univ. Badelek B. Kiryluk J. Kurek K. Polec J.

Yale Univ. Deshpande A. Dhawan S. Hughes V.W.

Spokesman: Hughes V.W. Contact: Le Goff Jean-Marc

The physics motivation of the experiments of the Spin Muon Collaboration is to better under- stand how the nucléon spin is built-up by its partons and to test the fundamental Bjorken sum rule. The spin-dependent stucture functions gi(x) of the proton and the deuteron are determined 76 from the measured cross section asymmetries for deep inelastic scattering of longitudinally polarized muons from longitudinally polarized nucleons. The experiment is similar to the NA2 one of the European Muon Collaboration in which the violation of the Ellis-Jaffe sum rule for the proton was found. The apparatus is the upgraded forward spectrometer which was used originally by the European and New Muon Collaborations. To minimize the systematic uncertainties the target contains two oppositely polarized cells, which were exposed to the muon beam simultaneously. For the experiments in 1991 and 1992 the original EMC polarized target was reinstalled. In 1993 a new polarized target was put into operation. It has higher cooling power, higher field homogeneity and longer target cells. Deuteron target material, in the form of deuterated butanol beads, was used in 1994 and 1995. Proton target material was used in 1993 and 1996, but in 1996 butanol was replaced by ammonia which provides a 30 % better dilution factor. Measurements of the transverse spin-dependent asymmetry were performed during the 1993 proton run and during the 1995 deuteron run. The beam polarization is either determined from the energy spectrum of the positrons from muon decay in flight or from the asymmetry in muon scattering from the polarized electrons in a parallel or anti-parallel magnetized iron foil.

The structure function gi(x) is measured in the range 0.003 < x < 0.7, which gives con- tributions to the first moments SoMa9i(x>Qo)dx = 0139 ± 0.006(stat.) ±0.010(syst.) and So:ooz9i(x>Ql)dx = °-041 ± 0.007(stat.) ±0.005(syst.) for the proton and the deuteron respec- tively. The results for the full moments from 0 to 1 depend on how the measurements are extrapolated down to x = 0. However, independently whether a Regge or a QCD like approach is used, the Ellis-Jaffe sum rule is violated and the Bjorken sum rule is confirmed. The work will continue in 1998 with a more detailed QCD analysis, studies of less inclusive channels, and the final publications.

77 =- proton E tagging: f - TOFwith o < 200 ps - 250 m Schematic 10' =- baseline drawing of the NA48 double -10-8 -6 -4 -2 0 2 4 6 8 10 Raon beams K12 lime(tagger) - time^rtodoscope) (nsj - not to scale

muonp 15ellpppfromSPS sweeping | @ 450 GeV magnets | f E A o t

-target Ks tagging bent counter crystal" decay region -J oo < vacuum tank, 100 m *-••—^ **>- -2 x 10 0.5 :12000 E : 0.45 10000 l- 1200 • 8000 =- r 0.4 •V-6000 =- 3000 •..4000 = 100mnn0 " ° 4 drift chambers 0.35 •\2000 f- ^20000 •.'• o - 10000 magnet , 0.3 •,.: 0.48 0.49 0.5 0.51 0.52 800 -- He tank -•' + 2 0 0.25 m(7i 7t;) for small (p,) [GeV] 0 50 100 150 hodoscope • 600 r Y energy spectrum [GeV] liquid-Krypton calorimeter • 0.2 hadron calorimeter- 0.15 -bkgd.fr.oni."- '','•'.'•,'•!••'•'•••''•'';/• ••.'•.'•• •'•'• 400 ~— muon counters - 0.1 ;'-decays';: •:'•.:".-•!:'•.• k-'/.'-V"- •'•'::'.•'•.• • ••''•'•'/• 200 - 0.05 ••'•.ry'KM-'-'-l-.' i ••.t'-'i*-^:.-iV:T. '.i •""•!•.'r-- '.-h -i: Data shown were reconstructed 0 0 iii i it 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0 0.2 0.4 0.6 0.8 1 1.2 on-line during a typical 12 hour (p,)2 [GeV2/c2] vs invariant 2-trock mass [GeV] energy/momentum for e - K ident. period in the 1997 run Experiment NA48: A Precision Measurement of e'/e in CP Violating K° -> 2rc Decays CP VIOLATION NA48

Beam: K12 Approved: 28/NOV/91 Status: Data-Taking

A Precision Measurement of e'/e in CP Violating K°-> 2TT Decays

Cagliari Univ./INFN, Cambridge Univ., CERN, Dubna JINR, Edinburgh Univ., Ferrara Univ./INFN, Florence Univ./INFN, Mainz Univ.-Inst.of Physics, Orsay h AL, Perugia Univ./INFN, Pisa Univ./Scuola Normale Superiore/INFN, CE A, DSM/DAPNIA, Saclay, University of Siegen, Torino Univ./INFN, Oestr. Akad. Wissensch. Vienna, Warsaw, Soltan Inst. Nucl. Studies

Cagliari Univ./INFN Lai A. Marras D. Musa L. Nappi A. Cambridge Univ. Bevan A.J. Gershon T.J. Hay B. Katvars S.G. Munday D.J. Needham M.D. Parker M.A. White T.O. Wotton S.A. CERN Bal F. Barr G.D. Bocquet G. Bourgeois F. Bremer J. Ceccucci A. Cogan J. Cundy D. Doble N. Fischer G. Formenti F. Funk W. Gagliardi F. Gatignon L. Gianoli A. Gonidec A. Grafstrom P. Hallgren B. Kubischta W. Lacourt A. Laverriere G. Linser G. Luitz S. Marchioro A. Mast M. Matheys J.P. Norton A. Orlic J.-P. Palestini S. Panzer-Steindel B. Schinzel D. Taureg H. Velasco M. Vossnack O. Wahl H. Wertelaers P. Wirrer G. Dubna JINR Hristov P. Kekelidze V.D. Madigozhin D. Mestvirishvili A. Molokanova N. Potrebenikov Yu.K. Tatishvili G. Tkatchev A. Zinchenko A. Edinburgh Univ. Boyle 0. Galegedera S. Knowles I. Main A. Martin V. Parsons H. Walker A.

Ferrara Univ./INFN Bettoni D. Bigoni S. Bonora G. Calabrese R. Chiozzi S. Dalpiaz P. Duclos J. Evangelisti F. Ferretti- Dalpiaz P. Formica A. Frabetti P.-L. Luppi E. Martini M. Melchiorri M. Milano L. Petrucci F. Porcu M. Savrie M. Florence Univ./INFN Bizzeti A. Calvetti M. Lenti M. Michetti A. Talamonti C. Mainz Univ.-Inst.of Physics Becker H.-G. Bluemer H. Coward D. Ebersberger C. Eppard M. Fox H. Geib K.-H. Hoffmann R. Kalter A. Kleinknecht K. Koch U. Koepke L. Othegraven R. Peters A. Renk B. Scheidt J. Schmidt J. Schoenharting V. Schue Y. Thomas J. Wilhelm R. Winhart A. Wittgen M.

References SPSC/90-22/P253, SPSC/90-39/P253 Add.I, SPSLC/91-58/M479, SPSLC/93-ll/MSlT, SPSLC/94-12/M533

79 CP VIOLATION NA48

Orsay LAL Baiiand G. Chollet J.-C. Crepe S. Fayard L. Iconomidou-Fayard L. Martin-Chassard G. Ocariz J. Seguin-Moreau N. Unal G. Vattolo D. Wingerter I. de la Taille C. Perugia Univ./INFN Anzivino G. Babucci E. Cenci P. Imbergano £. Lubrano P. Papi A. Pepe M. Piccini M. Pisa Univ./Scuola Normale Snperiore/INFN Avanzini G. Basti A. Bertanza L. Bigi A. Calafiuia P. Carosi R. Casali R. Cerri C. Cirilli M. Costantini F. Fantechi R. Fidecaro F. Galeotti S. Giudici S. Gorini B. Laico F. Magazzu G. Mannelli I. Pagani P. Pierazzini G.M. Raffaelli F. Rizzi L. Salutini P. Sozzi M. Tripiccione R. Zaccarelli L. CEA, DSM/DAPNIA, Saday Anvar S.. Bugeon F. Cheze J.-B. De Beer M. Debu P. Fallou J.L. Granier R. Heitzmann J. Le Provost H. Louis F. Mazzucato E. Mur M. Peyaud B. Schanne S. Tarte G. Turlay R. Vallage B. University of Siegen Augustin I. Bender M. Holder M. Otto W. Roschangar M. Schwarze I. Shoefer B. Ziolkowski M. Torino Univ./INFN Arcidiacono R. Biino C. Cester R. Marchette) F. Menichetti E. Pastrone N. Valanzano I. Oestr. Akad. Wissensch. Vienna Dibon H. Jeitler M. Markytan M. Mikulec I. Neuhofer G. Pernicka M. Taurok A. Widhalm L. Warsaw, Soltan Inst. Nucl. Studies Chlopik A. Guzik Z. Nassalski J. Rondio E. Szleper M. Wislicki W. Wronka S.

Spokesman: Bluemer H. Contact: Wahl Heinrich

The prime goal of the experiment is to measure the CP violating parameter Re(e'/e) with an accuracy of 2 10~4. The experiment uses two nearly collinear Ks and KL beams produced concurrently and distinguished by tagging the protons producing the Ks component. In this way the double ratio R of decay rates of the KL and Ks into two pions,

is measured with minimal systematic uncertainties. Charged mode decays K —» ir+ir~ are measured in a magnetic spectrometer with a central dipole magnet and two pairs of large and high precision drift chambers on each side. Neutral mode decays K -* -Koir° are recorded in a 10 m3 homogeneous liquid krypton calorimeter. This novel detector has fine transverse segmentation (2x2) cm2, energy resolution better than 1% above 10 GeV shower energy and sub-nanosecond time resolution. Data from all sub-detectors are collected fully pipelined, merged locally and sent from the experiment site to the computer centre over a fast optical network.

The first data taking period for Re(e'/e) in 1997 has yielded more than half a million KL -> 2TT° decays in about 40 days. Detector and central recording performance were very satisfactory. A tenfold increase in event statistics is expected in the next two years.

80 T0E-L2 MTPC-L VERTEX MAGNETS TOE- LI

00 BPD1 BPD2 T BEAM J L •e

SI TOF- R1 n MTPC-R RCAL COLL VCAL T0F-R2

I I I T I I 5m

Experiment NA49: Large Acceptance Hadron Dectector for an Investigation of Pb-induced Reactions at the CERN SPS IONS/TPC-HADRONS NA49

Beam: H2 Approved: 18/SEP/91 Status: Data-Taking

Large Acceptance Hadron Detector for an Investigation of Pb-induced Reactions at the CERN SPS

Athens Univ., Birmingham Univ., Budapest Res.Inst. of Physics (KFKI), Bratislava, Comenius Univ., CERN, Cracow Inst.Nucl.Phys., Darmstadt GSI, UC Davis, Dubna JINR, Frankfurt /Main Univ., Univ. of Houston, Lawrence Berkeley Lab., UCLA, Marburg Univ., Munich MPI, Yale Univ., Warsaw Inst.Nucl.Studies, Warsaw Univ., Univ. of Washington, Seattle, Zagreb Rudjer Boskovic Inst.

Athens Univ. Daskalakis G. Kapogiannis A. Panagiotou A. Petridis A. Vassiliou M. Birmingham Univ. Barnby L.S. Barton B. Blyth CO. Jones P.G. Nelson J.M. Squiei G. Yates T.A. Zybert R.

Budapest Res.Inst. of Physics (KFKI) Csato P. Fodor Z. Gal J. Hegyi S. Levai P. Molnar J. Palla G. Sikler F. Szentpetery I. Sziklai J. Vesztergombi G. Zimanyi J. Bratislava, Comenius Univ. Bracinik J. Ftacnik J. Hlinka V. Ivanov M. Janik R. Pikna M. Sitar B. Strmen P. Szarka I. CERN Baechler J. Fischer E.G. Haider S. Wenig S. Cracow Inst.Nucl.Phys. Bartke J. Gladysz E. Kowalski M. Rybicki A. Stefanski P.

Darmstadt GSI Bock R. Brockmann R. Eschke J. Frankenfeld U. Lynen U. Markert C. Pestov Y. Roland C. Sandoval A. Sann H. Schmidt R. Stelzer H. Woerner A. UC Davis Brady F.P. Cebra D. Wood L.

Dubna JINR Afanasiev S.V. Kolesnikov V.I. Malakhov A.I. Melkumov G.L. Semenov A.Yu. Frankfurt/Main Univ. Berger J. Billmeier A. Bormann C. Buncic P. Flierl D. FokaY. Gabler F. Gazdzicki M. Guenther J. Oldenburg M. Poziombka S. Renfordt R. Roehrich D. Roland G. Schmischke D. Stock R. Stroebele H.

Univ. of Houston Empl T. Mayes B. Pinsky L.

References SPSLC/91-31/P264, SPSLC/91-52/P26

Lawrence Berkeley Lab. Bieser F. Cooper G. Huang I. Jacobs P. Margetis S. Nystrand J. Odyniec G. Porter J. Poskanzer A. Ritter H.-G. Sakrejda I. Wang F. Wieman H. Xu Nu. UCLA Betev L. Igo G. Toy M. Trentalange S. Whitten C. Marburg Univ. Cristinziani M. Eckhardt F. Friese V. Henkel T. Mischie A. Puehlhofer F. Rueckwardt A. Struck C. Munich MPI Eckardt V. Freund P. Kadya K. Mock A. Sammer T. Schaefer E. Schmitz N. Schoenfelder S. Seyboth P. Yale Univ. Harris J. Lasiuk B. Smiinov N. Ullrich T. Warsaw Inst.Nucl.Studies Bialkowska H. Warsaw Univ. Grebieszkow J. Retyk W. Skrzypczak E.

Univ. of Washington, Seattle Bichsel H. Carr L. Cramer J.G. Prindle D.J. Reid J. Trainor T.A. Weerasundara D. Zagreb Rudjer Boskovic Inst. Ferenc D. Susk T. Vranic D.

Spokesman: Seyboth P. Contact: Wenig S.

Experiment NA49 measures charged particle and neutral strange particle production over a large part of phase space in Pb and p beam reactions. The main aim is the search for evidence of the deconfinement transition predicted by QCD for matter of sufficient energy density. The transient existence of a deconfined phase in the early stage of the collision is expected to modify the particle spectra and composition, the correlations and the space-time evolution of the final state as compared to a scenario of confined hadronic matter. In addition to high precision inclusive measurements of these quantities, the large particle multiplicity in Pb-I-Pb collisions and the wide acceptance of NA49 allow for the first time to measure the event by event fluctuations of observables like mean transverse momentum or temperature, the K/TT ratio, and the multiplicity. In order to study the effects of normal nuclear matter p+p and p+nucleus collisions are measured for comparison. The latter data will provide information on these reactions of yet unavailable precision and detail.

The detector of NA49 is a large acceptance magnetic spectrometer with dE/dx and time of flight measurement. The beam particle trajectory is accurately determined by small propor- tional chambers (BPD's). Two time projection chambers (VTPC1,2 of 3m3 each) in large aperture (lm gap) analysis magnets of 4.5Tm bending power each and two TPC's downstream of the magnets (MTPCL,R of 20m3 each) determine the trajectories and the specific energy loss dE/dx (4-5% accuracy) of charged particles. The TPC's use a slow drift-velocity low-diffusion gas mixture of Ne/CO2 90:10 (VTPC's) and Ar/CO2/CH4 90:5:5 (MTPC's) in order to opti- mise tracking accuracy and 2-track resolution. Time of flight is measured by two scintillator tile walls (TOF-L1,TOF-R1) of 891 elements each and 60-70ps time resolution and by two

84 IONS/TPC-HADRONS NA49 scintillator grids (TOF-L2,TOF-R2) of 90ps time resolution. Particle identification over a wide momentum range is accomplished by combining the information from dE/dx and TOF. A cell structured ring calorimeter (RCAL) measures the transverse energy flow and event anisotropy. A forward calorimeter (VCAL) shielded by a collimator (COLL) detects the energy of the spectator nucleons in Pb beam collisions and allows to trigger on the impact parameter of the reaction. Pestov counter time of flight arrays are under construction and will be placed at the sides of VTPC1 to extend the acceptance for KK interferometry and meson production studies. A special multiplicity detector around the target has been built and will be used to select the impact parameter in p-nucleus collisions at the trigger level.

85 B

/ / NA10 7 subtargets | spectro

Active target Mult, detector E.m. calo BeO preabsorber

-10 0 10 20 30 40 50 60 70 SO cm

PC 5 6 7

BH Hadron absorber Rl R2 Toroidal magnet R3 R4P2 7r i I I L- J u ~0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 m

Experiment NA50 Study of Muon Pairs and Vector Mesons Produced in High Energy Pb-Pb Interactions

Top: Target Region

Bottom: General Layout BH: Beam Hodoscope ZDC: Zero-Degrees Calorimeter (W, quartz fibres) PC 1-8: Proportional Chambers R1-4, P1-2: Trigger Horoscopes

86 DIMUONS NA50

Beam: P61 Approved: 06/FEB/92 Status: Data-Taking

Study of Muon Pairs and Vector Mesons Produced in High Energy Pb-Pb Interactions

Annecy LAPP, Bucharest, Last, for Atomic Physics, Cagliari Univ./INFN, CERN, LPC, Univ. Clermont-Ferrand/CNRS-IN2P3, Lisbon LIP, Moscow, Inst. Nucl. Research (JNR), IPN, Univ. Paris-Sud/CNRS-IN2P3, Orsay, LPNHE, Ecole Poly/CNRS-IN2P3, Palaiseau, Torino Univ./INFN, IPN, Univ. Lyon/CNRS-IN2P3, Villeurbanne, Yerevan Phys.Inst.

Annecy LAPP Baglin C. Bussieie A. Bucharest, Inst. foi Atomic Physics Alexa C. Besliu C. Boldea V. Constantinescu S. Dita S. Cagliari Univ./INFN Cicalo C. De Falco A. Macciotta P. Masoni A. Puddu G. Seici S. Temniiov P. Usai G. CERN Louienco C. Morsch A. Ropotar I. Scomparin E. Sonderegger P.

LPC, Univ. Clermont-Ferrand/CNRS-IN2P3 Baldit A. Castor J. ChambonT. Cheviot I. DevauiA. Espagnon B. FargeiiJ. Force P. Mouigues S. Saturnini P. Lisbon LIP Abreu M.C. Bordalo P. Casagiande L. Cruz J. Quintans C. Ramos S. Shahoyan R. Silva S. Vale C. Moscow, Inst. Nucl. Research (INR) Filippov S.N. Gavrilov Y.K. Golubeva M.G. Guber F.F. Karavicheva T.L. Kurepin A.B. Shileev K.A. Topilskaya N.S.

IPN, Univ. Paris-Sud/CNRS-IN2P3, Orsay Astruc J. Cornets M.-P. Gerschel C. Jouan D. Le Bornée Y. MacCormick M. Tarrago X. Willis N. LPNHE, Ecole Poly/CNRS-IN2P3, Palaiseau Chaurand B. Fleuret F. Gonin M. Kluberg L. Petiau P. Romana A. Torino Univ./INFN Alessandro B. Arnaldi R. Beole S. Chiavassa E. Dellacasa G. Demarco N. Gallio M. Giubellino P. Idzik M. Marzari Chiesa A. Masera M. Musso A. Piccotti A. Prado da Silva W.L. Ramello L. Rato Mendes P. Riccati L. Sartori S. Sitta M. Soave C. Vercellin E. IPN, Univ. Lyon/CNRS-IN2P3, Villeurbanne Bedjidian M. Bellaiche F. Cheynis B. Drapier O. Ducroux L. Grossiord J.Y. Guichard A. Haroutu- nian R. Jacquin M. Ohlsson-Malek F. Pizzi J.R.

References SPSLC 91-5S/P265, SPSLC 91-S5/P26S/Rev., SPSLC/96-29/M581, SPSC/97-22/P265/Add.l

87 DIMUONS NA50

Yerevan Phys.Inst. Atayan M. Danielyan V. Grigorian A. Gulkanyan E. Hakobyan R. Mehrabyan S. Vardanyan H.

Spokesman: Kluberg L. Contact: Musso, A.

The experiment studies dimuons produced in Pb-Pb and p-A collisions, at nucleon-nucleon cm. energies of y/s = 18 and 30 GeV respectively. The setup accepts dimuons in a kinematical range roughly defined as 0.1 < ye.m, < 1.0 and MT > lGeV/c, and stands maximal luminosity (5 10T Pb ions and 107 interactions per burst). The physics includes signals which probe QGP (Quark-Gluon Plasma), namely the , 3/ip and ' vector mesons and thermal dimuons, and reference signals, namely the (unseparated) p and w mesons, and Drell-Yan dimuons. The experiment is a continuation, with improved means, of NA38, and expands its study of charmonium suppression and strangeness enhancement.

The muons are measured in the former NA10 spectrometer, which is shielded from the hot target region by a beam stopper and absorber wall. The muons traverse 5 m of BeO and C. The impact parameter is determined by a Zero Degree Calorimeter (Ta with silica fibres). Energy dissipation and particle production are measured by an Electromagnetic Colorimeter (Pb and scintillating fibres) and a Multiplicity Detector (Si strips).

NEXT PAGSSS) left

88 NA52 beam spectrometer

TOFO TOF1 BO TOF2 Bl TOF3 TOF4 B2 TOF5 V V V T4Box CO Cl CEDAR C2

10 o Pb Ions

TL2 SEM /\ \ Calorimeter TL1 WIT W2T W2S W3S W3T W4T W5T 144m 82m 141m 78m- 79m-

Experiment NA52 A Strangelet and Particle Search in Pb-Pb Collisions NEWMASS NA52

Beam: H6 Approved: 30/JUN/92 Status: Data-Taking

A Strangelet and Particle Search in Pb-Pb Collisions

Bern Univ., CERN, Annecy LAPP, Helsinki Univ., Paris College de France

Bern Univ. Ambrosini G. Arsenescu R. Beck H. Borer K. Gerber B. Kabana S. Klingenberg R. Lehmann G. Mommsen R. Moser U. Pretzl K. Schacher J. Weber M. CERN Dittus F. Elsener K. Lohmann K.D. Annecy LAPP Baglin C. Bussiere A. Guillaud J.P. Helsinki Univ. Linden T. Tuominiemi J. Paris College de France Gorodetzky Ph.

Spokesman: Pretzl K. Contact: Ambrosini G.

We propose to search for long-lived massive strange matter particles, the so-called "strangelets", in Pb-Pb collisions at CERN. In this experiment, we intend to look for positively and nega- tively charged massive objects at 0° production angle, using the H6-beamline in the North Experimental Area as a charged-particle spectrometer. The strangelets will be identified by the measurement of their rigidity R in the spectrometer, their velocity, and their charge. The velocity will be determined from the time-of-flight (TOF) measurements provided by TOF scintillation counter hodoscopes positioned along the beam spectrometer. A hadron calorimeter will be used to complement the momentum measurement with the spectrometer by an independent energy information, thus providing redundancy for effective background rejection. The interesting charge and mass range (5 < m < 120 GeV/c2) of the stangelets can be covered quite effectively by two settings of the beam spectrometer with the rigidities R = 200 GV and R = 100 GV. Assuming a distance of 550 m between the production target and the last counters in the beam spectrometer, the stangelets should have a lifetime -yr > 2 10~6 s in order to be detected. It is the aim of the experiment to reach a detection sensitivity for strangelets of 10~9 to 10"10 per interaction.

We further propose to investigate particle production in relativistic heavy ion collisions with emphasis on antibaryon (antiproton, antideuteron) production by measuring their production yields over 2 units of rapidity each and at production angles from 0 to 12 mrad. The particles will be identified by means of CEDAR and threshold Cerenkov counters, and by TOF measurements. References SPSLC/92-16/P268, SPSLC/95-72/M570 91 AIR GAP

BEAM P265 VACUUM BEAM LINE DIMUON SPECTROMETER

10 Au OR Co TARGET

TARGET PROFILE

Experiment NA53 Electromagnetic Dissociation of Target Nuclei by 208pb Projectiles NA53

Beam: PB Approved: 15/APR/93 Status: Data-Taking

Electromagnetic Dissociation of Target Nuclei by 208Pb Projectiles

Ames, Iowa State Univ.

Ames, Iowa State Univ. Hill J.C. Hoversten R. Wohn F.K.

Spokesman: Hill J.C. Contact: Hill J.C.

The purpose of this experiment is to study the process of electromagnetic dissociation (ED) that occurs at impact parameters large enough so that there is no nuclear interaction. In these cases strong electromagnetic fields are produced for a short time at the nucleus. For large charges and ultrarelativistic energies, the intense electromagnetic pulse produces cross-sections much larger than the total hadronic cross-section. These effects place significant constraints on the storage times of the heavy ion beams planned for RHIC and LHC.

In this experiment we measure the cross-sections for the one- and two-neutron removal processes resulting from the interaction of 160 GeV/nucleon Pb beams on Au and Co targets. Thin Au targets were bombarded in the beam line of the dimuon spectrometer. Gamma rays from the residual nuclides produced in the bombardment were measured to determine the saturation activities of 196Au and 195Au resulting from ED of the Au target. This along with cross-sections for deep spallation products will enable us to determine ED cross-sections for one- and two- neutron reactions from Au. In the future additional bombardments using Co targets will enable us to observe large ED effects in a low Z target.

References SPSLC/92-67/P273 93 —iconciet-blucks

concrct biuck (-^ monitor (I"e+Ni) Inrgels aiul monitors (F-'e+Ni)

Figure 1: Experimental set-up

10"

— total produktion — spallation -- muon capture — fast muons — U/Th-background 10"

,10" o CO 10"

10"

10"'

10"' 10 100 1000 depth z [mwe]

Figure 2: Calculated in situ production of 2GA1 in quartz as function of depth in inwe (meter water equivalent) taking into account spallation, reactions with stopped and fast unions and U/Th induced background reactions. For a0 a value of 30 //barn was chosen in order to describe experimental data.

Experiment NA54 Determination of Cross-Sections of Fast-Muon-Induced Reactions to Cosmogenic Radionuclides

94 NA54

Beam: M2 Approved: 20/APR/95 Status: Data-Taking

Determination of Cross-Sections of Fast-Muon-Induced Reactions to Cosmogenic Radionuclides

Grenoble ILL, Munich TU, Zurich ETH

Grenoble ILL Neumaier S. Munich TU Hagner T. Heisingei B. Niedermayer M. Nolte E. Oberauer L. Schoenert S. Zurich ETH Kubik P.W.

Spokesman: Nolte E. Contact: Heisinger B.

We propose to measure cross-sections for fast muon-induced production of radionuclides. Firstly to study the contribution of fast-muon-induced reactions to the in-situ production of cosmogenic radionuclides in the lithosphere. Concrete is used to simulate the rock and to generate a secondary particle shower. The reaction channels to be measured are: C to 10Be, 0 to 10Be and 14C, Si to 26A1, S to 26A1, Ca to 36C1, Fe to B3Mn and 205Tl to 2OSPb. The energy dependent cross-section can be described by one single parameter cr0 and the energy dependence E " on the mean energy E. The irradiations of the targets is done at CERN. The produced radionuclides are measured by accelerator mass spectrometry in Munich and Zurich.

Secondly, muon induced signals can be a major source of background in experiments with low event rates located deep underground. We intent to study the produced radioactivity by fast- muon-induced reactions in a liquid scintillation detector. Our main interest is the measurement of the cross sections for 12C to nC and 7Be. In addition we will study the produced radioactivity in targets of Saphire(Al203) and Cu for a cryogenic dark matter detector.

References SPSLC/95-8/P2S6 95 NA 55 - Schematic of the detector layout

M2 muon beam H6

2lE SI /A

1.35m N3 Nl HV

N2

5m 2nd'distance, for high ener Node- pot to scale ,'' neutron measurement

Nl to N3 TOF counters'","withNE213.scin&Uatof,'20 cm dia, X 20 cm L

SI to S3 Charged particle ID, thin plastic scintillator. 20cmX20cm

H6 SMC Beam muon counter, provides TOF stop

HV Beam Muon Halo veto, thin plastic scintillator

Experiment NA55 Investigation of Fast Neutron Production by 100 to 250 GeV Muon Interaction on Thin Targets

96 NA55

Beam: M2 Approved: 08/FEB/96 Status: Completed 30/JUN/96

Investigation of Fast Neutron Production by 100 to 250 GeV Muon Interactions on Thin Targets

Univ. of Alabama, Tuscaloosa, Berlin, Hahn-Meitner Inst., CALTECH, Pasadena, CERN, Neuchatel Univ., Stanford Univ.

Univ. of Alabama, Tuscaloosa Busenitz J. Berlin, Hahn-Meitner Inst. Hilscher D. Jahnke U. CALTECH, Pasadena Boehm F. Mascaienhas N. Vogel P. Yang S. CERN Wong H. Neuchatel Univ. Paic A. Vuilleumier J.-L. Stanford Univ. Gratta G.

Spokesman: Mascarenhas N. Contact: Wong Henry Tsz-King

The production of fast (1 MeV - 1 GeV) neutrons in high energy muon-nucleon interactions is poorly understood. Yet it is essential to the understanding of the background in many underground neutrino experiments and, in particular, may hold relevance for the atmospheric neutrino anomaly. We propose an experiment to investigate fast neutron production using the M2 muon beam at the CERN SPS.

References SPSLC/95-62/P293 97 T0F1 BO TOF2 Bl TOF3 TOF4 B2 TOF5 CO Cl CEDAR C2 i

A \ / Calorimeter Target WIT W2T W2S W3S W3T W4T W5T

•144m J— 82m—I- 141m J—78m—*—79m- -524m-

Measurement of Pion and Kaon Fluxes Below 60 GeV/c Produced by 450 GeV/c Protons on a BerylUum Target

98 Beam: H6 Approved: 08/FEB/96 Status: Completed 31/MAY/96

Measurement of Pion and Kaon Fluxes Below 60 GeV/c Produced by 450 GeV/c Protons on a Beryllium Target

The SPY Collaboration

Aquila Univ./INFN, Bari Univ./INFN, Bern Univ., CERN, Florence INFN, Frascati Nat.Lab. INFN, Harvard Univ., Helsinki Univ., Louvain Cath. Univ., Melbourne Univ., Milan Univ./INFN, Naples Univ./INFN, Padova Univ./INFN, Pavia Univ./INFN, Pisa Univ./INFN, Sydney Univ.

Aquila Univ./INFN Cavanna F. Piano Moitari G. Bari Univ./INFN Cassol F. Catanesi M.G. Radicioni E. Bern Univ. Ambrosini G. Arsenescu R. Beringer J. Borer K. Kabana S. Klingenberg R. Lehmann G. Moser U. Pretzl K. Schacher J. Stoffel F. Weber M. CERN Biino C. Dittus F. Elsener K. Grant A. Linssen L. Tsesmelis E. Florence INFN Marchionni A. Frascati Nat.Lab. INFN Casagrande F. Mannocchi G.P. Picchi P.

Harvard Univ. Daniels D. Mishra S. Helsinki Univ. Linden T. Tuominiemi J. Louvain Cath. Univ. Bernier K. Brooijmans G. Gregoire G. Melbourne Univ. Moffitt L. Tovey S.

Milan Univ./INFN Bonesini M. Bonivento W. Calvi M. Ferrari P. Negri P. Pullia A. Ragazzi S. Redaelli N. Tabarelli de Fatis T. Terranova F. Tonazzo A.

References SPSLC/96-01/P294/Rev. 99 Naples Univ./INFN Palladino V. Sonentino S. Padova Univ./INFN Collazuol G.M. Guglielmi A. Pietropaolo F. Pavia Univ./INFN Cattaneo P. Ferrari R. Montanari C. Pisa Univ./INFN De Santo A. Sergiampietri F. Sydney Univ. Godley A. Soler P.

Spokesman: Ragazzi S. Contact: Tsesmelis E./Palladino V.

We propose to perform a measurement of the production rates of TT'S and K's and their ratio below 60 GeV/c from 450 GeV/c protons hitting a Be target. These data are of great impor- tance for the correct evaluation of the neutrino flux at the present and future SPS neutrino experiments. The apparatus of the NA52 experiment has the capability of performing the mea- surement, using about two weeks of proton beam time and a target closely resembling the one used in the current SPS neutrino beam line.

100 100

o 50 o BEAM

o

i r i i I III 50 100 150 Xl(cm) I I I 200 cm I I

Experiment NA57 Study of Strange and Multistrange Particles in Ultrarelativistic Nucleus-Nucleus Collisions IONS/HYPERONS NA57

Beam: Approved: 03/OCT/96 Status: Preparation

Study of Strange and Multistrange Particles in Ultrarelativistic Nucleus-Nucleus Collisions

Bari Univ./Polytecbnic/INFN, Bergen Univ., Birmingham Univ., Bratislava, Comenius Univ., Catania Univ./INFN, CERN, Kosice, IEP Slovak Ac. Sci & Safarik U., Legnaro Nat.Lab./INFN, Oslo Univ., Padova Univ./INFN, Prague, FZU-Inst. of Phys. Acad. of Sci., Rome Univ.I/INFN, Salerno Univ./INFN, St. Petersburg, State Univ. Inst.of Phys, Strasbourg CRN/ULP, Univ. Utrecht and NIKHEF

Bari Univ./Polytechnic/INFN Caliandio R. Cord F. Di Bari D. Elia D. Fini R.A. Ghiaini B. Jacholkowski A. Lenti V. Manzari V. Nappi E. Navach F. Posa F. Saladino S. Tomasicchio G. Beigen Univ. Fanebust K. Helstrup H. Thorsteinsen T.F. Birmingham Univ. Bloodworth I.J. Evans D. Jones G.T. Jovanovic P. Kinson J.B. Kiik A. Norman P.I. Thompson M. Tomen G.D. Villalobos Baillie 0. Votniba M.F. Bratislava, Comenius Univ. Ftacnik J. Lietava R. Pisut J. Pisutova N. Catania Univ./INFN Badala A. Barbera R. Gulino M. Palmen A. Pappalardo G.S. Riggi F. Russo A.C. CERN Beker H. Campbell M. Cantatore E. Carena W. Divia R. Formenti F. Heyne E.H.M. Holme A.K. Klempt W. Knudson K. Kralik I. Leistam L. Piuz F. Quercigh E. Safarik K. Snoeys W. Vande Vyvre P. Vascotto A.

Kosice, IEP Slovak Ac. Sci & Safarik U. Fedorisin J. JuskoA. Kocper B. Luptak M. Martinska G. Pastircak B. Sandor L. Urban J. VrlakovaJ. Legnaro Nat.Lab./INFN Ricci R.A. Vannucci L. Oslo Univ. Lovhoiden G. Tveter T.S. Padova Univ./INFN Antinori F. Carrer N. Morando M. Pellegrini F. Segato G. Prague, FZU-Inst. of Phys. Acad. of Sci. Böhm J. Piska K. Staroba P. Stastny J. Zavada P.

References SPSLC/96-40/P300 103 IONS/HYPERONS NA57

Rome Univ.I/INFN Di Liberto S. Mazzoni M.A. Meddi F. Salerno Univ./INFN Grella G. Guida M. Romano G. Rosa G. Viigili T. St. Petersburg, State Univ. Inst.of Phys Feofilov G.A. Kolojvari A.A. Stolyarov O.I. Tsimbal F.A. Tulina T.A. Valiev F.F. Vinogradov L.I. Strasbourg CRN/ULP Michaloii A. Michalon-Mentzer M.E. Univ. Utrecht and NIKHEF Kamermans R. Kuyer P. de Haas A.P. van Eyndhoven N. van den Brink A.

Spokesman: Antinori F. Contact: Quercigh E./Manzari V.

The goal of the experiment is to study the production of strange and multi-strange particles in nucleus-nucleus collisions. This study was initiated at the OMEGA spectrometer, where three ion experiments have been performed: WA85 (S-W collisions at 200 A GeV/c), WA94 (S-S collisions at 200 A GeV/c) and WA97 (Pb-Pb collisions at 160 A GeV/c).

The experiment aims at extending the scope of WA97 by:

- investigating the beam energy dependence of the enhancements of multi-strange particle production reported by the previous experiments, and by - determining the baryon density at central rapidity from the measurement of positive and negative multiplicities and correlating this information with the strangeness yields.

The apparatus consists mainly of silicon pixel detector planes, both for the tracking telescope and for the multiplicity detection system.

NEXT PAG£(S) left &L&M&

104 COMPASS -- setup 1/97

HCAL1 muon setup HCAL2

I SM2 RICH 2 I

•i- t I T \ ECAL2 H-wall 2 ECAL1 target

hadron setup

Experiment NA58 COMPASS - COmmon Muon and Proton Apparatus for Structure and Spectroscopy COMPASS NA58

Beam: Approved: 06/FEB/97 Status: Preparation

COMPASS COmmon Muon and Proton Apparatus for Structure and Spectroscopy

Bielefeld Univ., Bochum, Ruhr-University, Bonn Univ., Bristol Univ., Brussels, IISN, CERN, Chiba Univ., Dubna JINR, Erlangen-Nuernberg Univ., Freiburg Univ., Heidelberg MPI, Heidelberg Univ., Helsinki Univ. of Technology, Mainz Univ., Miyazaki Univ., Mons Univ.- Hainaut, Moscow State Univ. NPI, Moscow, Last. Nucl. Research (INR), Moscow Lebedev Phys.Inst., Munich Univ., Munich TU, Nagoya Univ., Osaka City Univ., Protvino IHEP, Tohoku Univ. Sendai, Tei-Aviv Univ., Torino Univ./INFN, Trieste Univ./LNFN, Tsukuba, KEK, Warsaw, Soltan Inst. Nucl. Studies, Yamagata Univ., Zurich Univ.

Bielefeld Univ. Baum G. Gehring R. Tripet A. Bochum, Ruhr-University Goertz S. Meyer W. Reicherz G. Bonn Univ. BarnettB.M. BisplinghoffJ. Eversheim D. Hinterberger F. JohnR. Kalinowsky H. Klein F. Klempt E. Maschuw R. Strassburger Chr. Ziegler R. Bristol Univ. McKennan S.L. Smith V.J. Brussels, IISN Stroot J.P. CERN Bressan A. Mallot G.K. Wiedner U. Chiba Univ. Kawai H. Dubna JINR Alexakhin V.Yu. Alexeev G.D. Artemov V. Finger M. Finger M. Jr. Gavrischchuk O. Gortchakov O.E. Janata A. Kisselev Yu.F. Kurbatov V. Peshekhonov D.V. Pose D. Posyuk E.A. Rozhdestvensky A.M. Sapozhnikov M.G. Savin LA. Slunecka M. Smirnov G.I. Tkatchev L.G. Vlasov N.V. Vorozhtsov S.B. Erlangen-Nuernberg Univ. Anton G. Eyrich W. Stinzing F. Wirth S. Freiburg Univ. Fischer H. Franz J. Heinsius F.-H. Konigsmann K. Schmitt H. Simon A. Witzmann A.

References SPSLC/96-14/P297, SPSLC/96-S5/MS92, SPSLC/96-30/P29S/Add.l 107 COMPASS NA58

Heidelberg MPI Dropmann F. Hallet T. Konoiov I. Pochodzalla J. Povh B. Zimmer J.

Heidelberg Univ. Siebert H.W. Helsinki Univ. of Technology Berglund P.

Mainz Univ. Bravar A. Kabuss E.M. Kotzinian A. Mueller U. Pretz J. Rosner G. Steinmetz A. Walcher T. von Harrach E. Miyazaki Univ. Takama1.su K. Mons Univ.- Hainaut Windmolders R. Moscow State Univ. NPI Chudakov E. Nikitin N.V. Smirnova L.N. Zhukov V. Yu. Moscow, Inst. Nud. Research (INR) Bolotov V. Guschin B. Lebedev V. Proskuryakov A. Shmatkov V. Moscow Lebedev Phys.Inst. Alexandrov Yu. Gerassimov S. Netchaeva P. Zavertiaev M. Munich Univ. Faessler M. Staude A. Munich TU Paul S. Schmitt L. Nagoya Univ. Hasagawa T. Hayashi N. Horikawa N. Ishimoto S. Iwata T. Kishi A. Matsuda T. Mori K.

Osaka City Univ. Kinashi T. Nomachi M. Protvino IHEP Arestov Yu. I. Derevschikov A.A. Donskov S.V. Dorofeev V. Dzhelyadin R. Inyakin A.V. Kachanov V.A. Khaustov G.V. Khodyrev V. Yu. Khokhlov Yu. Medvedev V.A. Ostankov A. Semenov P.A. Shagin P.M. Singovsky A.V. Sobol A. Solovianov V.L. Sugonyaev V.P. Ukhanov M.N. Tohoku Univ. Bendai Nakagawa T. Tel-Aviv Univ. Lichtenstadt J. Moin ester M. A. Steiner V. Torino Univ./INFN Bertini R. Costa S. Damiani P. Ferrerò L. Gaifagnini R. Isnardi L. Maggiora A. Panzieri D. Valacca L. Trieste Univ./INFN Biisa R. Bradamante F. Cranshaw 3. Dalla Torre S. Giorgi M. Lamanna M. Martin A. Penzo A. Puntafenro R. Schiavon P. Simeoni F. Tessarotto F. Zanetti A.M.

108 COMPASS NA58

Tsukuba, KEK Inaba S. Tsuru T. Yasu Y. Warsaw, Soltan Inst. Nucl. Studies Kuiek K. NassalsM J. Rondio E. Sandacz A. Wislicki W. Yamagata Univ. Shimizu H. Yoshida H. Zurich Univ. Amsler C.

Spokesman: Bradamante F./Paul S.

COMPASS is a new fixed target experiment at the SPS to study hadron spectroscopy with hadron beams (up to 300 GeV/c) and hadron structure with polarized muon beams (100- 200 GeV/c). The main physics objective of the muon beam program is the measurement of AG, the gluon polarization in a longitudinally polarized nucléon. More generally, it is planned to measure the flavour separated spin structure functions of the nucléons in polarized muon - polarized nucléon deep inelastic scattering, both with longitudinal and transverse target polarization modes. For these measurements a new 1.3 m long polarized target and a superconducting solenoid with 200 mrad acceptance with be used. The hadronic program comprises a search for in the high mass region (above 2 GeV/c2) in exclusive diffractive pp scattering, a study of leptonic and semileptonic decays of charmed hadrons with high statistics and precision, and Primakoff scattering with various probes. A detailed investigation of charmed and doubly charmed will be performed in a second stage of the experiment. For these measurements a highly segmented silicon target detector and high resolution electromagnetic calorimeters will be constructed.

The setup consists of two independent , one for small angle and one for large angle particles, giving a large angular acceptance for all measurements. Each spectrometer comprises full particle identification using RICH detectors, electromagnetic and hadronic calorimetry and muon detection. Owing to precision tracking with silicon detectors, gaseous strip detectors and drift tubes high momentum resolution is obtained. The measurements will be performed with high intensity beams (2 108 muons/spill and 108 hadrons/spill) allowing to collect the needed statistics. The fully pipelined readout scheme can cope with the foreseen trigger rates (about 100 Khz) without noticeable deadtime. Data taking will start in 1999/2000.

NEXT

109 IONS EMU11

Beam: H3 Approved: 28/NOV/91 Status: Completed 31/DEC/96

Study of Particle Production and Nuclear Fragmentation in Relativistic Heavy-Ion Collisions in Nuclear Emulsions

SUNY at Buffalo

SUNY at Buffalo Ismail A.Z.M. Jain P.L. Mukhopadhyay D. Singh G.

Spokesman: Jain P.L.

We propose to use nuclear emulsions for the study of nuclear collisions of 207Pb, 197Au, and any other heavy-ion beams when they are available. We have, in the past, used 32S at 200A GeV and 160 at 200A and 60A GeV from CERN (Experiment EMU08) and at present the analysis is going on with 28Si beam from BNL at 14.5A GeV. It will be important to compare the previous and the present investigations with the new 207Pb beam at 60-160A GeV. We want to measure in nuclear emulsion, on an event by event basis, shower particle multiplicity, pseudorapidity density and density fluctuations of charged particles, charge multiplicity and angular distributions of projectile fragments, production and interaction cross-sections of heavily ionizing particles emitted from the target fragmentation. Special emphasis will be placed on the analysis of events produced in the central collisions which are selected on the basis of low energy fragments emitted from the target excitation. It would be interesting to find out if there exists a new form of matter, i.e. quark matter. We shall also look at the multiplicity within a fixed window of pseudorapidity and will study how the fluctuations in this quantity depend on the size of the window. The fluctuations dependence on the window size are proportional to the size raised to some power, is evident for the phenomena of intermittency, which basically means random deviations from smooth or regular behaviour, has recently gained a considerable interest in particle and nuclear physics. The flux of the heavy-ion beam will be ~ 2 103 particles/cm2 directed to two or three stacks of pellicles each of which shall have about two dozen 600 fim thick, electron sensitive emulsions of sizes 4" x 6" and 4" x 8". We plan to produce the analysis of about 500 events within one year after the exposure and the development of the stacks.

References SPSLC/91-15/P256, SPSLC/96-22/MS77 111 >•

1 1 1 1 1 1 1 • 1 1 1 C 1 1 1 '1)1 Hill ••-•••""I!.1," l" 1 1 i 1 l 1 ' i 1 , i 1 1

Emulsion chamber with double coated plates

BEAM

EMULSION (100 pm thick) PtASnCBASE

* * "" ****

-/•• •• - & >j ••• ' .'

1 ". ' . • • .1 I ; • .: • • • / 1*300

• • • • tun

* * " * .'

CR39 PUST1C OETECTOR

Experiment EMU12 Particle Production, Density Huctuations and Break up of Dense Nuclear Matter in Central Pb+Ag and Pb+Pb Interactions at 30-160A GeV

112 IONS EMU12

Beam: H3 Approved: 28/NOV/91 Status: Completed 31/DEC/96

Particle Production, Density Fluctuations and Break up of Dense Nuclear Matter in Central Pb+Ag and Pb+Pb Interactions at 30-160A GeV

Alznaty HEPI, Beijing HEP Inst., Bucharest, Lab. of Space Research, Chandigarh Panjab Univ., Changsha, Hunan Education Inst., Dubna JINR, Yerevan Phys.Inst., Jaipur Rajasthan Univ., Jamznu Univ., Kosice, Slovak Acad. of Science, Kosice, Safarik Univ., Lingfen, Shanxi Normal Univ., Lund Univ., Marburg Univ., Moscow Lebedev Phys.Inst., St. Petersburg VG Khlopin Radium Inst., St. Petersburg, NPI, Kon-Kuk Univ. Seoul, Sydney Univ., Tashkent Inst.Nucl.Phys., Tashkent LHEP Phys.Tech.Inst., Univ. of Washington, Seattle, Wuhan Hua-Zhong Normal Univ.

Almaty HEPI Andieeva N.P. Bubnov V.I. Chasnikov I.Y. Gaitinov A.S. Kanygina E.K. Lebedev I.A. Musaeva A.K. Seitembetov A.M. Shakhova C.I. Skorobogatova V.I.

Beying HEP lust. Chen Guo-Ming. Lu Yin. Wang Shu-Hua. Zheng Pu-Ying. Bucharest, Lab. of Space Research Felea D. Gheata A. Gheata M. Haiduc M. Hasagan D. Topor-Pop V. Zgura I.-S.

Chandigarh Panjab Univ. Aggarwal M.M. Bhatia V.S. Dhamia S. Sethi R. Vashisht V.

Changsha, Hunan Education Inst. Li Yuan-Xun. Liu Zi-Gui. Weng Zhi-Qun.

Dubna JINR Bradnova V. Kovalenko A.D. Rrasnov S.A. Rusakova V.V. Yerevan Phys.Inst. Avetyan F.A. Magiadze N. Maiutyan N.A. Moiseenko A. Sarkisova L.G. Sarkisyan V.R. Torosian H.

Jaipur Rajasthan Univ. Bhalla K.B. Gupta S.K. Kumar V. Lokanathan S. Raniwala R. Singh B. Jammu Univ. Badyal S.K. Bhasin A. Gupta V.K. Mangotra L. Mannas I. Rao N.K.

Kosice, Slovak Acad. of Science Just L.

References SPSLC/91-14/P258, SPSLC/95-69/M569, SPSLC/96-20/M576 113 IONS EMU12

Kosice, Safarik Univ. KarabovaM. Pavukova A. Tothova M. Vokal S. VrlakovaJ. Lingfen, Shaiui Normal Univ. Luo Shi-Bin. Qin Yu-Ming. Zhang Dong-Hai.

Lund Univ. El Chenawi K. Gaipman S. Jakobsson B. Nilsson P. Nystiand J. Otterlund I. Soderstrom K. Stenlund E. Svensson T. Marburg Univ. Ganssauge E. Henjes U. Roepei M. Tawfik A.M.

Moscow Lebedev Phys.Inst. Adamovich M.I. Alexandxov Y.A. Chernyavsky M.M. Gerassimov S.G. Kharlamov S.P. LarionovaV.G. Orlova G.I. Peresadko N.G. Salmanova N.A. Tretyakova M.I.

St. Petersburg VG Khlopin Radium Inst. Bogdanov V.G. Plyushchev V.A. St. Petersburg, NPI Lepekhin F.G. Levitskaya O.V. Seliverstov D.M. Simonov B.B.

Kon-Kuk Univ. Seoul Kim Y.C. Lee C.G. Rhee J.T. Sydney Univ. Amirikas R. Bakich A.M. Peak L.S. Tashkent Inst.Nud.Phys. Basova E.S. Nasyrov S.Z. Trofimova T.P. Tuleeva U.I. Tashkent LHEP Phys.Tech.Inst. Chernov» L.P. Gulamov K.G. Lukicheva N.S. Mashkov A. Navotny V.S. Saidkhanov N. Sodikov M. Svechnikova L.N. Zhokhova S.I. Univ. of Washington, Seattle Grote J. Lord J.J. Skelding D. Wilkes R.J.

Wuhan Hua-Zhong Normal Univ. Cai Xu. Feng Seng-Qin. Liu Lian-Shou. Qian Wan-Yan. Wang Hai-Qiao. Wang Xiao-Rong. Yang Cun-Bin. Yin Zhong-Bao. Yu Lian-Zhi. Zhou Dai-Cui.

Spokesman: Stenlund E. Contact: Soderstrom K.

This experiment has requested exposures of nucleax emulsion detectors with lead beams at 30 - 160A GeV at the heavy ion facility at the CERN SPS and has exposed stacks and chambers at the lead run in the fall of 1996. For collisions of such massive nuclei as Pb+Pb and Pb+Ag at ultrarelativistic energies, theoretical estimates suggest the possibility of a phase transition from normal hadronic matter to a quark gluon plasma.

The aim of the experiment is to study multiparticle production globally and locally, fluctuations in particle densities and the break up of dense nuclear matter in central Pb+Pb and Pb+Ag interactions. The experiment employs emulsion chambers with thin Pb and Ag target foils as well as conventional emulsion pellicle stacks. The emulsion chambers have sufficiently good 114 IONS EMU12 spatial resolution to obtain a high efficiency for tracking, even at the highest particle densities. Central interactions can be selected by the number of charges found in a narrow forward cone, which essentially represent the non-interacting part of the incident nucleus. The measurements of the chambers are done with previously used semi-automatic microscope systems and with newly developed CCD-based systems where the images are automatically processed.

NEXT PAGE(S) left BLANK

115 EMU14

Beam: H3 Approved: 30/JUN/92 Status: Completed 31/DEC/95

Study of Multiplicity and Angular Characteristics in Pb + A Interaction at 200 A GeV/c

Calcutta, Jadavpur Univ.

Calcutta, Jadavpui Univ. Ghosh D. Roy J.D.

Spokesman: Ghosh D. Contact: Roy J.D.

The aim of this experiment is to study the characteristics of particle production in relativistic heavy ion interaction in general and search for signatures for formation of quark-gluon-plasma in particular. We propose to measure event by event (i) multiplicity and pseudorapidity rj distributions of singly charged relativistic hadrons globally and in limited regions of rj and (ii) multiplicity and angular distributions of recoiling protons and nuclear fragments to study the general features. This data may also be used to study the relevant signatures of quark-gluon- plasma e.g. pseudorapidity density distributions and its fluctuations. Since the signatures of axions in emulsion plates exposed to heavy ion beams are already reported, we propose to scan these plates for further search over axions. Further multifractality in particle production can also be studied.

References SPSLC/92-33/P271 Magnetic Field ~ 2 Tesla

Target 0.3 mm

Schematic view of an Emulsion Magnetic Chamber consisted of 50 emulsion layers with different gaps between them.

Experiment EMU15 Investigation of Central Pb-Pb Interactions at Energies of 160 GeV/Nudeon with the help of the Emulsion Magnetic Chamber

118 EMU15

Beam: H3 Approved: 17/JUN/93 Status: Completed 31/DEC/96

Investigation of Central Pb-Pb Interactions at Energies of 160 GeV/Nucleon with the Help of the Emulsion Magnetic Chamber

Almaty HEPI, Moscow Lebedev Phys.Inst., St. Petersburg Joffe Phys. Tech. lust.

Almaty HEPI Boos E.G. Kvotchkina T.N. Loktionova N.Â. Moscow Lebedev Phys.Inst. Chernavskaya O.D. Chubenko A.P. Dobrotin N.A. Dremin I.M. Feinberg E.L. Fil'kov L.V. Gon- charova L.A. Konovalova N.S. Kotelnikov K.A. Maitynov A.G. Polukhina N.G. Royzen I.I. Tret'yakova M.I. Tsaiev V.A. St. Petersburg Ioffe Phys. Tech. Inst. Dergachev V.A. Gagarin Yu.F. Lukin V.A. Yakubovsky E.A.

Spokesman: Kotelnikov K.A. Contact: Polukhina N.G.

The aim of this experiment is to investigate high energy heavy ion central collisions by the use of emulsion magnetic chamber with high spatial resolution. The emulsion chamber consists of 50 emulsion layers 50 microns thick each coated on 25 microns mylar base. A thin lead target plate 300 microns thick is installed immediately in front of the first emulsion layer. It is placed in the transverse magnetic field B ~ 2 Tesla and is to be installed perpendicularly to Pb nucleus beam. This set-up enables to measure full 3-momenta and charge signs of secondary particles. Specific goal is to carry out detailed analysis of individual events with super high multiplicity of secondaries. These data are to be used for investigation of properties of super hot/dense matter, in particular to look for and analyze possible manifestations of quark-gluon plasma in central Pb-Pb collisions at energies of 160 GeV/nucleon.

References SPSLC/M-30/P270 119 EMU16

Beam: H3 Approved: 25/NOV/93 Status: Completed 31/DEC/95

Isospin Correlations in High Energy Pb + Pb Interactions

Uaiv. of Alabama (Huntsville), Columbia Univ., Gyeongsang Nat. Univ. Jinju, NASA MSFC, Salerno Univ./INFN, Kon-Kuk Univ. Seoul, Tokyo Univ. Dept. of Physics

Univ. of Alabama (Huntsville) Chan C.H. Dong B.L. Duthie J.G. Gregory J.C. Kanaya C. Shiina T. Takahashi Y. Tominaga T. Columbia Univ. Nagamiya S. Gyeongsang Nat. Univ. Jinju Song J.S. NASA MSFC Christl M.J. Demckson J.D. Fountain W.F. Parndl T.A. Watts J.W. Salerno Univ./INFN Romano G. Rosa G. Kon-Kuk Univ. Seoul Rhee J.T. Tokyo Univ. Dept. of Physics Dake S. Fuki M. Iyono A. Malrida M. Miyamuia O. Ogata T. Yamamoto A. Yokomi H.

Spokesman: Takahashi Y. Contact: Sodeistrom K.

The EMU05 Collaboration proposes to conduct new lead-beam experiments at CERN SPS to investigate multi-particle correlations and isospin fluctuations. New lead-beam experiments and automated-analyses will be performed in the EMU05 exper- iment, measuring high multiplicity tracks (more than 1,500 tracks per event in Pb-Pb inter- actions). The dectector and analysis system to be used are the MAGIC chambers (Magnetic- Interferometric-Emulsion-Chamber) and an automated CAVIA microscope (Computer-Assisted- Visual-Image-Analysis) for track analyses.

Two experiments are requested: One is the almost identical exposures with the 1.8 Tesla con- ventional magnet at the West Hall as we did with oxygen and sulphur beams. Another exposure is requested with a new 7.4 Tesla superconducting magnet that was created recently for this experiment. The experimental site for this superconducting magnet operation can be the H3 beamline of the West Hall as in the past heavy-ion exposure experiments.

References SPSLC/93-18/P276 -|21 EMU16

An improvement in momentum measurements (to 1.0% resolution) is expected in this work by utilizing a 7.4 Tesla super-conducting magnet. This will also let us investigate the particle ratio ^C^ and the charged hyperon production (S, S, Ji) at small rapidities (y < 2).

The event-by-event measurements will continue to study tranverse momentum, rapidity-azimuth fluctuations, and the two-particle correlations. The study of the multiparticle correlations and isospin clustering are most important. Isospin clustering can be significant in the lead-lead col- lisions, if the theoretical predictions are valid: (1) multiple Bose-Einstein interference (2) pos- sible "Correlated Classical Pion Field" (Blaizot et al.), "Impulsive Twist of the Chiral Axis" (Bjorken) or "Disordered Chiral Condensate" (Taylor) and (3) "Coherent Long Wavelength Isospin Oscillations after a Chiral Quench" (Rajagapol and Wilczek). The EMU05 pioneered in testing the isospin clustering prior to these latest theoretical conjectures.

The finite-temperature chiral symmetry restoration will also be explored by analyzing the unlike-sign, two-particle invariant mass distribution in terms of the resonance production and hypothetical mass-reduction of the scalar-isoscalar (a) mesons, a chiral doublet vector mesons (

NEXT PAGE(S) left BLANK

122 500 1000 1500 2000 2500 3000 3500 4000 4500 TRACK AREA (/j,m2) FIG, 1

140

82 120

100

LLJ

LLJ 80 75 80 o 60

BE R V V 83 40

20 V

J I I I I I l M i l i i I i 350 400 450 500 550 600 650 700 CONE LENGTH L(jim) FIG. 2

Experiment EMU18 Exposures of Nuclear Track Detectors to Lead Ions at the CERN-SPS 124 EMU18

Beam: H3 Approved: 25/NOV/93 Status: Completed 31/DEC/96

Exposures of Nuclear Track Detectors to Lead Ions at the CERN-SPS

Bologna Univ./INFN

Bologna Univ./INFN Cecchini S. Giacomelli G. Gioigini M. Mandrioli G. Manzoor S. Matgiotta-Neri A. Patrizii L. Popa V. Seira-Lugatesi P. Spnrio M. Togo V.

Spokesman: Giacomelli G. Contact: Patrizii L.

Six stacks of nuclear track detectors (CR39 and Makrofol) were exposed to 158 A GeV Pb20T ions at the CERN-SPS in November 1996. The main purpose of the experiment was the calibration of the CR39 nuclear track detector used in a large area experimental search for magnetic monopoles at the Gran Sasso Laboratory (the MACRO experiment). Different targets (C, CH2, CR39, Cu and Pb) were used in order to study also the fragmentation properties of ultrarelativistic lead nuclei. The exposures were performed at normal incidence and at a density of about 2000 ions/cm2. The total number of lead ions in a stack was about 5.8 x 104. For the stack with the lead target, we measured the base area and the length of the etched cones. The analysis of the other stacks is in progress.

Fig. 1 shows the distribution of the average base areas of the etched cones produced in CR39 by relativistic lead ions and their fragments. The averages are made over 4 measurements of the bases of the etched cones in two sheets of CR39. At Z = 20 the charge resolution is about 0.2 e. For Z > 74 the nuclear fragment peaks are mixed with the lead beam peak.

Fig. 2 shows the cone length distribution for Pb207 ions and their fragments produced in the lead target; we obtain a charge resolution of about 0.19 e for Z = 82 ions using a single measurement in one face of CR39. Notice the Z = 83 peak, which corresponds to a charge pick-up reaction.

We obtain a single calibration curve of our CR39 in the charge region 7 < Z < 83, combining the two types of measurements.

Using the data from the 1994 exposure, we computed the total charge exchange fragmentation cross sections for AZ > 7 and AZ > 1 of the Pb ions on the H, C, 0, Cu and Pb nuclei. As an example, we obtained i(Pb, H) - 2020 ± 220 mb. We expect to improve the accuracy of our results, by completing the analysis of the 1996 exposure.

References SPSLC/93-26/P279 125 Target Thickness lg/cm

Pb Beam CR-39 CR-39 5 cm DETECTOR STACK (l-5)xlO3 #/cm2 1 cm •> «- 10 cm

Proposed geometry of the target-detector arrangement to be used for the study of nuclear fragmentation with the help of plastic track detectors.

Experiment EMU19 Nuclear Fragmentation Induced by Relativistic Projectiles Studied in the 4rc Configuration of Plastic Track Detectors

126 EMU19

Beam: H3 Approved: 22/SEP/94 Status: Completed 31/DEC/95

Nuclear Fragmentation Induced by Relativistic Projectiles Studied in the An Configuration of Plastic Track Detectors

Pak. Inst. Nucl. Sci. Tech. Islamabad

Pak. Inst. Nucl. Sci. Tech. Islamabad Khan H.A. Manzoor S. Qureshi I.E. Shahzad M.I.

Spokesman: Khan H.A. Contact: Doser M./Hoorani H.R.

The collisions of heavy ions at relativistic energies have been studied to explore a number of questions related with hot and dense nuclear matter in order to extend our knowledge of nuclear equation-of-state. There are other aspects of these interactions which are studied to expound the process of projectile and/or target disintegrations. The disintegrations in question could be simply binary fissions or more complex processes leading to spallation or complete fragmentation. These important aspects of nuclear reactions are prone to investigations with nuclear track detectors.

One of the comparatively new track detector materials, CR-39, is sensitive enough to record particles of Z > 6 with almost 100% efficiency up to highly relativistic energies. The wide angle acceptance and exclusive measurements possible with plastic track detectors offer an opportunity to use them in a variety of situations in which high energy charged fragments are produced. The off-line nature of measuring track data and small beam time needs without special safety requirements make the exposure conditions almost non-intrusive. Using CERN beams of 107 MeV/nucleon 16O and 86 MeV/nucleon 12C, interactions with gold targets have been studied previously at PINSTECH.

NEXT PAGE(S) left BLANK References SPSLC/94-17/I196 127 EMU20

Beam: Approved: 20/APR/95 Status: Completed 06/NOV/95

p-Induced Fission Studies with Plastic Track Detectors Using 477-Geometry

Pak. Inst. Nucl. Sci. Tech. Islamabad

Pak. Inst. Nucl. Sci. Tech. Islamabad Khan H.A. Manzoor S. Qureshi I.E. Shahzad M.I.

Spokesman: Khan H.A. Contact: Doser M./Hoorani H.R.

The annihilation of a stopped antiproton on the surface of a target nucleus produces on the average five pions with a mean energy of 230 MeV. The high excitation of the nuclei with low angular momentum transfer can also be achieved by direct pion-nucleus interactions. The fission probabilities of highly excited nuclei can be explained on the basis of high energy limit of statistical theory. Previously the binary fission and higher multiplicity break-up of various nuclei caused by the absorption of pions has been studied by our group. The mechanism of nuclear excitation may still be the same when an antiproton annihilates in a nucleus and produces pions. It would be interesting to see whether the p annihilation produces high enough excitation energies for nuclear phase-transition to take place. If so, then the fragmentation would overwhelm binary and ternary fission process. The use of a highly sensitive plastic detector, CR-39, was made by our group in a number of studies involving the registration of fission fragments and higher multiplicity events. It is possible to etch the latent tracks formed in this dielectric material by all ions of Z > 6 incident at highly relativistic energies. The etch-cone diameter can be related to the charge of incident nuclear fragment. The wide-angle acceptence and Air -detection arrangement of this method offers a unique possibility of exclusive measurements. The off-line nature of measurements and very small beam-time required without any need of special safety requirements make this method of detection very attractive.

References SPSLC/95-24/P292 129 PS

STATUS OF THE PS PROGRAMME AS OF NOVEMBER 1997

I 5

NEXT PA@E(S) left BLANK 8

50 cm

Schematic drawing of the PS185 decay spectrometer and the frozen spin target. An event of the type pp —• AA —• pn+pir~~ is indicated.

1) beam defining scintillators and silicon microstrip counters 2) polarized proton target, (buthanol in a cylinder of lcm length and a diameter of 8mm) 3) target cryostat (3He/4He dilution refrigerator) 4) movable (up-down) 5 T superconducting solenoid 5) scinv.illators employed in the charged-neutral-charged trigger 6) 10 plane MWPC stack 7) 13 plane drift chamber stack 8) scintillator hodoscope 9) 0.2 T solenoid (top view) with 3 drift chamber planes for particle identification

Experiment PS185/3 A Measurement of Depolarization and Spin Transfer in pp ->AA 132 LEAR/HYPERONS PS185/3

Beam: LEAR Approved: 15/JUN/95 Status: Completed 08/DEC/96

A Measurement of Depolarization and Spin Transfer in pp—> AA

Univ. of New Mexico, Albuquerque, Bonn Univ., Carnegie-Mellon Univ., Erlangen-Nuernberg Univ., Freiburg Univ., Juelich JKP-KFA, Uppsala Univ., Univ. of Illinois at Urbana-Champaign

Univ. of New Mexico, Albuquerque Bassalleck B. Fields D. Kingsbeny P. Lowe J. Wolfe D. Bonn Univ. Dutz H. Gering R. Meyei W. Reicherz G. Schoch B.

Carnegie-Mellon Univ. Franklin G. Meyer C.A. Paschke K. Quinn B. Schumacher R.

Erlangen-Nuernberg Univ. Dennert H. Eyrich W. Hauffe J. Moosburger M. Stinzing F. Wirth St.

Freiburg Univ. Fischer H. Franz J. Koenigsmann K. Schmitt H.

Juelich IKP-KFA Broeders R. Geyer R. Kilian K. Oelert W. Roehrich K. Sachs K. Sefzick T.

Uppsala Univ. Johansson T. Pomp S. Traneus E.

Univ. of Illinois at Urbana-Champaign Bunker B. Eisenstein R.A. Hertzog D. Jones T. Tayloe R.

Spokesman: Roehrich K. Contact: Roehrich K.

The hyperon decay spectrometer (PS185) at LEAR together with a "frozen spin" target will allow the determination of the spin configuration of the reaction pp —> A A. Measurements of spin transfer from the polarized target proton to the final state A hyperon can distinguish between proposed ss production scenarios. They will also provide new experimental input to the question of the strange /antiquarks as carriers of part of the spin of the nucleon. A 20-day run with an average antiproton beam intensity of 500.000 p/sec provides a determination of spin transfer and depolarization parameters at three different incident antiproton momenta between 1550 MeV/c and 1820 MeV/c with an accuracy of the order 0.1.

References NEXT PAGEfS) SPSLC/95-13/P287 left BLANK 133 LEAR/IONIZATION PS194/3

Beam: LEAR Approved: 27/JUN/91 Status: Completed 19/AUG/96

Measurement of Stopping Powers and Single Ionization Cross-Sections for Antiprotons at Low Energies

Aarhus Univ., P.Scherrer Inst., Villigen

Aarhus Univ. Kirsebom K. Knudsen H. Medenwaldt R. Moller S.P. Paludan K. Uggerhoj E. Worm T. P.Scherrer Inst., Villigen Morenzoni E.

Spokesman: Uggerhoj E. Contact: Moller S.P.

The aim of the experiment is to investigate new phenomena in the collision of antiprotons with atoms. Through the comparison with already existing proton data, a clean signal for charge effects (Z* -effects ) in atomic collisions is obtained.

1) Stopping Power - the Barkas Effect

The stopping power for antiprotons was previously measured in the energy range from 200 keV to 4 MeV by PS194 using active silicon targets, and a large Barkas effect (up to 30%) was identified. The origin of the Barkas effect is the polarization of the target electrons by the projectile. In the last run, a new and universal technique was developed. It consists of measuring TOF of the degraded antiproton beam before and after traversal of the target (see figure). The incident and exit TOF is determined from an upstream scintillator, an electrical mirror with micro-channel plate detecting secondary electrons from the target, and a downstream scintillator. First data from gold has been obtained, showing an antiproton stopping power less than half that for protons at 200 keV. This technique will be used to measure stopping powers on both light and heavy materials between 3 MeV and presumably 50 keV.

2) Single ionization

Single ionization of He and H2 has been studied by PS194 for antiproton energies down to 50 keV. Owing to the polarization of the target atoms during the collisions, the cross-section for antiproton impact is smaller than for proton impact. This difference grows when the projectile velocity is lowered towards the value corresponding to that of the target electrons. However, at such velocities and below, the collisions become adiabatic, and, in the case of antiproton

References SPSLC/91-3/PSCC/P64/Add.S 135 LEAR/IONIZATION PS194/3 impact, the cross-section is believed to stay fairly constant, while the proton cross-section goes to zero. We will study this effect by measuring the single ionization cross-section in the simple targets He and H2 in the energy range 10-100 keV. For this experiment, the electrical mirror with channel plate used in the stopping-power experiment is replaced with a gas cell detecting the ions with a channeltron. Also the single ionization cross-section for atomic hydrogen will be measured.

NEXT PA@E(S) left BLANK

136 "" \NN v v ^ \ \ ^ -Cerenkov and scintillator counters\ ^ s v \*.\\x\\"--\sx\\ •,

/ / / / / / Seam monitor ' / / 15 atm H2 target /L____.l ' ' '& 200 HeV/c /

p beam An / . Proportional chambers / • / / • •'''//

/'''//S•' / .Streamer tubesx/ // /' 03

^

1 m

Experiment PS195 Tests of CP Violation with K° and K° at Lear LEAR/CPVIOLATION PS195

Beam: LEAR Approved: 12/SEP/85 Status: Completed 08/JUL/96

Tests of CP Violation with K ° and K° at LEAR

Athens Univ., Basle Univ., Boston Univ., CERN, Coimbra University/LIP, Delft Tech. Univ., Fribourg Univ., Ioannina Univ., Liverpool Univ., Ljubljana Univ. Last. Jozef Stefan, Univ. Aix-Marseille II, CPPM/IN2P3, Orsay CSNSM/IN2P3-CNRS, P.Scherrer Inst., Villigen, CEA, DSM/DAPNIA, Saclay, Royal Inst. of Tech. Stockholm, Thessaloniki Univ., Zurich ETH

Athens Univ. Angelopoulos A. Apostolakis A. Rozaki E. Sakelliou L. Basle Univ. Leimgruber F. Pavlopoulos P. Polivka G. Rickenbach R. Schietinger T. Tauscher L. Vlachos S. Boston Univ. Chertok M. Miller J.P. Roberts B.L. Zimmerman D. CERN Bloch P. Collar J. Fidecaro M. Francis D. Kokkas P. RufT. Schopper A. Touramanis C. Coimbra University/LIP Carvalho J. Ferreira-Marques R. Machado E. Pinto da Cunha J. Van Beveren E. Delft Tech. Univ. Hollander R.W. Kreuger R. Van Eijk C.W.E. Fribourg Univ. Blanc F. Faravel L. Schaller L.A. Ioannina Univ. Evangekm I. Manthos N. Triantis F. Liverpool Univ. Benelli A. Carroll M. Cawley E. Cody A. Fry J.R. Gabathuler E. Garnet R. Haselden A. Hayman P.J. Ljubljana Univ. Inst. Jozef Stefan Filipcic A. Mandic I. Mikuz M. Zavrtanik D. Univ. Aix-Marseille II, CPPM/IN2P3 Aslanides E. Bertin V. Ealet A. Henry-Couannier F. Hubert E. Le Gac R. Montanet F. Touchard F. Orsay CSNSM/IN2P3-CNRS Thibault C. P.Scherrer Inst., Villigen Bargassa P. Kettle P.R. Nakada T.

References PSCC/85-6/P82, PSCC/85-30/P82/Add.l, PSCC/85-43/P82/Add.2, PSCC/86-34/M263, PSCC/87-H/M272, PSCC/90-3S/M320, SPSLC/92-7/M484, SPSLC/93-12/M518 139 LEAR/CPVIOLATION PS195

CEA, DSM/DAPNIA, Saclay Chardin G. Dejardin M. Derre J. Garreta D. Guyot C. Kochowski C. Marel G. Müller A. Schune P. Yeche C. Royal Inst. of Tech. Stockholm Carlson P. Danielsson M. Go A. Jon-And K. Thessaloniki Univ. Charalambous S. Eleftheriadis C. Liolios A. Papadopoulos I. Zurich ETH Behnke O. Fetscher W. Gerber H.J. Pagels B. Schaefer M. Weber P. Wolter M.

Spokesman: Pavlopoulos P. Contact: Pavlopoulos P.

The aim of the experiment is to carry out precision tests of CP, T and CPT on the neutral kaon system through K°—K° interferometry using LEAR as an intense source. A beam of 106 p events/second is brought to rest in a hydrogen target producing K° and K° events through the reaction channels :

pp . -> K° + (Ä-7T+)

The neutral strange particles and their antiparticles are tagged by detecting in the magnetic field the sign of the accompanying charged kaons identified via Cerenkovs and scintillators. The experiment has the unique feature that the decays from particles and antiparticles are recorded under the same operating conditions using tracking chambers and a gas sampling electromag- netic calorimeter. The measured time-dependent K°-K° asymmetries for non-leptonic and semi-leptonic decays are sensitive to CP and T violation in different and complementary ways. They also provide sensitive tests of CPT. Hardware processors are used to reconstruct and select the different decay topologies on-line in < 5 //s. They provide an overall reduction factor of ~ 1000.

First results have been obtained for the time-dependent asymmetries in the 7r+7r~, the semilep- tonic and 3x channels, from which the CP, T and CPT parameters have been evaluated with statistical significance better than that of many existing measurements. In some cases the results are unique.

NEXT PAGE(S) left BLANK

140 (a) (b)

rms 1.2 cm

z/'(p) = 89.3 MHz

i/2(e")= 54.5 MHz rms B

(p)= 1.9 MHz

v,[Hz]

Experiment PS196 Precision Comparison of p and p Masses in a Penning Trap LEAR/PENNING TRAP PS196 .Beam: LEAK Approved: 14/NOV/85 Status: Completed 19/DEC/96

Precision Comparison of p and p Masses in a Penning Trap

Harvard Uaiv., Mainz Univ.-Inst.of Physics, Seoul National Univ.

Harvard Univ. Gabrielse G. Phillips D. Quint W. Mainz Univ.-Inst.of Physics Groebner J. Kalinowsky H. Seoul National Univ. Jhe W.

Spokesman: Gabrielse G. Contact: Kalinowsky E.

For the first time, antiprotons with energies 1O10 times lower than those in LEAR can be stored and studied over long times in a small apparatus. The first measurement at this new, low energy frontier is a 1000-fold improvement in the measured antiproton mass. The mass dependent cyclotron frequencies, first for antiprotons then for protons orbiting in the same magnetic field, are compared to establish that the antiproton and proton masses are the same to at least 4 parts in 108. This is the most stringent test of whether a baryon system is invariant under CPT transformations. A special trap geometry and a superconducting solenoid which cancels fluctuations in the magnetic field in the accelerator hall were crucial to this greatly improved measurement. The current objective is to improve the precision by one or two orders of magnitude.

Antiprotons from LEAR at 5.9 MeV, slow below 3 keV via collisions in a thin metal window, and are caught in a trap 13 cm long. Via repeated collisions with cold electrons stored earlier in the same trap, the antiprotons cool in tens of seconds to thermal equilibrium with the electrons near 4.2 K, an energy of 0.5 x 10~3 eV. In one trial, such cryogenic antiprotons were stored in the mm3 volume of an inner trap for two months before being deliberately ejected. The storage lifetime so established, more than 3.4 months, is the longest directly measured lifetimes limit for antiprotons. It requires a background gas density less than 100 atoms/cm3. For an ideal gas at 4.2 K this would correspond to a pressure less than 5 x 10"17 Torr .

References PSCC/85-21/PS3, PSCC/S5-82/P83/Add. 1, PSCC/85-83/M249, PSCC/89-7/M297, PSCC/S9-19/M3O1, PSCC/90-13/M309 143 CI5 Detector: (1&2) Yoke (3) Coil (4) Csl Barrel (5) Jet Drift Chamber

(6) PWC (7) LH2 target

Experiment FS197 The Crystal Barrel: Meson Spectroscopy at LEAR with a 47i Detector LEAR/CRYSTAL PS197

Beam: LEAR Approved: 03/APR/86 Status: Completed 08/DEC/96

The Crystal Barrel: Meson Spectroscopy at LEAR with a 4TT Detector

Lawrence Berkeley Lab., Bochum, Ruhr-University, Bonn Univ., Budapest Res.Inst. of Physics (KFKI), CERN, Northwestern Univ., Hamburg Univ., Karlsruhe Univ., London, Queen Mary & WestBeld College, Munich Univ., Rutherford Appleton Lab., Paris VI and VII Univ., Carnegie-Mellon Univ., Strasbourg CRN/ULP, Zurich Univ.

Lawrence Berkeley Lab. Case T. Crowe K.M. Heinsius F.H. Kammel P. Lakata M. Bochum, Ruhr-University Degener T. Koch H. Kunze M. Matthaey H. Peters K. Stoeck H.

Bonn Univ. Barnett B. Herz M. Kalinowsky H. Klempt E. Resag S. Strassburger C. Thoma U. Wittmack K.

Budapest Res.Inst. of Physics (KFKI) Hidas P. CERN Doser M. Kisiel J. Landua R. Montanet L. Ouared R. Wiedner U. Northwestern Univ. Seth K. Hamburg Univ. Adomeit J. Meier J. Schmidt P. Seibert R. Strohbusch U. Karlsruhe Univ. Abele A. Bischoff S. Bluem P. Engelhardt D. Holtzhaussen C. Tischhaeuser M.

London, Queen Mary & Westneld College Bugg D.V. Hodd C. Zou B. Munich Univ. Braune K. Cramer O. Djaoshvili N. Duennweber W. Faessler M.A. Jamnik D. Regenfus C. Roethel W. Voelcker C. Walther D. Zupancic C. Rutherford Appleton Lab. Baker C.A. Batty C.J. Pinder C. Paris VI and VII Univ. Benayoun M.

References PSCC/8S-56/P90, PSCC/85-89/M251, PSCC/86-25/M259, SPSLC/92-1/M481, SPSLC/92-37/M498, SPSLC/93-23/M522, SPSLC/96- 37/M585 145 LEAR/CRYSTAL PS197

Carnegie-Mellon Univ. Berdoz A. McCrady R. Meyer C.A.

Strasbourg CRN/ULP Suffert M. Zurich Univ. Amsler C. Giairitta P. Ould-Saada F. Spanier S. von Dombrowski S.

Spokesman: Wiedner, U. Contact: Biaune, K.

The Crystal Barrel is a 4ir spectrometer designed to provide complete and precise information on practically every final state produced in pp and pd annihilations at low energy and to collect high statistics data samples. Selective triggers can be applied when necessary. The physics goal is to identify all light mesons in the mass range from 0.14 to 2.3 GeV/c2, to determine their quantum numbers and decay properties and to study the annihilation dynam- ics. The main interest is to find the and hybrid degrees of freedom predicted in the framework of . The principal components of the apparatus are:

1. A barrel shaped electromagnetic calorimeter for the detection of photons. It consists of 1380 CsI(Tl) crystals read out by photodiodes via wavelength shifter. 2. A 22-layer cylindrical jet drift chamber for the tracking of charged particles. It contains 585 sense wires read out at both ends. Charge division provides information on the coordinate parallel to the wires and the total charge deposit is used to measure dE/dx. 3. A silicon ^-strip vertex dectector to provide a multiplicity trigger very close to the target and to improve the momentum and vertex resolution. It is subdivided into 15 modules, each with 128 strips and surrounds the target at a radius of 1.2 cm. 4. The incoming cooled antiprotons (beam momenta from 0.1 to 1.9 GeV/c) are detected by sil- icon hodoscopes. The whole detector is embedded in a solenoidal magnet with field strength up to 1.5 T.

NEXT PAOE(S) left BLAMK

146 LEAR CATCHING TRAP SET - UP

B[T]

— 4kG 1.25kG

-150 -100 -50 4-50 +100 Z(cm)

B-Flold Unes Foil Ladder f~J _ (Approx.) TI Windows Oxford Magnet Al Foil S4Beam i - Trap Line H I

40 mm Pump MCP SF6 Gas V Mylar Thermal Cell Sclntlllators Sclntlllators I Baffles NE110Scintillator~ 1-4 5-8

sop Run 842: Dump from Inner Trap at T = 1500 seconds

(chf 0 = 30 V,ch# 550 = 2 V,ch# 650 = 0.6 V, ch# 850 = 0 V) 1 •• - 1 i—i—i—i—i—,—i—i—

500 -

- 400 S 60 is i 300 CO §40 . '/ s Accumulation of Antlprotons In 200 - a. the central, harmonic well < / • o §20 - 100 y 0 '—»- 0 ^•,i,i 200 400 600 800 100 200 300 405000 600 Channel # Cooling Time T2 [seconds]

Experiment PS2Q0 Capture, Electron-Cooling and Compression of Antiprotons in a Large Penning-Trap and Physics Experiments with an Ultra-Low Energy Extracted Antiproton Beam

148 LEAR/GRAV PS200

Beam: LEAR Approved: 03/APR/86 09/FEB/95 Status: Completed 29/SEP/96

Capture, Electron-Cooling and Compression of Antiprotons in a Large Penning-Trap for Physics Experiments with an Ultra-Low Energy Extracted Antiproton Beam

Aarhus Univ., Genoa Univ./INFN, London UCL, Los Alamos Nat.Lab., Penn State Univ., Tokyo Univ. Dept. of Physics, P.Scherrer Inst., Villigen

Aarhus Univ. Hangst J. Hvelplund P. Kiisebom K. Knudsen H. Merrison J. Moller S.P. Uggeihoj E. Worm T. Genoa Univ./INFN Lagomarsino V. Manuzio G. Testera G. London UCL Charlton M. Laricchia G. Los Alamos Nat.Lab. Darling T.W. Goldman T. Holzscheiter M.H. King N.S.P. Morgan G.L. Nieto M.M. Penn State Univ. Lewis R.A. Rochet J. Smith G.A. Tokyo Univ. Dept. of Physics Yamazaki Y. P.Scherrer Inst., Villigen Morenzoni £.

Spokesman: Holzscheiter M.H./Nieto M Contact: Rochet J.

The availability of ultra-low energy antiprotons is a crucial ingredient for the execution of the gravity measurements PS200. We have developed a method to provide such low energy antiprotons based on a large Penning trap (the PS200 catching trap). This system can accept a fast-extracted pulse from LEAR, reduce the energy of the antiprotons in the pulse from 5.9 MeV to several tens of kilovolts using a degrading foil, and then capture the antiprotons in a large Penning trap. These antiprotons are cooled by electrons previously admitted to the trap and are collected in a small region at the center of the trap. We have demonstrated our capability to capture up to 1 million antiprotons from LEAR in a single shot, electron cool these antiprotons, and transfer up to 95% of them into the inner, harmonic region. A storage time in excess of 1 References PSCC/86-2/P94, PSCC/86-26/M260, PSCC/88-35/M292, PSCC/89-2J/M302, PSCC/90-34/M319, SPSLC/92-64/M514, SPSLC/93- 35/M528, SPSLC/94-31/MS38, SPSLC/95-2/P2S5 149 LEAR/GRAV PS200 hour was observed. These results have been obtained with the cryogenic trap vacuum coupled to a room temperature vacuum at about 10~10 Torr, which is an important consideration for experiments requiring transfer of the antiprotons from the catching trap system to a different experimental set-up. Following are short summaries of two experiments of this kind.

When an antiproton is injected into a thick target, it loses its kinetic energy via multiple inelastic collisions down to near thermal energy and is trapped into an atomic orbital of a target atom (exotic atom formation), suffers cascading Auger and/or radiative transitions, and is finally absorbed by the target nucleus. Although a variety of experiments have been done to study the character of this exotic atom itself, mainly through X-ray measurements, a comprehensive picture of the trapping process including its very beginning has not yet been obtained. The major difficulty exists in the fact that the available lowest energy of the projectile was in the range of MeV/u, i.e. a thick target was inevitable to stop the projectile. In this case, both exotic atom and ionized electrons are readily "degraded" by the thick target, and so the study of the initial stage of the trapping was almost impossible. However, using a slow mono- energetic antiproton beam from a Penning trap, the major difficulty described above disappears immediately. Recent measurements of the cross-sections for single and double ionization of helium as well as for the creation of H^ and H+ for impact of antiprotons in the energy range between 13 and 500 keV have yielded a number of important results. Although atomic collisions have been studied during most of this century, it remains a challenge to understand in detail even the simplest collision process. This is due to the complex dynamics of systems which consist of more than two particles that interact via the Coulomb force. It is therefore, of extreme interest to compare collisions for equivelocity particles of opposite charge, since in this case, the sign of the coupling constant simply reverses. The work in PS194 gave for the first time the opportu- nity to investigate the region of low velocity collisions (where the velocity of the projectile is considerably slower than the velocity of the target electrons) for the impact of massive, point- like, negatively charged particles. At 13 keV one finds the double ionization cross-section for antiproton impact to be an order of magnitude larger than for proton impact. This very high efficiency for the removal of both helium electrons by low energy antiprotons has not yet been explained. Similarily, the ratio between the double and single ionization cross-section for an- tiproton impact on helium is much larger than for proton impact, and is still increasing at the lowest energy observed. It is conceivable that at lower energies this ratio may become larger than unity. Clearly, more experimental work at lower energies is called for to understand the physics involved and we have joined with the PS194 collaboration to investigate these questions.

NEXT PAGECS) left

150 OBELIX

1 OAFMagnet Open Axial Field Mognel 2 SPC Spiral Projection Chamber 3 TOF Time Of Flight barrels High Density Spiral Projection Chamber 6 4 HDSPC 5 AFSJet Axial Field Spectrometer Jet Chomber 6 HARGD High Angular Resolution Gamma Delector

NJ IDE F I X 1-LEAR 3-OBELIX d - K - tocc pH' C0R0TAT1NG -OVIAHX l£f> • SDDul BEAMS IRIGGtO.JtBO IM OPERATION ANMHtAT. (HAHHU —cpH.H- ATOMS HtUTRM. MAMS

6-LASER

fp ATOM tOLH[AH IASER RtSONAHT I SPKTROSCOPY | (P ATOM R —« r EMISSION V SPEC1R05C0PT oro —

2-H* RI50HAHT SfECIROSCOPV -ft...

/1-Y1

Experiment PS201 Study of p and n annihilations at LEAR with OBELIX, a large acceptance and high , resolution detector based on the Open Axial Field Spectrometer LEAR/OBELIX PS201

Beam: LEAR Approved: 04/SEP/86 Status: Completed 29/DEC/96

Study of p and n annihilations at LEAR with OBELIX, a large acceptance and high resolution detector based on the Open Axial Field Spectrometer

Bologna Univ./INFN, Brescia Univ./INFN, Cagliari Univ./INFN, Dubna JINR, Frascati Nat.Lab. INFN, Legnerò Nat.Lab./INFN, Padova Univ./INFN, Pavia Univ./INFN, Trieste Univ./INFN, Torino Univ./INFN, Torino Polytechnic/INFN, Udine Univ./INFN

Bologna Univ./INFN Alberico V. Beitin A. Bruschi M. Capponi M. Collamati A. D'Antone I. De Castro S. Dona R. Ferretti A. Galli D. Giacobbe B. Marconi U. Massa I. Piccinini M. Poli M. Semprini-Cesari N. Spighi R. Vecchi S. Vezzani A. Vigotti F. Villa M. Vitale A. Zoccoli A.

Brescia Univ./INFN Belli G. Corradini M. Donzella A. Lodi Rizzini E. Ventuielli L. Zenoni A. Cagliari Univ./INFN Adamo A. Cicalo C. Lai A. Masoni A. Musa L. Puddu G. Serci S. Temnikov P. Usai G.L. Dubna JINR Denisov O.Yu. Gorchakov O.E. Nomokonov V.P. Pontecorvo G.B. Prakhov S.N. Rozhdestvensky A.M. Sapozhnikov M.G. Tretyak V.l. Frascati Nat.Lab. INFN Gianotti P. Guaraldo C. Lanaro A. Lucherini V. Nichitiu F. Petrascu C. Rosea A. Legnaro Nat.Lab./INFN Ableev V.G. Cavion C. Gastaldi U. Lombardi L. Maron G. Ricci R.A. Vannucci L. Vedovato G. Padova Univ./INFN Andrighetto A. M orando M.

Pavia Univ./INFN Bendiscioli G. Filippini V. Fontana A. Marciano C. Montagna P. Rotondi A. Saino A. Salvini P. Scoglio C.

Trieste Univ./INFN Margagliotti G. Pauli G. Tessaro S. Zavattini E.

Torino Univ./INFN Balestra F. Bonazzola G.C. Botta E. Bressani T. Bussa M.P. Busso L. Calvo D. Cerello P. Costa S. D'Isep D. Fava L. Feliciello A. Ferrerò L. Filippi A. Garfagnini R. Grasso A. Maggiora A. Marcello S. Panzieri D. Parena D. Piragino G. Rossetto E. Tosello F. Valacca L. Zosi G.

References PSCC/86-4/P95, PSCC/86-38/P95/Add.l, PSCC/8S-76/I 72, PSCC/88-31/M289, PSCC/88-36/M293, PSCC/89-2/M294, SPSLC/92- 8/M485, SPSLC/92-58/MS09, SPSLC/9S-5/M564, SPSLC/96-S/M573 153 LEAR/OBELIX PS201

Torino Polytechnic/INFN Agnello M. Iazzi F. Minetti B.

Udine Univ./INFN Santi L.

Spokesman: Rotondi A. Contact: Costa S.

OBELIX is designed to study exclusive final states of antiproton and antineutron annihilations at low energies with protons and nuclei. The physics motivations of the experiment are:

Sgg)> hybrids (qqg), multiquarks (qqqq) and light mesons (qq) produced in NN annihilations and study of their spectroscopy and decays. Also broad structures will be searched for by comparing identical decay modes in exclusive final states of the same type occuring from initial states with different angular momentum or isospin. • Study of the dynamics of NN interactions and of the dependence of the final and in- termediate resonant states of annihilation upon the quantum numbers of the initial NN state (angular momentum: S and P-wave in pp at rest, isospin, energy). • Search for p annihilations onto more than one nucleon (Pontecorvo reactions).

The experiment studies p and n annihilations on H2, D2 and heavier gas targets at rest and in small energy steps near threshold. Beams of ffs from the LEAR slow extraction and of n's produced by charge exchange in a liquid H2 target upstream of the detector are used. A Spiral Projection Chamber (SPC) is used as vertex detector. The magnet and the jet drift chamber of the Open Axial Field Spectrometer (AFS) axe used for charged particles momentum and dE/dx measurements. Two concentric arrays of plastic scintillators identify and trigger on charged kaons. Gamma showers axe reconstructed in three dimensions with gas sampling calorimeter moduli.

The detector features : 4T acceptance and high segmentation for charged and neutral particles; identification of charged kaons up to 1 GeV/c; good momentum resolution (

The flexibility of the spectrometer allows to obtain also "atomic physics" results, e.g. on protonium cascade times and widths, Baxkas effect and p - 4He metastable state.

NEXT PAGE(S) left BLANK 154 -150 -100 -50 C) 50 I i i i 1 \ I I I 1 I I i I i i i i 1 i Av=0 v=3 v=3 • t 1 (39,35)-H38,34) v=2 v=2 • b H (38,35)^(37,34) v=2 v=2 • KoroboW1995) • f H (37,34)->(36,33) non-relativistic v=3 v=3 KoroboW1996) • »1 (38,34)-4(37,33) relativistic v=2 v=2 'He • Hj (36,33)-»(35,32)

Av=2 v=2 v=4 • i- H (37,34)->(38,33) v=1 v=3 • h H (37,35)->(38,34)

Figure 1: Experimental setup

A = 2.98 ± 0.09 pm

= 1.70 ± 0.05 GHz o 15 c3r 0.5

CD Q.

0.09 0.092 0.094 0.096 0.098 0.1 0.102 0.104 X - 726 nm

Figure 2 a) Comparison of experimental and theoretical values for a selection of resonant transitions Figure 2 b) Observed hyperfine splitting of the n, 1 = (37,35) -> (38, 34) transition

Experiment PS205 Laser Spectroscopy of Antiprotonic Helium Atoms

156 HELIUMTRAP PS205

Beam: LEAR Approved: 04/APR/91 Status: Completed 03/JUN/96

Laser Spectroscopy of Antiprotonic Helium Atoms

Budapest Res.Inst. of Physics (KFKI), CERN, Munich TV, Okazaki, Inst. Molecular Sci., Tokyo Univ. INS, Tokyo Univ. Dept. of Physics, Tokyo Univ. Res. Cent. Nucl. Sci.&Tech.

Budapest Res.Inst. of Physics (KFKI) Horvath D. CERN Eades J. Widmann E. Munich TU Daniel H. Hartmann J. Ketzer B. Maierl C. Pohl R. von Egidy T. Okazaki, Inst. Molecular Sci. Morita N. Tokyo Univ. INS Sugai I. Yamazaki T. Tokyo Univ. Dept. of Physics Hayano R.S. Hori M. Ishikawa T. Iwasaki M. Tamura H. Torii H. Tokyo Univ. Res. Cent. Nucl. Sci.&Tech. ItoY.

Spokesman: Yamazaki T. Contact: Eades J.

Following the discovery of metastable antiprotonic helium atoms (pHe+) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of p~He+ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14% longer lifetime in 4He than in 3He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.

Since 1993 laser spectroscopy of the metastable pEe+ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the pHe+ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the p were deexcited to the non-metastable level where they immediately annihilated and produced a References SPSLC/91-1/P2S5, SPSLC/91-19/P25S Add.l, SPSLC/91-57/M478, SPSLC/92-34/M497, SPSLC/92-34/M497 Add.l, 5PSLC/92-50/M504 SPSLC/92-60/MS11, SPSLC/94-4/MS30, SP3LC/94-S/MS31, SPSLC/94-6/M532, SPSLC/94-26/M536, SPSLC/95-68/M566

157 HELIUMTRAP PS205 sharp spike in the antiproton annihilation time spectrum. The technique was first used with the slow-extracted 200 MeV/c p beam from LEAR, but was later extended to make use of fast extracted p bunches. This bunched operation of LEAR was better suited for weak resonances and for studies made early in the lifetime of the pBe+ atoms, since the lasers could be fired in advance of the arrival of the p bunch. In all 10 resonant transitions in 4He and 3 in 3He have now been observed. The measured energies show agreement at the remarkable level of 10 ppm with the most accurate theoretical calculations available (cf Figure 2 a). More recently the hyperfine structure arising from the interaction of the electron spin and the p orbital angular momentum has been resolved in the (n,Z) = (37,35) -* (38,34) transition (A = 726.097(4) nm, cf. Figure 2b).

The laser spectroscopy technique also allows investigations of the influence of the surrounding helium atoms on specific states of the p~He+ atoms. It turns out that both single-level lifetimes and (to a small extent) energy levels depend on the density of helium, and that small admixtures of hydrogen and oxygen shorten the level lifetimes drastically. The fact that this effect is state- dependent means that certain metastable states can be transformed into short-lived ones by the addition of carefully controlled quantities of hydrogen. This feature has been used in the most recent experiments as to detect still more resonances.

NEXT PAGEfS) left BLANK

158 position-sensitive detector

crystal spectrometer I!

curved crystals

CCD

CYCLOTRON TRAP

crystal spectrometer I position-sensitive detector

Experiment PS207 Precision Measurement of the Energies and Line Shapes of Antiprotonic Lyman and Balmer Transitions From Hydrogen and Helium Isotopes

160 Beam: Approved: 30/SEP/93 Status: Completed 22/AUG/96

Precision Measurement of the Energies and Line Shapes of Antiprotonic Lyman and Balmer Transitions Prom Hydrogen and Helium Isotopes

Gaithersburg,Nat. Inst.of Stand. & Tech., Ioannina Univ., Juelich IKP-KFA, P.Scherrer lust., Villigen, Paris LPNHE-P.et M.Curie Univ., Neuchatel Univ., Quaid-I-Azam Univ. Islamabad

Gaithersburg.Nat. Inst.of Stand. & Tech. Deslattes R.D. Ioannina Univ. Anagnostopoulos D.F. Lagaris A. Juelich IKP-KFA Borchert G.L. Gotke E. Gotta D. Lenz St. Schult O.W.B. Siems Th. P.Scherrer Inst., Viffigen Hauser P. Kirch K. Simons L.M. Paris LPNHE-P.et M.Curie Univ. El-Khoury P. Indelicate P.

Neuchatel Univ. Augsburger M. Chatellard D. Egger J.-P. Jeannet E. Quaid-I-Azam Univ. Islamabad RashidK.

Spokesman: Gotta D. Contact: Droege M.

For the study of the antiproton-proton and antiproton-nuclear spin-spin and spin-orbital inter- action at threshold a high resolution measurement is proposed of the line shapes and energy shifts of antiprotonic Ka and La transitions of hydrogen and helium isotopes. The intense LEAR beam, stopped in the cyclotron trap at low gas pressure, provides a unique X-ray source, with sufficient brightness. Charge coupled devices with their excellent background rejection and energy resolution allow a precise determination of the strong shifts and widths of the Is hyperfine states of protonium, in addition the detection of the pD Ka transition should be possible. A focussing crystal spectrometer with a resolution AE/E of about 1O~4, which is superior in the accuracy of the energy determination by two orders of magnitude as compared to the present detection methods, will be used to measure the energies of the La transitions. This permits a first direct measurement of the strong interaction shifts and widths of the 2p levels in different antiprotonic hydrogen isotopes and allows the resolution of fine structure and hyperfine structure whenever the splitting exceeds the hadronic widths. References PSCC/90-9/P124, PSCC/90-21/P124/Add.l, PSCC/90-29/P124/Add.2, PSCC/93-17/P124/Add.3, SPSLC/95-67/M567

161 photomultipliers

in

reaction chamber

BSIB Beam dump

liquid BNB scintillator target I support

Experiment PS208 Decay of Hot Nuclei at Low Spins Produced by Antiproton-Annihilation in Heavy Nuclei

162 HOTNUCLEI PS208

Beam: Cl Approved: 25/NOV/93 Status: Completed 10/MAY/96

Decay of Hot Nuclei at Low Spins Produced by Antiproton-Annihilation in Heavy Nuclei

Berlin, Hahn-Meitner Ins t., Caen G ANIL, CERN, Munich TU, Orsay IPN, Univ. of Rochester, Rossendorf Zfk, Warsaw Univ.

Berlin, Hahn-Meitner Lost. Bohne W. Fignera P. Fuchs H. Goldenbaum F. Hilscher D. Jahnke U. Polster D. Rossner H. Ziem D. Caen GANIL Galin J. Lott B. Morjean M. Peghaiie A. Quednau B.

CERN Eades J. Neumaier S. Munich TU Hartmann F.J. Schmid S. Schmid W. von Egidy T. Orsay IPN Proschitzki S. Univ. of Rochester Schroeder W.U. Toke J. Rossendorf Zfk Pansch G. Warsaw Univ. Guida K. Jastrzebski J. Kurcewicz W. Pienkowski L.

Spokesman: Hilscher D. Contact: Eades J.

The objective of the experiment is to study (i) the thermal excitation energy distribution of antiproton-induced reactions in heavy nuclei and (ii) the decay properties of hot nuclei at low spins via evaporation, multifragmentation and fission as a function of excitation energy. The experimental set-up consists of 4-T detectors: the Berlin Neutron Ball (BNB) which is a spherical shell of gadolinium-loaded scintillator liquid with an inner and outer diameter of 40 and 160 cm, respectively. This detector counts the number of evaporated neutrons in each reaction. Inside BNB there is a 4-T silicon ball (BSIB) with a diameter of 20 cm consisting of 162 detectors which measure energy and multiplicity of all emitted charged nuclear particles. The particles are identified via time of flight, energy and pulse shape correlations.

References SPSLC/93-8/P274 163 ^____ Aiitiproton SI Counters

Target

Germanium Detectors

Fig. 1. Experimental set-up of PS209 experiment.

I

S3 1 I

2650 2675 2700 2725 2750 2775 2800 2600 2625 2650 2675 2700 2725 2750 2775 28O0

Channel number

Fig. 2. The n = 8 -> n = 6 (left hand side peak) andn = 6-»n = 5 (right hand side peak) antiprotonic X-ray transitions in 58Ni and 64Ni. This figure demonstrates the isotopic effects in heavy nuclei, the most probably due to the presence of a neutron halo in neutron rich nuclei. The relative intensity of the last observed (6 -> 5) transition in ^Ni is about a factor of two smaller than in 58Ni, indicating a more dense nuclear atmosphere in this nucleus. These data were obtained in June 1995 using 300 MeV/c antiproton beam.

Experiment PS209 Neutron Halo and Antiproton - Nucleus Potential from Antiprotonic X-rays

164 PS209

Beam: Ml Approved: 24/NOV/94 Status: Completed 29/SEP/96

Neutron Halo and Antiproton - Nucleus Potential from Antiprotonic X-rays

CERN, Grenoble ISN, Munich TV, Warsaw Univ. Heavy Ion Lab., Warsaw Univ., Warsaw, Soltan Inst. Nucl. Studies

CERN Widmann E. Grenoble ISN Santos D. Munich TU Hartmann F.J. von Egidy T. Warsaw Univ. Heavy Ion Lab. Czosnyka T. Iwamcki J. Jastrzebski J. Kisielinski M. Kondeja Z. Lubinski P. Napioikowski P. Pienkowski L. Trzcinska A. Warsaw Univ. Gulda K. Kuicewicz W. Warsaw, Soltan Inst. Nucl. Studies Skalski J. Smolanczuk R. Wycech S.

Spokesman: Jastrzebski J. Contact: Jastrzebski J.

The characteristics of antiprotonic X-rays in a number of heavy nuclei are investigated. The objective of this study is a combined analysis of observables depending on the nuclear periphery and the antiproton-nucleus optical potential. These observables would be gathered during the realisation of the proposed program (X-rays level shifts and widths) and will also come from the previous neutron halo investigation performed within the PS203 experiment. Such an analysis will substantially improve our knowledge of the nuclear periphery in heavy nuclei and, at the same time, will substantially delimit the parameters defining the antiproton-nucleus optical potential. In 1995 the experiment was run during three weeks in June on Ml LEAR beam line using about 10s p/s, of 311 MeV/c and 400 MeV/c momentum.

References SPSLC/94-25/P282 165 Sc7 D3 Sc6,Sc5 Sc4 Dipole D2 D1 Sc3 Sc2 Sc1 Si3.Si2.Sl1 Iff I I V I

-5.3m

LEAR Nal I vacuum

Not

100mm

Experiment PS210 : side view and schematicai top view Sc1 ...Sc7 : Trigger and time-of-flight scintillators, Si1 ...Si3 : Silicon counters, D1 ...D3 : Delay wire chambers Nal: six-fold Nal-calorimeter

Experiment PS210 Antihydrogen Production in p Z - Interaction

166 PS210

Beam: LEAR Approved: 09/FEB/95 Status: Completed 16/OCT/95

Antihydrogen Production in p Z - interaction

Darmstadt GSI, Erlangen-Nuernberg Univ., Genoa Univ./INFN, Juelich IKP-KFA

Darmstadt GSI Simon R.S. Stiatmann R. Etlangen-Nuetnberg Univ. Eyrich W. Hauffe J. Moosburger M. Stinzing F. Genoa Univ./INFN Boero G. Buzzo A. Lo Vetere M. Macri M. Passagio S. Pozzo A. Juelicli IKP-KFA Baui G. Brauksiepe S. Geyer R. Grzonka D. Kilian K. Neuen R. Oelert W. Roehrich K. Sachs K. Schepers G. Se&ick T. Wolke M.

Spokesman: Oelert W. Contact: Macri M.

The production of the antihydrogen atom H° = pe as the simplest atomic bound state of antimatter has been studied. Nine 2J0 have been observed.

The production of H° is predominantly mediated by the two-photon mechanism in the antiproton- nucleus interaction. In principle H° is well suited for investigations of fundamental CPT viola- tion studies under different forces, however, in the present experiment we concentrated on the production of this antimatter object, since so far it never had been observed.

References SLSLC/94-29/P283 167 jpr/12-Apr-96 Building Block Total Lead Weight u Holes o , - — -. - — = 334 tons CO Beam : 1; = 77.2 mm 30 err 60 cm axis oriented along beam direction •< Layer 11 105 cm 2; =64mm 120 cm 1; <|)=64mm 8< (120) Layer 10 150 cm 2; =64mm

7

-3f £- «)-|(45)--12-< f)05; -<-Layer 6 Mould type 2:

-c Layer 5 24x5

5 $(60) -< Layer 4 Mould type 3:

:^^' -< Layer 3 14x5 Layer 2 D 60 bars 46(150) -< Layer 1 (* = 58mm):

Space for neutron "absorbing blanket 50m

10= 100 £ 3x10" Tc y Spectrum from PS211 with Rabbit A Resolution 2x103- \ 539 keV 1x103- n<2keV 550

200 400 600 800 1000 1200 1400 1600 1800 2000 Photon Energy (keV)

Experiment PS211 Experimental Study of the Phenomenology of Spallation Neutrons in a Large Lead Block

168 Beam: T7 Approved: 15/JUN/95 Status: Completed 31/AUG/97

Experimental Study of the Phenomenology of Spallation Neutrons in a Large Lead Block

Athens Uaiv., Basle Univ., CEN, Bordeaux-Gradignan, CERN, Genoa Univ./INFN, Grenoble ISN, Madrid, CEDEX, Madrid, Univ. Alfonso X el Sabio, Madrid Univ. Autonoma, Madrid, Polytechnical Univ., Or say IPN, Padova Univ./INFN, Thessaloniki Univ., Sincrotrone Trieste

Athens Univ. Angelopoulos A. Apostolakis A. Sakelariou K. Sakelliou L. Zarris G. Basle Univ. Kokkas P. Pavlopoulos P. Vlachos S.

CEN, Bordeaux-Gradignan Andriamonje S. Ainould H. Bompas C.A. Del Moral R. Lacoste V.

CERN Carminati F. Cennini P. Fernandez R. Geles C. Gonzalez E. Goulas I. Kadi Y. Klapisch R. Revol J.-P. Roche C. Rubbia C. Rubio J.A. Saldana F. Genoa Univ./INFN Macri M. Grenoble ISN Attale F. Belle E. Gioini A. Loiseaux J.M. Meplan 0. Nifenecker H. Schussler F. Viano J.B.

Madrid, CEDEX Aleixandie J. Bueno J. Cerro E. Gonzalez 0. Tamarit J. Madrid, Univ. Alfonso X el Sabio Diez S. Perez Navarro A. Madrid Univ. Autonoma Embid M. Galvez J. Lopez C. Perez E. Poza M. Vieira S.

Madrid, Polytechnical Univ. Abanades A. Garcia J. Perlado M. Orsay IPN Hussonnois M. Le Naour C. Trubert D. Padova Univ./INFN Casagrande F.

References SPSLC/95-17/P291, SPSLC/96-56/M593 169 Thessaloniki Univ. Eleftheriadis C. Kittis G. Nikas D. Papadopoulos I. Sawidis E. Tzima A. Vlachoudis V. Zioutas K.

Sinciotione Trieste Buono S.

Spokesman: Rubbia C. Contact: Revol J.-P.

The purpose of PS211 is to determine how neutrons, produced by spallation inside a large Lead volume are slowed down by undergoing a very large number of scatterings, losing each time a small fraction (~ 1%) of their kinetic energy. The focus is in determining the probability for a spallation neutron produced at an energy of several MeV or more, to survive capture on Lead resonances and to reach resonance energies of materials to be transmuted, such as 5.6 eV for "Tc. This process, of Adiabatic Resonance Crossing, involves a subtle interplay between the capture resonances of the Lead medium and of selected impurities. This phenomenology of spallation neutrons in a large Lead volume, is the physics foundation of the Fast Energy Amplifier proposed by C. Rubbia, and could open up new possibilities in the incineration of long-lived nuclear waste such as Actinides or Fission Fragments (e.g. "Tc, 129I, etc.).

334 tons of high purity Lead, installed in t7, are exposed to a primary proton beam of 3.5 GeV/c (107 to 1010 protons per PS shot) in the fast extraction mode, and 2.5 to 0.6 GeV/c in the slow extraction mode (103 protons per PS shot). Neutron energy spectra are measured with various techniques over an energy dynamic range of 8 orders of magnitude. Both prompt and delayed 7 measurements are performed to study the capture rates in various elements of interest. The correlation between neutron capture time and energy is determined. A pneumatic system ("rabbit") allows to perform delayed 7 measurements of short-lived daughters activity, during the 14.4 seconds available between two consecutive PS shots. In addition, various types of standard activation measurements are performed. Data taking started in April 1996 and was completed in July 1997. The Collaboration is now mainly engaged in a large analysis effort.

170 10m 20m

DIRAC Experimental setup: a), b) — setup inside the radiation shielding; c) — iso- metric projection: 1 — proton beam tube; 2 — target station; 3 — detectors upstream of the magnet: microstrip gas chambers, scintillating fibre detectors, scintillation ion- ization hodoscopes; 4 — secondary particle channel; 5 — spectrometer magnet; 6 — detectors downstream of the magnet: drift chambers, vertical and horizontal scintillation hodoscopes, gas Cherenkov counters, preshower detectors, muon scintillation counters.

Experiment PS212 Lifetime Measurement of K+II~ Atoms to Test Low- Energy QCD Predictions

172 DIRAC PS212

Beam: T8 Approved: 08/FEB/96 Status: Preparation

Lifetime Measurement of 7r+7r~ Atoms to Test Low Energy QCD Predictions

Basle Univ., Bern Univ., Bucharest, Inst. for Atomic Physics, CERN, Dubna JINR, Frascati Nat.Lab. INFN, Kyushu Univ. Fukuoka, Kyoto-Sangyo Univ., Moscow State Univ. NPI, Osaka City Univ., Paris VI Univ., Prague Group, Prague TU, Prague, FZU-Inst. ofPhys. Acad. of ScL, Protvino IHEP, Rome Sanita/INFN, Rome Univ.II/INFN, Santiago de Compostela Univ., Tokyo, Waseda Univ., Trieste Univ./INFN, Tsukuba, KEK

Basle Univ. Tauscher L. Vlachos S. Bern Univ. Schacher J. Bucharest, Inst. for Atomic Physics Bozdog H. Caragheorgheopol G. Cimpean A. Micu L. Nicolescu C. Pentia M. Petcu M. Petrascu M. Ponta T. CERN Bricman C. Dry aid D. Ferro-Luzzi M. Herr H. Montanet L. Perreau J.-M. Dubna JINR Afanasyev L. Chvyrov A. Duradev A. Gorchakov O. Karpukhin V. Komarov V. Kruglov V. Kruglova L. Kulikov A. Kuptsov A. Nemenov L. Nikitin M. Olshevsky V. Pustylnik Zh. Rjabkov D. Tarasov A. Zrelov P. Frascati Nat.Lab. INFN Gianotti P. Guaraldo C. Lanaro A. Levi Sandri P. Lucherini V. Petrascu C. Kyushu Univ. Fukuoka MakiT. Kyoto-Sangyo Univ. OkadaK. Takeutchi F. Moscow State Univ. NPI Kalinina N. Selikov A. Trusov S. Yazkov V. Osaka City Univ. Okusawa T. Yoshida T. Paris VI Univ. Benayoun M. Leruste Ph. Narjoux J. Prague Group Smolik J.

References SPSLC/95-1/P284, SP5LC/95-73/P284/Add.l, SPSLC/96-24/M578 173 DIRAC PS212

Prague TU Cechak T. Geindt J. Prague, FZU-Inst. of Phys. Acad. of Sci. Lednicky R. Protvino IHEP Brekhovskikh V. Gorin A. Lapshin V. Manuilov I. Riazantsev A. Rykalin V.

Rome Sanita/INFN Ghio F. Girolami B. Rome Univ.II/INFN Casano L. Santiago de Compostela Univ. Adeva B. Anton J. Gallas M. Gomez F. Lopez-Aguera A. Nunez T. Pazos A. Rodriquez A.M. Santamatina C. Vazquez P.

Tokyo, Waseda Univ. Kuioda K. Trieste Univ./INFN Caligaris F. Dreossi D. Giacomich R. Penzo A.

Tsukuba, KEK Kobayashi M. Yoshimura Y.

Spokesman: Nemenov L. Contact: Ferio-Luzzi M.

The proposed experiment aims to measure the lifetime of TT+TT" atoms in the ground state with 10% precision, using the 24 GeV/c proton beam of the CERN Proton Synchrotron. As the value of the above lifetime of order 10~15s is dictated by a strong interaction at low energy, the precise measurement of this quantity enables to determine a combination of S-wave pion scattering lengths to 5%. Pion scattering lengths have been calculated in the framework of chiral perturbation theory and values predicted at the same level of accuracy have, up to now, never been confronted with accurate experimental data. Such a measurement would submit the understanding of chiral symmetry breaking of QCD to a crucial test.

174 AD

STATUS OF THE AD PROGRAMME AS OF NOVEMBER 1997 ATHENA Schematic Overview

Recombination Trap Antihydrogen Detector I L Positron Antiproton UHV Trap Capture and Cooling Positron / Trap Antiprotons (105MeV/c) Accumulation Trap He-3 Cooling Positrons System AD Na-22

Buffer Gas Deceleration to pump

Solenoid Coil Quadrupole 4.2 K region

< 0.5 K Recombination Csl Crystals region Trap

e+ Trap \ (UH\Q

Refrigerator Si Pads Antiproton 1 m Nose Trap

Experiment AD-1 Antihydrogen Production and Precision Experiments ATHENA AD-1

Beam: Approved: 12/JUN/97 Status: Preparation

Antihydrogen Production and Precision Experiments

The ATHENA Collaboration

Los Alamos Nat.Lab., Aarhus Univ., Brescia Univ./INFN, Budapest, Res. Inst. Part. Nucl. Phys., UC San Diego, CERN, Genoa Univ./INFN, London UCL, Naples Univ./INFN, Pavia Univ./INFN, Penn State Univ., Pisa Univ./INFN, Univ. Fed. Rio de Janeiro (UFRJ), Rome Univ.I/INFN, Stockholm Univ., Tokyo Univ. Dept. of Physics, Zurich Univ.

Los Alamos Nat.Lab. Goldman T. Holzscheiter M.H. Hughes R.J. King N.S.P. Morgan G.L. Nieto M.M. Aarhus Univ. Hangst J.S. Merrison J.P. Uggeihoj E.

Brescia Univ./INFN Cantone A. Lodi-Rizzini E. Ventuielli L. Budapest, Res. Inst. Part. Nucl. Phys. Csaba H. Horvath D. UC San Diego Surko CM. CERN Bollen G. Doser M. Eades J. Landna R. Rouleau G. Genoa Univ./INFN Gemme G. Lagomaisino V. Macri M. Manuzio G. Testera G. London UCL Charlton M. Collier M.J.T. Naples Univ./INFN Fedele R. Pavia Univ./INFN Fontana A. Rotondi A. Salvini P. Scoglio C. Penn State Univ. Lewis R.A. Smith G.A. Pisa Univ./INFN Gorini G. Torelli G.

References SPSLC/96-47/P302, SPSC/97-9/M597 177 ATHENA AD-1

Univ. Fed. Rio de Janeiro (UFRJ) Cesar C.L. Rome Univ.I/INFN Zanello D. Stockholm Univ. CarlbeigC.B. Ekloew N.A. Schuch R.H. Tokyo Univ. Dept. of Physics Hayano R. Yamazaki T. Yamazaki Y. Zurich Univ. Amslei C. Hermes E. Ould-Saada F. Prays H. Regenfus C.

Spokesman: Holzscheiter M.H. Contact: Landua R.

The study of CPT invariance with the highest achievable precision in all particle sectors is of fundamental importance for physics. Equally important is the question of the gravitational acceleration of antimatter. In recent years, impressive progress has been achieved at the Low Energy Antiproton Ring (LEAR) at CERN in capturing antiprotons in specially designed Penning traps, in cooling them to energies of a few milli-electron volts, and in storing them for hours in a small volume of space. Positrons have been accumulated in large numbers in similar traps, and low energy positron or positronium beams have been generated. Finally, steady progress has been made in trapping and cooling neutral atoms.

Thus the ingredients to form antihydrogen at rest are at hand. We propose to investigate the different methods to form antihydrogen at low energy, and to utilize the best of these methods to capture a number of antihydrogen atoms sufficient for spectroscopic studies in a magnetostatic trap. Once antihydrogen atoms have been captured at low energy, spectroscopic methods can be applied to interrogate their atomic structure with extremely high precision and compare it to its normal matter counterpart, the hydrogen atom. Especially the 1S-2S transition, with a lifetime of the excited state of 122 msec, and thereby a natural linewidth of 5 parts in 1016, offers in principle the possibility to directly compare matter and antimatter properties at a level of 1 part in 1018. Such precision can only be achieved once the antihydrogen atoms have been cooled to sub-milli-Kelvin energies, which should be achievable with a combination of laser cooling followed by adiabatic cooling.

In the first phase of the experiment we will study the formation rates of antihydrogen atoms and their capture in a magnetic gradient trap by observing the annihiliation of antihydrogen atoms impinging on the surrounding walls of the experiment with an appropriate detector. At this stage, working with atoms at about 1 K temperature, direct tests of CPT conservation of the electromagnetic interaction at a level of 1 part in 1O10 and better by 1S-2S two-photon spectroscopy appear feasible. In the second phase we will cool the stored antihydrogen atoms using laser cooling methods similar to those used for hydrogen spectroscopy followed by adi- abatic cooling and then investigate the atomic structure of antihydrogen using Doppler-free two-photon spectroscopic techniques. Additionally, comparison of the gravitational masses of

178 ATHENA AD-1 hydrogen and antihydrogen, using either ballistic or spectroscopic methods, can provide direct experimental tests of the Weak Equivalence Principle for antimatter at a high precision.

NEXT PAGE(S) left BELANK

179 ATRAP AD-2

Beam: Approved: 12/JUN/97 Status: Preparation

The Production and Study of Cold Antihydrogen

The Antihydrogen TRAP Collaboration (ATRAP)

Amsterdam FOM, Amsterdam Univ., Bonn Univ., Boulder, Nat.Inst. Standards Tech (NIST), Gaithersburg,Nat. Inst.of Stand. & Tech., Garching, MPI Quantenoptik, Harvard Univ., Juelich IKP-KFA, Seoul National Univ.

Amsterdam FOM Walraven J. Amsterdam Univ. Hymans T. Bonn Univ. Kalinowsky H.

Boulder, Nat.Inst. Standards Tech (NIST) Bollinger J. Wineland D.

Gaithersburg.Nat. Inst.of Stand. & Tech. Phillips W.D. Rolston S.L. Garching, MPI Quantenoptii EikemaK. Hansch T.W. Walz J. Harvard Univ. Estrada J. Gabrielse G. Hall D. Roach T. Yesley P.

Juelich IKP-KFA Gwonka D. Oelert W. Setack T. Seoul National Univ. Jhe Wonho.

Spokesman: Gabrielse G.

The goal of the Antihydrogen TRAP Collaboration (ATRAP) is precise laser spectroscopy of antihydrogen. Comparisons of the structure of the antihydrogen and hydrogen will provide the most stringent test of CPT invariance involving baryons and leptons. ATRAP grows out the TRAP collaboration which developed all of the techniques to take antiprotons at an energy of 6 MeV (momentum 100 MeV/c) and to accumulate them in thermal equilibrium at 4 K, an

References SPSC/97-8/P306 181 ATRAP AD-2 energy that is lower by ten orders of magnitude. Antiprotons from ATRAP will come from the Antiproton Decelerator (AD) where users will use the stacking techniques we developed to accumulate cold antiprotons at much lower expense that was required to accumulate antiprotons in the A A (in the CERN AC-AA-LEAR complex). ATRAP now includes members who have pioneered crucial techniques required for the study of cold antihydrogen such as the laser spectroscopy of hydrogen, the spectroscopy of trapped hydrogen, atom trapping and laser cooling. In late 1996, ATRAP members confined cold antiprotons and positrons together for the first time, and observed their interaction.

WEXT left B

182 vacuum PMT with window light guide 50 um Ti window K tof| 20 pm Cerenkov counter

laser beam

quartz windows beam profile monitor entrance window Ti 20 \im

Figure 2: Schematic setup of the pHe+ experiments

Laser-Microwave Resonance

X4 A- 2.68 ±0.03 pm f+ - f. difference * ' i • 1.70 ±0.05 GHz JS resolved by laser oc io.S s —> F"=L'-1/2 ff _ ;_ 0 0» 0.092 0.09< 0.096 0.088 O.I 0.102 0.104 \-72Cnm

13 GHz microwave resonance 0.8 b) 0.6 28 MHz u A

Df2.88 12.89 12.9 12.91 12.92 12.93 12.94 v«w

Figure 3: Hyperfine structure of pHe+: LEAR results and AD plans.

Experiment AD-3 Atomic Spectroscopy and Collisions Using Slow Antiprotons

184 ASACUSA AD-3

Beam: Approved: 20/NOV/97 Status: Preparation

Atomic Spectroscopy and Collisions Using Slow Antiprotons ASACUSA Collaboration

Aarhus Univ., Budapest Res.Inst. of Physics (KFKI), Caen, Ciril-Lab. Mixte CEA-CRNS, CERN, Darmstadt GSI, Groningen, KVI, Kyoto Univ., London UCL, Maynooth, St. Patrick's College, Munich TU, Okazaki, Inst. Molecular ScL, RIKEN Institute, Tokyo Univ. Dept. of Physics, Tokyo Univ. Inst. ofPhys., Tokyo Inst.of Tech., Tokyo Metropolitan Univ., Tokyo, Japan Soc.for Promotion of Sci., P.Scherrer Inst., Villigen

Aarhus Univ. Bluhme H. Knudsen H. Merrison J. Moller S.P. Uggerhoj E.

Budapest Res.Inst. of Physics (KFKI) Bakos J.S. Horvath D. Kardon B. Caen, Ciril-Lab. Mixte CEA-CRNS Rothard H. CERN Eades J. Darmstadt GSI Scheidenberger C. Ullrich J. Groningen, KVI Hoekstra R. Kyoto Univ. HigakiH. Mohri A.

London UCL Charlton M. Maynooth, St. Patrick's College Slevin J. Munich TU Hartmann F.J. Ketzer B. von Egidy T. Okazaki, Inst. Molecular Sci. Kumakura M. Morita N. RIKEN Institute Kambara T. Kojima T. Nakai Y. Oshima N. Widmann E.

Tokyo Univ. Dept. of Physics Hayano R.S. Hori M. Ishikawa T. Torii H.A. Yamashita K.

References SPSC/97-19/P.307 185 ASACUSA AD-3

Tokyo Univ. Inst. ofPhys. Azuma T. Hyodo T. Ichioka T. Komald K. Kuga T. Kuroki K. Matsushima H. Yamazaki Y.

Tokyo Inst.of Tech. IwasakiM. Tokyo Metropolitan Univ. Tannma H. Tokyo, Japan Soc.foi Promotion of Sci. Yamazaki T. P.Scheirer lust., Villigen Moienzoni E.

Spokesman: Hayano R.S. Contact: Eades J.

During the last decade, three extensive projects in atomic physics were carried out at the LEAR facility by the PS194, PS200 and PS205 collaborations (see LEAR/IONIZATION, LEAR/GRAV, and HELIUMTRAP, this volume). The results of these experiments suggest that a series of finer measurements, first using the lower energy and smaller emittance of the CERN Antiproton Decelerator (AD) alone, and then supplementing these advantages with RFQ and Trap techniques, will be yet more intriguing. The sequence of events following the introduction of antiprotons into matter are a) a slowing down phase, b) the formation of antiprotonic atoms (typically with recoil energies of the order of a few electron volts) and c) the atomic cascade of the antiproton to states at which the strong interaction comes into play and results in annihilation of the antiprotons. The cascade c) is usually strongly influenced both by Auger transitions and by the fact that the recoiling antiprotonic atoms collide with surrounding atoms/molecules of the substance in which they were formed. The metastability of the pRe+ 'atomcule' studied by the PS205 collaboration since 1991 is extremely unusual in the presence of such complex and destructive atomic processes, and has allowed spectroscopic studies of this atom to be made at a precision where QED effects become observable.

In order to i) derive full benefit from the 'antiproton QED laboratory' provided by the pHe+ atom ii) understand fully all processes from slowing down to annihilation, and iii) create and study spectroscopically other metastable antiprotonic forms such as protonium (j5p) experi- ments with lower energy beams are essential. The ASACUSA collaboration therefore intends to use slow (5.8 MeV) antiprotons from the AD to continue both the PS205 studies of metastable pHe+ and to carry out further experiments of the PS 194 type. In the initial phase of ex- perimentation, the laser spectroscopic determinations of visible-region transition frequencies already familiar from PS205 will be carried to still higher precision and supplemented by mi- crowave measurements of the atom's hyperfine structure. An RFQ post-decelerator will then be added to reach the even lower energies needed for the study of processes a) and b). Finally an antiproton Penning trap with a design based on the experience of LEAR experiment PS200 will be used as an antiproton source of effectively zero energy.

The experimental programme is summarised in Table 1, in which the high degree of intercon- nectedness of the lines of research deriving from the PS194 and PS205 experiments is shown

186 ASACUSA AD-3 by transverse arrows. The setup to be used during the first phase of operation is shown in Figure 2. Figure 3 illustrates the hyperfine and superhyperfine structure of the pHe+ atomic levels to be studied at the AD.

Physics New ---study Atomic Collisions High Precision apparatus Spectroscopy

pHe+ spectroscopy: high resolution AD:5.8MeVp lifetimes & population lasers + microwave temperature & pressure effects chemical aspects 2000 HFS + SHFS RFQ:~100keVp stopping power low density channeling p atom formation gas target in dilute targets electrostatic + analyzer pHe spectroscopy: primordial (n,l) distribution

trap: _ lonization in 10 keV— 10 eV p p atom formation ultra low density single collision target in single collision Doppler-free pp spectroscopy laser spectroscopy

Table 1: An overview of the proposed experiment.

187 ISOLDE

STATUS OF THE ISOLDE PROGRAMME AS OF NOVEMBER 1997

NEXT PAWS) left BLANK 60d

125Te

resonance K x-ray source absorber absorber detector

cooled v to 77K moving

Schematic experimental set-up for the axion resonance absorption experiment.

Experiment TS300 A Search for Axions and Massive Neutrinos

190 ISOLDE IS300

Beam: GHM Approved: 18/SEP/91 Status: Data-Taking

A Search for Axions and Massive Neutrinos

Aarhus Univ., CERN, Chalmers Univ. of Technology, Goteborg, Isolde Collaboration

Aarhus Univ. Hornshoj P. Petersen J.W. Riisager K. Weyer G.

CERN De Rujula A. Ravn H.L. Chalmers Univ. of Technology, Goteborg Jonson B. Nyman G.

Spokesman: Weyer G. Contact: Ravn H.L.

This experiment consists of two parts with independent aims; both rely on the production of a strong, contamination free (10~12) source of radioactive 125I at the ISOLDE facility. Massive (17 keV) neutrino emission in the electron capture decay of this isotope is searched for by measuring the internal bremsstrahlungs spectrum.

The possible emission of axions in the 35.5 keV Ml transition of the 125Te daughter isotope is searched for by the axion analogue of the Mossbauer effect, i.e. the axion resonance absorption in a 125Te resonance absorber. For this purpose all other radiation emitted from the source is shielded by a non-resonant absorber, which is transparent, however, to axions. The resonance absorption is detected by measurement of subsequently emitted x-rays. A sensitivity to the axion emission branching ratio in the nuclear decay of 10~r is strived for.

References ISC/91-4/P2 191 - Schematic on-line nuclear orientation experiment

-STILL •CONTINUOUS HEAT EXCHANGER •SILVER SINTEREO HEAT EXCHANGER SIDE ACCESS MIXING CHAMBER FACILITY

COLD FINGER 'IRIS APERTURE BEAM-LINE RADIATION SHUTTER—1 1ST SPLIT PAIR IN CLOSEO POSITION

- Side access section and dilution unit of an on-line refrigerator

Experiment IS301: Effect of Particle-Core-Vibration Coupling Near the Double Closed 132Sn Nucleus from Precise Magnetic Moment Measurements

192 ISOLDE IS301

Beam: RCO Approved: 18/SEP/91 Status: Preparation

Effect of Particle-Core-Vibration Coupling Near the Double Closed 132Sn Nucleus from Precise Magnetic Moment Measurements

Delft Tech. Univ., Gent State Univ., Manchester Univ., Maryland Univ., Novi Sad Univ., Oxford Univ., Surrey Univ., Isolde Collaboration

Delft Tech. Univ. Postma H. Gent State Univ. Heyde K.

Manchester Univ. Grant I.S. Maryland Univ. Walters W.B. Novi Sad Univ. Veskovic M. Oxford Univ. Rikovska J. Stone N.J. Surrey Univ. Walker P.M.

Spokesman: Stone N.J. Contact: Veskovic M.

Low temperature nuclear orientation of isotope-separator implanted short-lived radioisotopes makes possible the measurements of nuclear magnetic dipole moments of oriented ground and excited states with half-lives longer than a few seconds. Coupling schemes characterizing the odd nucleons and ground-state deformations can be extracted from the nuclear moments. We thus propose to measure the magnetic dipole moments of 12r~133Sb to high precision using NMR/ON at the NICOLE facility. With (double magic +1) 133Sb as the reference, the main aim of this experiment is to examine whether the collective component in the 7/2+ Sb ground state magnetic dipole moment varies as expected according to particle-core coupling calculations carried out for the Sb (Z=51) isotopes. Comparison of the 1-proton-particle excitations in Sb to 1-proton-hole states in In nuclei will shed light on differences between particle and hole excitations as understood within the present model. Comparison of results on Sb isotopes with those in Tl will yield information on the effect of the differing underlying shell structure upon the mean field at the beginning and the end of the 50-82 proton shell. References ISC/91-6/P6, ISC/95-8/P6.Add.l, ISC/97-30/P6.Add.2 193 MASS DETERMINATION MASS VIA SPECTROMETER MEASUREMENT OF THE CYCLOTRON FREQUENCY

MASS SELECTIVE COOLING & BUNCHING

COLLECTION & ISOLDE SOURCE CHAMBER REIONIZATION

Experiment IS 302: High-Accuracy Mass Determination of Unstable Nuclei with a Penning Trap Mass Spectrometer ISOLDE IS302

Beam: CEO Approved: 18/SEP/91 Status: Data-Taking

High-Accuracy Mass Determination of Unstable Nuclei with a Penning Trap Mass Spectrometer

CERN, Darmstadt GSI, Montreal McGiU Univ., Orsay CSNSM/IN2P3-CNRS, Stockholm Univ., Warsaw Univ., Isolde Collaboration

CERN Bollen G. Darmstadt GSI Beck D. Herfuith F. Kluge H.-J. Kohl A. Schwarz S. Montreal McGffl Univ. Moore R.B. Oisay CSNSM/IN2P3-CNRS Audi G. Lunney M.D.N. de Saint-Simon M. Stockholm Univ. Carlberg C. Warsaw Univ. Patyk Z. Szerypo J.

Spokesman: Bollen G. Contact: Herfurth F.

The mass of a nucleus is its most fundamental property. A systematic study of nuclear masses as a function of neutron and proton number allows the observation of collective and single-particle effects in nuclear structure. Accurate mass data are the most basic test of nuclear models and are essential for their improvement. This is especially important for the astrophysical study of nuclear synthesis. In order to achieve the required high accuracy, the mass of ions captured in a Penning trap is determined via their cyclotron frequency ue. Mass measurements already performed with this technique at ISOLDE-2 demonstrated that resolving powers exceeding r uc/Auc (FWHM) of 1 million can easily be achieved and accuracies of typically Sm/m s» 10" are obtained. The technique can be applied to isotopes of all elements available at ISOLDE. Hence a highly accurate, systematic investigation of nearly the complete nuclear mass surface becomes possible.

References ISC/91-9/P6, ISC/95-8/P6/Add.l, ISC/97-30/P6/Add.2 195 -0.0050

-0.0060 -

CO Sum of all points removed from resonance Q and without RF -0.0070 01

-0.0080 -

-0.0090 230 250 270 290 Frequency (kHz)

Experiment IS303 Measurement of the Magnetic Moment of 23Mg Using the Tilted-Foil Polarization Technique ISOLDE IS303

Beam: Approved: 18/SEP/91 Status: Data-Taking

Measurement of the Magnetic Moment of 23Mg Using the Tilted-Foil Polarization Technique

Berlin, Hahn-Meitner Inst., CERN, Legnaro Nat.Lab./INFN, Manchester Univ., Weizmann Inst. Rehovot, Isolde Collaboration

Berlin, Hahn-Meitner Inst. Haas H. CERN Lindroos M. Legnaro Nat.Lab./INFN Mueller L. Manchester Univ. Billowes J. Pearson M.R. Weizmann Inst. Rehovot Broude C. Goldring G. Hass M. Weissman L.

Spokesman: Hass M. Contact: Lindroos M.

We report here on the first measurement in an experimental program initiated at the ISOLDE facility at CERN for the measurement of magnetic moments of short-lived radionuclides. The 60 keV ISOLDE beam from the GPS separator is boosted in energy by a 200 kV high-voltage platform, on which the whole experiment is mounted, in order to achieve sufficiently high energy for transmission through the foils of a tilted-foil setup. The 520 keV 23Mg(2+) nuclei are polarized by the tilted foil technique and the resulting 0° - 180° /? asymmetry is monitored as a function of the frequency of an rf-applied perturbing magnetic field in an NMR setup. In this experiment, earlier asymmetry measurements were confirmed and an NMR resonance was observed, corresponding to a preliminary value of the magnetic moment of 0.533(6) n.m., in agreement with a previous measurement. The measured asymmetry as function of NMR frequency and the fitted resonance curve are presented in the figure. During the experiment, problems were encountered with the buildup of contamination on the stopper surface. Improve- ments to the experimental setup are presently being designed, aiming at improved vacuum and possibly lower temperature. This will help pave the way for measurements of magnetic moment of T=| nuclei in the s-d shell and T=| f-shell nuclei. The study of relaxation times and other solid-state phenomena in semi-conductors and other materials of interest will also be possible with this technique.

References ISC/91-11/P8 197 Optical Pumping Deflection Deceleration Charge Exchange Deflection Detector

Gas Inlet Deflection

Differential Pumping Defector Deflection I Charge Exchange Laser Beam

Ion Beam Excitation Magnet Scintillation Detectors and d) Optical Detection

Figure 1. Schematic view of the apparatus for collinear laser spectroscopy with a) fluorescence detection, b) state-selective neutralization, c) state- selective collisional ionization and d) /3-asymmetry detection.

Experiment IS304 Measurement of Nuclear Moments and Radii by Collinear Fast-Beam Laser Spectroscopy ISOLDE IS304

Beam: LA3 Approved: 18/SEP/91 Status: Data-Taking

Measurement of Nuclear Moments and Radii by Collinear Fast-Beam Laser Spectroscopy

Leuven University, Mainz Univ.-Inst.of Physics, Montreal McGill Univ., Isolde Collaboration

Leaven University Lievens P. Silveians R.E. Vermeeren L. Mainz Univ.-Inst.of Physics Bonn J. Geithnei W. Georg U. Kappertz S. Keim M. Neugart R. Neuroth M. Otten E.W. Wilbert S. Montreal McGffl Univ. Buchinger F.

Spokesman: Neugart R. Contact: Keim M.

Collinear laser spectroscopy on a fast beam has proven to be a widely applicable and very efficient tool for measurements of changes in mean square nuclear charge radii, nuclear spins, magnetic dipole and electric quadrupole moments. As a continuation of the different collinear laser spectroscopy programs at ISOLDE-2, measurements on isotopes in several regions of the nuclear chart are proposed. Recent developments of extremely sensitive non-optical detection schemes enabled for some elements the extension of the measurements towards the very short- lived isotopes in the far wings of the ISOLDE production curves. This gain in sensitivity opens up new perspectives, particularly for measurements on lighter nuclei whose ground- state properties can be interpreted by large scale microscopic calculations instead of the more phenomenological models used for heavier nuclei.

The measurements performed during the three years at the PS-Booster-ISOLDE facility are exclusively based on the detection of radioactivity from short-lived isotopes. For argon, the isotope shifts in sequence 32~40Ar and ^Ar and a few nuclear moments in the sd-shell were measured by optical pumping followed by state-selective collisional ionization and detection of the /?-decay. Similarly, the low-background a-detection was used to extend earlier results on radon to the very neutron-deficient 200Rn and 201Rn.

Presently, the experimental effort concentrates on the measurement of quadrupole moments of the neutron-rich sodium isotopes up to the N=20 shell closure. The nuclear spins are oriented by irradiating the fast atomic beams with circularly polarized laser light, and the atoms are implanted into a non-cubic host crystal lattice. /3-NMR experiments have been performed for 26~30Na, and the technique is being improved to reach the shell closure (N=20) with 31Na. At the same time, calibration measurements in different crystals are necessary for an evaluation of the quadrupole moments. References ISC/91-13/P9, ISC/95-6/P9/Add.l, ISC/97-29/P9/Add.2 199 • i • i • i • 1 3000 Jl FLUORESCENCE RF RF DETECTION 2500 --1/2 =1/2

m units ) A LOOP A PROBE

ISOLDE intensit y BEAM

Signa l / ELECTRON 1500 - MULTIPLIER o USER USER BEAM BEAM o MASS SPECTROMETER —^ V 1 1000 1 • 1 . 1 1 1 • 113.372 .376 .380 .384 .388 Frequency [MHz]

Fig. 1. Schematic of atomic beam magnetic resonance apparatus setup at ISOLDE. Fig. 2. Typical resonance in 39K at a magnetic field of 0.65T used in the direct measurement of the nuclear g-value.

Experiment IS306 Systematic Measurements of the Bohr-Weisskopf Effect at ISOLDE ISOLDE IS306

Beam: LA2 Approved: 06/FEB/92 Status: Preparation

Systematic Measurements of the Bohr-Weisskopf Effect at ISOLDE

Chalmers Univ. of Technology, Goteborg, Kouchi Inst. for Technology, Kyoto Univ., Lund Univ., Lyon LASIM, Mainz Univ.-Inst.of Physics, New York Univ., Orsay Aime Cotton Lab., CNAM Paris, RIKEN Institute, Tokyo Univ. Dept. of Physics, Uppsala Univ., Isolde Collaboration

Chalmers Univ. of Technology, Goteboig Gustafsson M. Nilsson T. Kouchi Inst. foi Technology Cheon T. Kimura M. Momota S. Nojiri Y.

Kyoto Univ. Matsuki S. Lund Univ. Ragnaisson I. Lyon LASIM Pellarin M. Vialle J.L. Mainz Univ.-Inst.of Physics Neugart R. New York Univ. RediO. Stroke H.H. Orsay Aime Cotton Lab. Duong H.T. Pinard J. CNAM Paris Juncai P. RIKEN Institute Inamura T.T. Tokyo Univ. Dept. of Physics Nomura T. Uppsala Univ. Ekstrom C.

Spokesman: Duong H.T. Contact: Duong H.T.

References ISC/91-3/P1. ISC/91-24/Pl/Add.l 201 ISOLDE IS306

The "Bohr-Weisskopf" effect, or "hfs anomaly", which results from the effect of the distribution of nuclear magnetization on the electron-nuclear interaction, will be measured systematically at the PS Booster ISOLDE, first for a long chain of radioactive cesium isotopes, analogously to previous isotope shift studies. With the addition of magnetic moment values, the results are expected to provide independent data for testing nuclear wave functions. These will be of im- portance for interpreting atomic parity non-conservation experiments. Precision measurements of the hfs splittings and nuclear magnetic moments are required, with sensitivity adequate for the radioactive isotopes produced. A triple resonance atomic beam magnetic resonance appa- ratus (Figure 1) with optical pumping state selection has been constructed. Detection of the beam is by laser-induced fluorescence or mass spectrometry. The performance of the apparatus has been tested (Figure 2) with stable K and Rb beams. Results obtained for g-values and hfs anomalies are in excelent agreement with published data, and show the technique to be suitable for the on-line expeirments at ISOLDE. These require the neutralization of the ISOLDE ion beam and the production of a thermal atomic beam. In order to improve on the observed effi- ciency of these two processes, an auxiliary ion source is being constructed to allow appropriate development of the instumentation.

202 Experimental Set-up

linear-motion- rotary feedthrough

rotary pump diaphragma

ISOLDE ion beam viewport

12-sided specimen suppressor holder

turbo pump

Experiment IS307 Diffusion of Au and Pt in Amorphous Silicon

204 ISOLDE/Extension IS307

Beam: Approved: 06/FEB/92 15/JUN/95 Status: Data-Taking

Diffusion of Aii and Pt in Amorphous Silicon

Stuttgart MPI f. Metallf., Isolde Collaboration

Stuttgart MPI f. Metallf. Prank W. Scharwaechter P.

Spokesman: Eorz M. Contact: Scharwaechter P.

Systematic investigations of the diffusion of Au and Ag in amorphous silicon (a-Si), germanium (a-Ge), and silicon-germanium alloys (a-Sii_yGej,) have been carried out by means of the radio- tracer technique. The specimens were prepared by depositing a-Si, a-Ge, or a-Sii_yGey on glass substrates by radio-frequency sputtering. At the on-line isotope separator (ISOLDE) of the European Nuclear Research Centre (CERN) in Geneva, Switzerland, radioactive 195Au or 10BAg was implanted into the samples. The diffusion profiles were determined by serial sectioning with the aid of ion-beam sputtering. The results confirm our previous proposal that, in both a-Si and a-Ge, transition metals diffuse in an interstitial-like manner that does not involve intrinsic defects as diffusion vehicles. On the contrary, immobile intrinsic defects act as saturable traps which temporarily immobilize the diffusing atoms and thus decrease their diffusivities. The satur ability of the traps leads to a strong dependence of the diffusion coefficients on the concentrations of the diffusing elements. In the case of Au in a-Si, the influence of thermal- annealing-induced structural relaxation on the diffusivity has been investigated. It was found that the diffusion coefficient passes through a maximum during relaxation. A straightforward explanation of this finding is that the traps are vacancy-type intrinsic defects which, during relaxation, undergo agglomeration that results in trap deepening.

NEXT left BLANK References ISC/91-22/P12, ISC/95-13/P12.Add.l 205 ISOLDE IS308

Beam: LAI Approved: 06/FEB/92 Status: Completed 31/DEC/95

Meson-Exchange Enhancement of the First Forbidden 0+ <-»• 0~ Beta Transitions

Brookhaven Nat.Lab., Univ. ofLyon I (IPNL), Paris IN2P3, Strasbourg CRN/ULP, Isolde Collaboration

Biookhaven Nat.Lab. Warbutton E.K.* Univ. ofLyon I (IPNL) Marguier G. Paris IN2P3 Richard-Serre Cl. Strasbourg CRN/ULP Baumann P. Bounajma M. Huck A. Klotz G. Knipper A. Walter G.

Spokesman: Walter G. Contact: Richard-Serre Cl.

In the frame of the standard model of the weak interaction, it has been suggested by Ku- bodera, Delorme and Rho, that pion exchange should have a large effect on the rank-zero + time-like component of the axial current Ao. The best case for the study of Ao is 0~<-> 0 beta decay since in this process only rank zero matrix elements of the time-like and space- like components of the axial current contribute to the transition rate. 0~ <-» 0+ decays have been studied in the vicinity of doubly closed-shell nuclei such as 160, 96Zr, and 208Pb where S1/2 *-+ P1/2 matrix elements were involved. In these cases, the meson-exchange correction to the one-body axial-charge density is significant. ISOLDE offers the possibility to perform sensitive + measurements of the 0~<-» 0 pseudoscalar decay in nuclei where the p3/2 —* d3/2 matrix ele- 38 + 38 ments are involved. We therefore propose a search of the Ca(0 ,srs) —> K(0~, Ex = 2993 keV) transition, as yet unobserved and a precise measurement of the 5OK(0~) —>5OCa(0+) partial half- life. *.

In this last case, an indirect determination of the strong ft branch (60% ± 10%) yields log fot = 5.89 ± 0.09 which is very low for a first-forbidden (3 decay in this mass range and can only be interpreted as a 0""-+ 0+ transition with a strong enhancement due to meson exchange contribution (emec = 1.52 ± 0.07).

38 + 38 A first analysis of the data reveals that the Ca (0 ,gs) -+ K (0", EX = 2993 keV) tran- sition cannot be observed. The upper limit for this branch (\p < 0.0046%) is much lower

References ISC/91-27/P15 1 *deceased 207 ISOLDE IS308 than theoretical predictions. This analysis gives also the first direct determination of the 50 5O + K (0~) —> Ca(0 ) transition which confirms the strong enhancement (emec = 1.52 ± 0.05) due to meson exchange.

208 ISOLDE IS311

Beam: Approved: 06/FEB/92 Status: Data-Taking

The Electronic Structure of Impurities in Semiconductors

Aarhus Univ., Isolde Collaboration

Aarhus Univ. Bonde Nielsen K. Nylandsted Latsen A. Petersen J.W. Svane A. Weyer G.

Spokesman: Petersen J.W. Contact: Weyer G.

The electronic structure of isolated substitutional or interstitial impurities in group IV, IV-IV, and III-V compound semiconductors will be studied. Mossbauer spectroscopy will be used to investigate the incorporation of the implanted isotopes on the proper lattice sites. High resolution conversion electron spectroscopy yields unique information on the local density of electron states around the probe atom. The data can be directly compared to theoretical calculations using the LMTO scheme. Deep level transient spectroscopy will be used to identify the band gap levels introduced by metallic impurities, mainly in Si and Si* Gei_-X-s

References ISC/91-30/P18 209 ISOLDE IS314

Beam: RCO Approved: 06/FEB/92 Status: Data-Taking

Measurements of Electric Quadrupole Moments of Neutron-Deficient Au, Pt, and Ir Nuclei with NMR-ON in hep-Co

CERN, Konstanz Univ., Munich TV, Isolde Collaboration

CERN Forkel-Wirth D. Konstanz Univ. Buichard A. Munich TU Hagn E. Seewald G. Smolic E. Zech E.

Spokesman: Hagn E. Contact: Forkel-Wiith D.

The aim of the experiments is the measurement of i) nuclear magnetic moments and electric quadrupole moments of neutron-deficient isotopes in the region Os-Ir-Pt-Au with the methods of quadrupole-interaction-resolved NMR on oriented nuclei ("QI-NMR-ON") and modulated adiabatic passage on oriented nuclei ("MAPON") and ii) the magnetic hyperfine field, electric field gradient (EFG), and spin-lattice relaxation of 5d elements in ferromagnetic Fe, Ni, fcc-Co and hep-Co. The measurements on Au isotopes have been finished successfully. The quadrupole moments of 186Au, 193mAu, 196Au, 195mAu, 197mAu, 198Au and 199Au were determined with high precision.

For neutron-deficient Ir isotopes QI-NMR-ON measurements were performed after implantation of Hg precursors. The EFG of Ir in hep-Co has been calibrated. Thus precise values for the spectroscopic quadrupole moments of 184Ir, 186gIr, 186mIr, 187Ir, 188Ir, and 189Ir were obtained. The ratio of quadrupole moments of the 2~ isomeric state 186mIr and the 5+ ground state 186gIr points to different nuclear deformations in these states, i.e. a shape coexistence in 186Ir. In addition, we developed a new method for the measurement of ground state spins. This method was applied to 184Ir, with the unambiguous result 7 = 5.

For the understanding of the magnetism in hep-Co, systematic studies of the angular depen- dence of the magnetic hyperfine field and the electric field gradient with respect to the crystal axes were performed for Ir, Pt, Au, and Hg. In the case of Ir a large anomaly was detected. For 188Ir the cross-relaxation with 59Co was studied. Due to the long-range Suhl-Nakamura interaction the lowest excitations of the 59Co spin system are collective (nuclear magnons).

References ISC/91-34/P22 211 ISOLDE IS314

The crossing of the v-i resonance of 188Ir with the collective excitation of 59Co can be tuned with the external magnetic field. The transition from the inhomogeneously broadened "single- spin" resonance to the homogeneously broadened "collective-state" resonance has been studied in detail. First experiments were performed on the resonance-like magnetization-dependence of the spin- lattice relaxation matrix element in hep-Co. The preliminary results indicate that both, the magnetic field dependence of the nuclear spin lattice relaxation time in ferromagnets and the enhancement factor for the radio frequency field originate from the interaction of the impurity nuclei with spin waves.

Another part of our activities was dedicated to the hyperfine interaction of 5d elements in cubic Fe and Ni single crystals, especially the angular dependence of the collinear EFG with respect to the crystallographic axes. In the first experiment, 188Hg was implanted into an Fe single crystal and the quadrupole interaction of 188Ir was measured with MAPON, the magnetization being forced parallel to the crystallographic [100], [110], and [111] axes by an external magnetic field. Contrary to all previous experiments in the literature, a strong dependence of the electric field gradient on the direction of the magnetization with respect to the crystallographic axes 100 11O ni was observed for the first time, with the relative values of VU » : FZ(J » : V£ » = 1 : 0.631(9) : 0.549(12). Measurements on other 5d elements in Fe and Ni single crystals are at work.

NEXT PAGE(S) left BLAKr

212 COMPLIS

high-power Nd:YAG desorption laser ionization ionization continuum , continuum

X resonant photo-ionization laser {X) X incident magnet mass-separated first ionization collinear ionization beam pulsed micro-channelplate laser- charge exchange detector

N) ion source emerging (PILIS) beam

Argon pump iaser hi-res 1st step dye laser (X, doubling crystal 2nd step dye laser

excimer pump laser ionization step dye laser (A,)

Experiment IS315 COMPLIS: COlinear spectroscopy Measurements using a Pulsed Laser Ion Source ISOLDE IS315

Beam: LBO Approved: 16/APR/92 Status: Data-Taking

COMPLIS: Collaboration spectroscopy Measurements using a Pulsed Laser Ion Source

Grenoble ISN, Mainz Univ.-Inst.of Physics, Montreal McGill Univ., Orsay Aime Cotton Lab., Orsay CSNSM/IN2P3-CNRS, Orsay IPN, Paris IN2P3, Isolde Collaboration

Grenoble ISN Genevey J. Mainz Univ.-Inst.of Physics Huber G. Krieg M. Sebastian V.

Montreal McGill Univ. Crawford J. Lee J.K.P. Orsay Aime Cotton Lab. Cabaret L. Duong H.T. Pinard J.

Orsay CSNSM/IN2P3-CNRS Lnnney M.D. Orsay IPN Arianer J. Ibrahim F. Le Blanc F. Obert J. Oms J. Putaux J.C. Roussiere B. Sauvage J. Paris IN2P3 Richard-Scrre C.

Spokesman: Huber G. Contact: Richard-Serre C.

Laser spectroscopy has been widely used for the study of static behaviour of nuclei. Nuclear moments and changes in the charge radii have been measured for many isotopes, especially at ISOLDE by direct collinear laser spectroscopy (IS304).

Refractory and daughter elements which are not provided directly from the ISOLDE beams can be produced by nuclear decay of implanted isotopes. In a subsequent laser desorption from an appropriate substrate pulsed atomic beams are prepared for laser spectroscopic measurements. A set-up for a soft implantation and resonant laser ionisation is used for a sensitive spectroscopy of Pt and Au at moderate spectral resolution. For high resolution this system is used as a pulsed laser ion source feeding a collinear laser ionisation spectroscopy (COMPLIS).

From nuclear spectroscopy a second shape transition is expected to occur in the neutron- deficient Pt isotopes around A = 180. The even isotopes of Pt are in study at moderate

References ISC/91-7/P5, ISC/92-6/P5/Add.l, ISC/9S-20/PS/Add.2 215 ISOLDE IS315 resolution. It has been further shown that the large hyperfine structure of short lived Au isotopes can be studied with this set-up.

Isotope shifts and hyperfine structures have been measured for I98.i»«-i84,i92>i89-i78pt isotOpes. For the even nuclei the deformation maximum is obtained for A = 180 and an odd-even stag- gering of the nuclear charge radius is observed for A < 186. Hyperfine structure spectra have also been recorded for the isomeric and ground states of the doubly-odd 184Au.

NEXT PAG£(8) left BLANK

216 UHV chamber Apparatus for Surface Physics and Interfaces at Qern "••••X i ^™ I —:') •"•• •

transportation z manipulator

09 rotatable catcher

ISOLDE beam

extension port LN - cooled ,x,y,z manipulator

MBE - cells Samples stack LlLJlL) e -heater, annealing position

Experiment IS318 Surface and Interface Studies with Radioactive Ions ISOLDE IS318

Beam: RB2 Approved: 16/APR/92 Status: Data-Taking

Surface and Interface Studies with Radioactive Ions

Aarhus Univ., Berlin, Hahn-Meitner Last., CERN, Konstanz Univ., Isolde Collaboration

Aarhns Univ. Weyer G. Berlin, Hahn-Meitner Inst. Bertschat H.H. Blaschek H.-H. Potzgei K. Zeitz W.-D. CERN Buichard A. Foikel-Wkth D. Konstanz Univ. Schatz G.

Spokesman: Bertschat H.H. Contact: Forkel-Witth D.

Investigations on an atomic scale of magnetic multilayers and semiconductor-metal interfaces are being performed by Perturbed Angular Correlation (PAC) spectroscopy. In a later stage also Mossbauer Spectroscopy is (MS) planned. The unique combination of the Booster ISOLDE facility equipped with a UHV beamline and the UHV chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) is ideally suited for such microscopic studies. Main advantages are the choice of problem-oriented radioactive probes and the cleanliness of mass-separated beams. Semiconductor - metal interfaces The diffusion behaviour of Br on Si surfaces in the temperature range of 90-620 K was in- vestigated using the PAC probe 77Br/77Se. This part of the experiment is completed. The knowledge of the surface positions and diffusion properties of the probe atoms is necessary, before a planned further PAC study the Si surface will be covered with a metal, e.g. Pd. Magnetic - multilayers Magnetic hyperfine fields for Se as adatoms on Ni(lll) and on Ni(001) surfaces were measured with the PAC probe 77Br/77Se. The results deviate drastically from the bulk values. Induced long-range magnetic interactions in Pd single crystals covered with ferromagnetic ultrathin layers of Ni were studied using looPd/looRh and niTOCd/mCd PAC probes. The results are interpreted assuming fluctuating magnetic moments in Pd bulk. In ultrathin Pd layers on Ni, static magnetic hyperfine fields were measured testing the induced magnetic order in Pd. Experiments are in progress in order to find the transition from induced static to induced fluctuating magnetic interactions. References I NEXT PAGE(S) f ISC/92-7/P29, ISC/95-«/P29/Add.l, ISC/97-15/P29/Add.2 I JgfJ BLANK I ISOLDE IS321

Beam: Approved: 30/JUN/92 Status: Data-Taking

Mossbauer and DLTS Investigations of Impurity-Vacancy Complexes in Semiconductors

Aarhus Univ., Isolde Collaboration

Aaihus Univ. Bonde Nielsen K. Nylandsted Larsen A. Peteisen J.W. Weyer G.

Spokesman: Weyer G.

The structure and electronic states of impurity-vacancy complexes formed in silicon based semi- conductors are proposed to be studied by Mossbauer and DLTS techniques utilizing implanted radioactive 119Sb isotopes. Impurity-vacancy complexes are created thermally at high tem- peratures, but can also be produced by electron and ion irradiation at low temperatures. By comparing complexes created by both methods we expect to be able to understand the newly discovered, extremely fast diffusion of dopants in n-type extrinsic silicon.

NEXT PAGE{S) left BLAHK References ISC/92-27/P31 221 ISOLDE IS322

Beam: LAI Approved: ll/FEB/93 Status: Data-Taking

Octupole Deformed Nuclei in the Actinide Region

Bergen Univ., CERN, Daresbury Lab., Dartmouth College, Insto.Estruct. de la Materia,CSIC Madrid, Manchester Univ., McMaster Univ., Liverpool Univ., Oslo Univ., Uppsala Univ., JFIC, Valencia, Warsaw Univ., Isolde Collaboration

Beigen Univ. Lovhoiden G. Nybo K. Thorsteinsen T.F.

CERN RavnH. Daresbury Lab. Simpson J.

Dartmouth College Naumann R.A. Insto.Estmct. de la Materia.CSIC Madrid Boige M.J.G. Tengblad O.

Manchester Univ. Billowes 3. Freeman S.J. Grant I.S. Smith A.G. McMaster Univ. Burke D.G. Liverpool Univ. Butler P. Cocks J.F.C. Honsi J. Jones G. Smith J.F. Oslo Univ. Aas A.J. Hagebo E. HoffP. Steffensen K.

Uppsala Univ. Fogelberg B. Mach H. Sanchez-Vega M. IFIC, Valencia Martinez T. Rubio B. Iain J.L. Warsaw Univ. Gulda K. Kurcewicz W.

Spokesman: Kurcewicz W. Contact: Tengblad O.

The aim of the present study is to investigate the limits of the "island" of octupole deformation in the mass region A=225. It is of particular importance to demonstrate experimentally the References ISC/92-28/P32 223 ISOLDE IS322 sudden disappearance of the stable octupole deformation in the presence of a well developed quadrupole field. In order to establish the upper border line the /3 decay chains of 227Rn -»• 227Fr -> 227Ra and 231Fr -> 231Ra -+ 231Ac were studied at PSB-ISOLDE using advanced fast timing and 7-ray spectroscopy techniques. The lifetimes of the excited states have been measured in the picosecond range using the time-delayed /?77(t) method. It represents the first use of this complex technique at ISOLDE and requires specialized procedures to combine ISOLDE results with prompt calibrations of timing detectors at the OSIRIS separator at Studsvik. Two- fold 7-coincidences were recorded in the Tardis array of 12 Compton-suppressed Ge detectors and a LEPS detector. This was the first time that such an array was used at ISOLDE. The internal conversion coefficients were measured with the combination of a mini-orange and HPGe telescope spectrometers. In order to enable meaningful comparison with the theoretical model over the whole region detailed spectroscopic studies are required.

224 ISOLDE IS323

Beam: RA+FR Approved: ll/FEB/93 Status: Preparation

Nuclear Structure Effects in the Exotic Decay of 225Ac via 14C Emission

CERN, Milan Univ./INFN, Nice Univ. Lab. de Radiochimie, Orsay IPN, Isolde Collaboration

CERN Pasdnetti A.L. Ravn H.L. Milan Univ./INFN Bonetti R. Guglielmetti A. Poli G. Nice Univ. Lab. de Radiochimie Aidisson G. Baici V. Oisay IPN Hussonnois M. Le Da J.-F. Ttubeit D.

Spokesman: Bonetti R. Contact: Pasinetti A.L.

We propose to build at Isolde a high intensity 226Ac source by /?-decay of 225(Ra+Fr) beam, to be used at the superconducting spectrometer SOLENO of IPN-Orsay in order to study a possible fine structure in the spectrum of 14C ions spontaneously emitted by 226Ac.

NEXT PAGEIS) left BLANK References ISC/92-33/P33 225 ISOLDE IS325

Beam: GWM,GLM Approved: ll/FEB/93 Status: Data-Taking

Combined Electrical, Optical and Nuclear Investigations of Impurities and Defects in 11-VI Semiconductors

Berlin Humboldt Univ., Berlin TU, Jena, Friedrich-Schiller-Univ., Konstanz Univ., Isolde Collaboration

Berlin Htunboldt Univ. Boyn R. Brack D. Hennebeiget F. Reinhold B. Wienecke M. Berlin TU GelhoffW. IrmscherK. Naser A. Jena, Friedrich-Schiller-Univ. Achtriger N. Reisloehner U. Witthnhn W. Konstans Univ. Bnrchard A.

Spokesman: Wienecke M. Contact: Burchard, A.

To achieve well controlled bipolar conductivity in II-VI semiconductors represents a fundamen- tal problem in semiconductor physics. The doping problems are controversely discussed, either in terms of self compensation or of compensation and passivation by unintentionally introduced impurities.

It is the goal of our experiments at the new ISOLDE facility, to shed new light on these problems and to look for ways to circumvent it. For this aim the investigation of impurities and native defects and the interaction between each other shall be investigated. The use of radioactive ion beams opens the access to controlled site selective doping of only one sublattice via nuclear transmutation. The compensating and passivating mechanisms will be studied by combining nuclear, electrical and optical methods like Perturbed Angular Correlation (PAC), Hall Ef- fect (HE), Deep Level Transient Spectroscopy (DLTS), Photoluminescence Spectroscopy (PL) and electron paramagnetic resonance (EPR). We intend to investigate Ag and Rb acting as acceptors in the metal sublattice by implanting appropriate (Cd, Sr) isotopes and As and Sb acting as acceptors in the chalcogen sublattice after implantation of Te and Se isotopes, respectively, in ZnTe and ZnSe. These studies will be extended to the donors In, Br, J and to other binary and ternary II-VI compounds.

NEXTPAGE(S) References I left BLANK ISC/92-35/P3S, ISC/96-16/P3S/Add.l •• •"»•«»» 227 ISOLDE IS328

Beam: GHM, GLM Approved: 15/APR/93 Status: Data-Taking

Electrical Activation of Dopant Atoms in the II-VI Materials M-X (M = Zn, Cd and X = S, Se, Te)

Berlin, Hahn-Meitner Inst., CERN, Konstanz Univ., Univ. of Saarland, Isolde Collaboration

Berlin, Hahn-Meitner Inst. Haas H. CERN Forkel-Wirth D. Konstanz Univ. Burchard A. Deichei M. Magerle R.

Univ. of Saarland Filz Th. HamannJ. Lauer St. Ostheimer V. Wichert Th. WolfH.

Spokesman: Wichert Th. Contact: Forkel-Wirth D.

Little is known about the properties and behaviour of intrinsic point defects and impurities in II-VI semiconductors, mainly because their identification and their mutual interactions still pose a major puzzle. Intrinsic point defects and impurities are blamed for the failure of making working p-n junction devices out of wide-band-gap semiconductors. Using the perturbed 77 angular correlation technique (PAC) with radioactive dopant atoms, which serve as microscopic probes, the chemical identity of defects and their atomic structure is obtained. The proposed experiments on the II-VI materials M-X, consisting of the cations M = Zn or Cd and of the anions X = S, Se, or Te, are based on our knowledge of the behaviour of the donor atom In, of group V acceptors, and of the properties of the cation vacancy in these materials. This knowledge has been obtained via extensive PAC investigations of these materials, using the radioactive donor atom mIn, which occupies M-sublattice sites.

It is the goal of the proposed experiments to improve the understanding of electrical activation of dopant atoms in these II-VI compounds. The ISOLDE facility will be used for the ion implantation of 77Br, 77Rb, 79Rb and, at a later time, of 73As ions. These isotopes will give access to the first comprehensive PAC investigations of donor and acceptor atoms in the M- and X-sublattice, in particular of the donor 77Br and of the acceptors 79Rb and 73As. The experiments will take advantage of the great variety of short-lived isotopes and of the isotopically clean ion beams, available at ISOLDE. By varying the sample conditions, the population of the correct lattice site and removal of intrinsic defects will be optimized.

References ISC/93-2/P40, ISC/94-6/P40/Add.l, ISC/96-J4/P40/Add.2 229 > >

CHANNEL - NUMBER 50 3250

U(0)/U(TI/2) 1.30-

20Sflt 5902 keO 1.20- t,,, = 26. i» The o-spectrum of a recoil— implanted 223RaFe source, recorded with a 300 mm2 x 1 mm Si-PIP detector

1. 10' operating at 4.2 K, together with the a-emission anisotropies as a funtion of 1/T for the 7rh9/2->7rh9/2 favoured transitions of 199At, 2°iAt, 203At and 1.00

20'Rt B344 UeU

0.90

0.30 199flt GG43 ,j = 7.0 s

55 SO 100 1/T

E^erimenUS329 Alpha Ardsotropy Studies of Near-Spherical and Deformed Nuclei

230 ISOLDE IS329

Beam: RN, FR Approved: 15/APR/93 Status: Completed 31/MAY/97

Alpha Anisotropy Studies of Near-Spherical and Deformed Nuclei

Bonn Univ., CERN, Leuven University, Univ. of Lyon I (IPNL), NICOLE &: ISOLDE Collaboration

Bonn Univ. Herzog P. Krause J. Paulsen R. Will B. CERN Keim M. Leuven University Camps J. De Moor P. Schuurmans P. Severijns N. Van Duppen P. Vanneste L. Univ. of Lyon I (IPNL) Berkes I. De Jesus M.

Spokesman: Severijns N. Contact: Keim M.

Although it was the first decay mode to be discovered, the process of a-particle emission is still poorly understood. A few years ago the first systematic study of anisotropic a-decay triggered renewed theoretical interest. Nevertheless, today the theories are still not adequate enough and more experimental data are urgently needed. We therefore measure the a-anisotropies of the favoured transitions of a number of near-spherical Rn and At isotopes, and of deformed nuclei near A=220. As the different models yield contradictory predictions for the transitions that are investigated, the measurements will allow to discern on their validity. They will at the same time provide the necessary basis for further theoretical developments.

References ISC/93-3/P41 231 Tm Sm In Yb|v Gd|pm Ce Ac 100 T

1 1

10 v O reot Ti r

< • i DC A DC i ^MMMMM—^»—••• UJ 5 1 -x ^ o I \ \ 0.1 1 mau —

,,,, \ 0.01 1 I i < ' i i i I I 1 I 1 1 1 1 1 1 1 1 80 85 90 95 100 105 110 115 ionic radius in pm

Fig.l. Comparison of the biokinetic behaviour of succinylaminobenzyl-DTPA-Octreotide and aminobenzyl-DTPA monoclonal antibodies labelled with 111-In, radiolanthanides and 225-Ac

The tumor to liver ratio of tracer uptake is plotted versus the ionic radius of the metallic radionuclide. With the Octreotide generally significant higher tumor to liver ratios are obtained. For ions smaller than Pm no differences in the biokinetic behaviour can be detected. For lanthanides lighter than Pm and for Ac, which have a larger ionic radius the ratio values become smaller because of a decreased in vivo stability indicating insufficient chelate complex stability.

Experiment IS330 Use of Radioactive Ion Beams for Biomedical Research

1. in vivo labelling of monoclonal antibodies with radio-lanthanides and 225Ac 232 ISOLDE IS330

Beam: Approved: 15/APR/93 Status: Completed 31/MAY/97

Use of Radioactive Ion Beams for Biomedical Research

1. in vivo labelling of monoclonal antibodies with radio-lanthanides and 225Ac

Basle Univ., Faculty of Medicine, Geneva Univ., Faculty of Medicine, Geneva Univ. Hospital, Isolde Collaboration

Basle Univ., Faculty of Medicine Maecke H. Geneva Univ., Faculty of Medicine Aleksandiova Yu. Kuenzi G. Offord R.E. Geneva Univ. Hospital Beyer G.J. Donath A. Terrier F.

Spokesman: Beyer G.J. Contact: Beyer G.J.

1. The aim of this study is to contribute to developments of new radiopharmaceuticals for tumour diagnosis and therapy. CERN-ISOLDE is the leading facility in the world to provide radioactive ion beams with high selectivity, purity and intensity. Radioisotope production by spallation makes available a complete range of rare earth isotopes having as complete a diversity of types and energy of radiation, of half-life, and of ionic properties as one would wish. The availability of exotic nuclei, e.g. radionuclides of rare earth elements and 225Ac, opens new possibilities for the development of radiopharmaceuticals for diagnosis and therapy. 2. Two approaches are followed within the experimental program. The radioactive metal ions are bound either to bio-specific ligands (monoclonal antibodies or peptides) or to unspecific low molecular weight form. The aim of the experimental program is to evaluate relation- ships between physico-chemical parameters of the tracer molecule (such as complex stability, structure, ionic radius, concentration, etc.) and the corresponding biological behaviour (ex- pressed in clearance, biodistribution, ratio of enrichment, tumor uptake, therapeutic efficacy, etc.).

References ISC/93-4/P42, ISC/94-13/P«/Add.l 233 ISOLDE IS330

3. Results

The biokinetic behaviour of EDTMP (EDTMP = ethylenediamine- tetramethylene phos- phonic acid) has been studied simultaneously in combination with different radioisotopes of rare earth elements and 225Ac. A strong influence of the concentration of the chelating lig- and on the biodistribution has been measured. Low molecular weight chelating ligands give a wide scope for influencing the biodistribution of carrier free radio-lanthanides. Already tumor-to-liver ratios of about 10 have been obtained for tumor-bearing mice. DTPA substituted anti-CEA monoclonal antibodies have been successfully labelled with radiolanthanides. They show promisingly high in vivo stability and high tumor uptake. The new labelled bio-conjugates show approximately the same biological behaviour as is known for mIn labelled monoclonal antibodies. Also 225Ac could clearly be incorporated into the protein fraction. In this case, however, the in vivo stability is far from satisfactory. New chelators must be found in order to increase the binding stabiltiy of the 225Ac. Systematic biokinetic studies have been performed with succinylaminobenzyl-DTPA Octreotide (a peptide consisting of a special sequence of 8 aminoacids) labelled with different lanthanides have been performed. The in vivo stability of the new bioconjugates was in all cases satisfactory. High tumor-to-liver ratios suggest the use of the new group of tracers in systemic radionuclide therapy, however the kidney uptake is very high. New molecule designs will overcome this problem. 4. The experiments will be continued in the frame of a new experiment and an extended collaboration.

NEXT PAGE(S) left BLANK

234 rsj en

Experiment IS331 Use of Radioactive Ion Beams for Biomedical Research

2. in-vivo dosimetry using positron emitting rare earth isotopes with the rotating PET scanner at the Geneva Cantonal Hospital ISOLDE IS331

Beam: Approved: 15/APR/93 Status: Completed 31/MAY/97

Use of Radioactive Ion Beams for Biomedical Research

2. in-vivo dosimetry using positron emitting rare earth isotopes with the rotating prototype PET scanner at the Geneva Cantonal Hospital

Basle Univ., Faculty of Medicine, Geneva Univ., Faculty of Medicine, Geneva Univ. Hospital, Isolde Collaboration

Basle Univ., Faculty of Medicine Maecke H. Geneva Univ., Faculty of Medicine Aleksandrova Yu. Kuenzi G. Offord R.E. Ravn U. Geneva Univ. Hospital Beyer G.J. Donath A. Morel C. Slosman D. Terrier F.

Spokesman: Beyer G.J. Contact: Beyer G.J.

The use of radioactive metal ions (such as Y-90, Sm-153 or Re-186) in cancer therapy has made some progress, but has been hampered by factors that could be addressed at CERN with a greater likelihood of success than at any other installation in the world. The present proposal seeks to use the unique advantage of CERN ISOLDE to get round these problems together with the rotating PET scanner at the Cantonal Hospital Geneva (PET = positron emission tomography). Radioisotope production by spallation at ISOLDE makes available a complete range of isotopes having as complete a diversity of types and energy of radiation, of half-life, and of ionic properties as one would wish. Among these isotopes several positron-emitters having clinical relevance are available.

Some free rare earth chelatas are used presently in palliation of painful bone metastases. Cu- rative effects are not able for the moment with this kind of radiopharmaceuticals. More and better data on the biokinetics and bio-distribution in individual patients are required to opti- mise the injected dose in each individual case. Positron-emitting isotopes of the same element used for palliation, in combination with PET, allow us to measure quantitatively the radionu- clide uptake in bone metastases. From such data clear relationships between radiation doses delivered to the metastases and the corresponding response can be evaluated.

References ISC/93-14/P48, ISC/94-13/P48/Add. 1 237 ISOLDE IS331

A common chelator, EDTMP (EDTMP = ethylenediamine-tetramethylene phosphonic acid) is used in combination with the positron-emitters 142-Sm or 86-Y, while the corresponding beta-emitting 153-Sm or 90-Y respectively is normally used in the therapy. The corresponding studies with the rotating prototype PET scanner are performed in the Division of Nuclear Medicine, Cantonal Hospital Geneva. The experiments will be continued in the frame of a new experiment and an extended collabo- ration.

NEXT left BLANK

238 Mechanical transport system

O Beam scanner I—| Decelerating lens

Magnetic spectrograph

lection slit

Experimental setup used to detect very low-energy conversion electrons- the magnetic spectrograph is coupled to an electron pre-acceleration system and to a fast tape transport system associated to a decelerating lens.

Experiment IS33?. The Search for M3 Transitions in 183Pt and i8lOs ISOLDE IS332

Beam: LAI Approved: 15/APR/93 Status: Data-Taking

The Search for M3 Transitions in 183Pt and 1810s

CERN, Grenoble ISN, Univ. ofLyon I (IPNL), Orsay IPN, Strasbourg CRN, Isolde Collaboration

CERN Richard-Serre C. Grenoble ISN Genevey J. Gizon A.

Univ. of Lyon I (IPNL) Maiguier G. Oisay IPN Ibrahim F. Kilcher P. Le Blanc F. Lunney D. Obert J. Oms J. Putaux J.C. Roussiere B. Sauvage J. Strasbourg CRN Knipper A.

Spokesman: Roussiere B. Contact: Richard-Serre C.

We propose to search for the M3 transition linking the isomeric and ground states in 183Pt and 1810s by detecting the internal conversion electrons with high energy-resolution. This experiment would allow us:

(i) to extract the B(M3) transition probabilities; their comparison with the B(M3) value in 184Au would be useful to test the neutron configurations proposed to describe the isomeric and ground states of 184Au, (ii) to locate the isomeric state with respect to the ground state in 1810s, and (iii) to complement the rare information on M3 transitions (about thirty M3 transitions are known in the table of isotopes and among them only nine in odd nuclei).

NEXT PAGEfS) left BLANK References ISC/93-5/P43, ISC/95-25/P43/Add.l 241 ISOLDE/Extension IS333

Beam: Approved: 17/JUN/93 22/SEP/94 Status: Data-Taking

Neutron-Rich Silver Isotopes Produced by a Chemically Selective Laser Ion-Source: Test of the R-Process "Waiting-Point" Concept

Basle Univ., CERN, Leuven University, Mainz Univ.-Inst.Nucl. Chemistry, Maryland Univ., Troitzk, Inst.of Spectroscopy, Isolde Collaboration

Basle Univ. Thielemann F.-K. CERN Jading Y. Lettry J. Ravn H.L. Leaven University Van Duppen P. Woehi A. Mainz Univ.-Inst.Nucl. Chemistry Boehmer W. Hannawald M. Kantzsch Th. Kloeckl I. Kratz K.-L. Maryland Univ. Walters W.B. Troitzk, Inst.of Spectroscopy Fedoseyev V.N. Mishin V.I.

Spokesman: Kratz K.-L. Contact: Jading Y.

The r-process is an important nucleosynthesis mechanism for several reasons:

(1) It is crucial to an understanding of about half of the A>60 elemental composition of the Galaxy; (2) It is the mechanism that forms the long-lived Th-U-Pu nuclear chronometers which are used for cosmochronolgy;

(3) It provides an important probe for the temperature (Tg) - neutron density (nn) conditions in explosive events; and last but not least (4) It may serve to provide useful clues to and constraints upon the nuclear properties of very neutron-rich heavy nuclei.

References ISC/92-34/P34, ISC/94-1T/M4, ISC/96-4/P34/Add.l, ISC/96-20/M7 243 ISOLDE/Extension IS333

With regard to nuclear-physics data, of particular interest are the T\ji and Pn_ values of certain "waiting-point" isotopes in the regions of the A « 80 and 130 r-abundance peaks. Previous 1 ) studies of |8 Cd82 and 29CU50 y3-decay properties at ISOLDE using a hot plasma ion source were strongly complicated by isobar and molecular-ion contaminations.

Therefore, it is proposed to use a chemically selective laser ion source based on resonance ionization spectroscopy of atoms in a hot cavity to investigate neutron-rich Ag isotopes, in par- ticular the N=82 "waiting-point" nucleus 129Ag. Beta-delayed neutrons will be measured with a high-efficiency neutron long-counter, and easy-to-measure properties of low-lying levels will be studied by 7-spectroscopic techniques. Apart from astrophysical interest, these measurements may also offer a new vista on the shell strengths and the evolution of single-particle structure in the exotic region "southwest" of 1foSn82

244 ISOLDE IS334

Beam: Approved: 17/JUN/93 Status: Data-Taking

Study of the eu Correlation in Fermi Beta Decay: A Probe for Scalar Weak Interactions

Univ. of Notre Dame, Univ. of Washington, Seattle, Isolde Collaboration

Univ. of Notre Dame Garcia A. Kaloskamis N. Univ. of Washington, Seattle Adelberger E.G. Swanson H.E. Zhao Z.-P.

Spokesman: Adelberger E.G.

We propose to measure with high statistics and high precision the shapes of the superallowed proton groups following 32Ar and 33Ar f3 decays. These shapes will be used to determine the ev correlation in Fermi transitions, which is particularly sensitive to the exchange of charged scalar bosons or of scalar and vector leptoquarks. Scalar bosons or leptoquarks that couple to quarks and leptons with a strength characteristic of weak interactions will be probed at masses up to « 4m w-

References ISC/93- U/P50 245 MASS-SEPARATOR

\ Light Laser + 60 KV i from beam. "3" target. Vdc - A

Target

Experiment IS335 ISOLDE Beam and Laser Ion-Source Development ISOLDE IS335

Beam: RAO Approved: 17/JUN/93 Status: Data-Taking

ISOLDE Beam and Laser Ion-Source Development

CERN, Daresbury Lab., Louvain Cath. Univ., Mainz Univ., Insto.Estruct. de la Materia,CSIC Madrid, Oslo Univ., Troitzk, Inst.of Spectroscopy, Isolde Collaboration

CERN Evensen A.-H. Jading Y. Kuglei E. Lettry J. Ravn H.L. Daresbury Lab. Drumm P. Louvain Cath. Univ. Van Duppen P.

Mainz Univ. Huber G. Kluge H.-J. Scheerer F. Insto.Estruct. de la Materia.CSIC Madrid Tengblad O.

Oslo Univ. Hagebo E. HofF P. Troitzk, Inst.of Spectioscopy Fedoseyev V;N. Mishin V.I.

Spokesman: Ravn H.L. Contact: Jading Y.

Already before the move to the PS-Booster (PSB) the proton-beam time-structure of 7 pulses of 2.4 /is duration every 1.2 s was identified as the major challenge to the target and ion-source technique. It was also recognized that an intensive target development programme should be undertaken in order to exploit efficiently the properties of the Booster beam. This beam structure can have both beneficial effects and deleterious effects on the performance of the targets. On the one side the power deposition, the shock wave and the cascade of nulcear reactions may enhance the release and make the targets faster.

The selectivity with which ISOLDE can separate the products according to the chemical ele- ment is another important parameter for the experiments. Online test experiments at the SC ISOLDE-3 successfully demonstrated that resonant multi-photon excitation and final ioniza- tion by pulsed lasers is an efficient tool for the production of isobarically pure ion beams. The installation of a permanent laser ion-source at the PS-BOOSTER ISOLDE facility is proposed.

References ISC/93-7/P46, ISC/93-10/P47, ISC/93-ll/P47.Add.l 247 ISOLDE IS335

Combined with existing target technology this will open up a new efficient way to produce isotopically pure ion beams from a number of targets where the conventional ion source tech- nology failed with respect to chemical selectivity. The obtained gain in sensitivity of a factor of 104 together with the bunched beam structure open up new perspectives for spectroscopy on nuclei far from stability, in the mass measurement programme, in materials research and in laser spectroscopy.

NEXT P&CSEfS) left BLANK

248 NE 213 (6 "3.75 litres)

Collection point LEAD

\

Schematic view of the experimental arrangement for the 134In experiment, showing the additional liquid scintillation detectors. Two of the Ge detectors and the 4rc platic scintillator are not shown on this figure.

Experiment IS338 Single-Particle States in

250 ISOLDE IS338

Beam: GLM Approved: 30/SEP/93 Status: Data-Taking

Single-Particle States in 133Sn

Bergen Univ., CERN, Goteborg Univ., Mainz Univ.-Inst.of Physics, Oslo Univ., Strasbourg CRN, Nykoping, Studsvik Sci.Res.Lab., LPN, Univ. Lyon/CNRS-IN2P3, Villenrbanne, Warsaw Univ., Isolde Collaboration

Bergen Univ. Thoisteinsen T.F. CERN Jokinen A. Richaxd-Serre C. Goteboig Univ. Jonson B. Nyman G. Mainz Univ.-Inst.of Physics Kratz K.-L. Oslo Univ. Hoff P. Lovhoiden G. Strasbourg CRN Baumann P. Hnck A. Knipper A. Walter G. Nykoping, Studsvik Sci.Res.Lab. Fogelberg B. IPN, Univ. Lyon/CNRS-IN2P3, Villeurbanne Marguier G. Warsaw Univ. Kurcewicz W.

Spokesman: Hoff P. Contact: Van Duppen P.

It is suggested to investigate the /?~-decay of 133In and 134In in order to determine the single- particle states in 133Sn, which are so far unknown and needed for the shell-model description of the region close to 132Sn. Large hyper-pure Ge-detectors will be used for the 7-ray spectroscopy. In the experiments with 134In, delayed neutrons in coincidence with 7-rays from excited states in 133Sn provide the opportunity for a very selective detection of the states in question.

References ISC/93-25/P53, ISC/96-6/P53/Add.l, ISC/96-24/M8 251 Collimator SiSi telescope Collection foil

Annular detector Germanium detector

Experiment IS339 The Mechanism of P-Delayed Two-Proton Emission ISOLDE IS339

Beam: GLM Approved: 10/FEB/94 Status: Data-Taking

The Mechanism of /3-Delayed Two-Proton Emission

Aarhus Univ., CERN, Chalmers Univ. of Technology, Goteborg, Jyvaskyla Univ., Insto.Estruct. de la Materia,CSIC Madrid, Isolde Collaboration

Aarhus Univ. Fynbo H. Hornshoj P. Mukha I. Petersen B. Riisagei K.

CERN Jading Y. Mattel Bravo I. Chalmers Univ. of Technology, Goteborg Jonson B. Nilsson T. Nyman G. Wenander F. Jyvaskyla Univ. Aysto J. Honkanen A. Jokinen A. Oinonen M. Siiskonen T. Insto.Estrnct. de la Materia.CSIC Madrid Borge M.J.G. Fraile L.M. Tengblad O.

Spokesman: Borge M.J.G. Contact: Martel Bravo I.

The nucleus 31Ar seems to be the most prolific /3-2p precursor known to date and is at the same time the one with the largest production yields at ISOLDE, where the most sensitive experiments can be done. Our purpose with this experiment is to study the /3-2p branches in detail, search for /3-3p events, place them in the decay scheme and obtain information on the decay mechanism for /?-2p via the energy distribution and the angular correlation between the two protons. As a by product we shall also resolve existing inconsistencies in the level scheme.

The nucleus 31Ar, produced in a cold plasma ion source unit by the impact of a 1 GeV proton beam of 0.5 Hz frequency, had an average yield over one week of 1.5 31Ar atoms/s. The beam passed through the central hole of an annular Si detector (ft — 4.3 %) and stopped in a thin carbon foil titled 45° with respect to the beam direction. A 70 % coaxial HPGe-detector (ft = 7.4 %) was located opposite to the annular detector, and in a plane perpendicular to the beam axis two telescopes were placed, one with Si front and back detectors (ft = 3.3 %) and the other with a gas filled front detector and a Si back detector (ft = 2.3 %). ^Ar was used for internal proton energy calibration.

The analysis from this experiment (IS339) proves that many /3-2p branches exist; in fact, many more than expected. Three /3-2p branches from the IAS have been identified leading to the ground and first two excited states in 29P, accounting for 40 % of the 2p-events. This

References ISC/93-30/P5S, ISC/97-4/P56/Add.l 253 ISOLDE IS339 fragmentation of the strength, which reduces the statistic per branch, makes it difficult to assess the mechanism.

Therefore, we have designed and tested a more compact set-up. That will allow us to study the /3- 2p branches at different angles with a gain in statistics of a factor of 13 for double hits and with a factor of 50 for a triple hit.

254 ISOLDE IS340

Beam: GLM Approved: 10/FEB/94 Status: Data-Taking

Emission Channeling Studies of the Lattice Site of Oversized Alkali Atoms Implanted in Metals

Groningen Univ., Konstanz Univ., Leuven University, Isolde Collaboration

Groningen Univ. WahlU. Konstanz Univ. Hofcass H. Jahn S. Restle M. Lenven University De Wachter J. Langouche G. Moons R. Pattyn H. Vantomme A.

Spokesman: Langouche G. Contact: Van Dnppen P.

As alkali atoms have the largest atomic radius of all elements, the determination of their lattice configuration following implantation into metals forms a critical test for the various models predicting the lattice site of implanted impurity atoms. The site determination of these large atoms will especially be a crucial check for the most recent model that relates the substitutional fraction of oversized elements to their solution enthalpy. Recent exploratory 213Fr and 221Fr a-emission channeling experiments at ISOLDE-CERN and hyperfine interaction measurements on Fr implanted in Fe gave an indication for anomalously large substitutional fractions. To investigate further the behaviour of Fr and other alkali atoms like Cs and Rb thoroughly, more on-line emission channeling experiments are needed. We propose a number of shifts for each element, where the temperature of the implanted metals will be varied between 50° and 700° K. Temperature dependent measurements will give us insight in the role of mobile point defects and their tendency to form defect complexes with the alkali atoms.

References ISC/93-32/P58 255 Experimental setup of "on-line" emission channeling experiments at ISOLDE.

COOLING-DEVICE

POSITION SENSITIVE DETECTOR

GONIOMETEI FT

0.5 mm COLLIMATOR

VACUUM CHAMBER

Experiment IS341 Emission Channeling Ivestigation of Implantation Defects and Impurities in E/VI-Semiconductors

256 ISOLDE IS341

Beam: LAI Approved: 16/JUN/94 Status: Data-Taking

Emission Channeling Investigation of Implantation Defects and Impurities in 11-VI-Semiconductors

CERN, Berlin Humboldt Univ., Groningen Univ., Helsinki Univ. • SEFT, Konstanz Univ., Isolde Collaboration

CERN Czeimak A. Malamud G. Straver J. Weilhammer P. Berlin Humboldt Univ. Reinhold B. Tiojahn I. Wienecke M. Groningen Univ. WahlU. Helsinki Univ. - SEFT Ronnqvist C. Konstanz Univ. Hofsass H. Jahn S.G. Restle M. Ronning C.

Spokesman: Hofsass H. Contact: Hofsass H.

Detailed knowledge on the behaviour of implantation damage and its influence on the lattice position and environment of implanted dopants in II-VI-compound semiconductors is necessary for a clear interpretation of results from other investigation methods and finally for technical utilization. Besides, a precise localization of impurities could help to clarify the discussion about the instability of the electrical properties of some dopants, called 'aging7 We intend to use the emission channeling method to investigate:

(i) the behaviour of implantation damage which shall be probed by the lattice location of iso- electronic isotopes (Zn,Cd,Hg,Se,Te) directly after implantation at different temperatures, doses and vacancy densities and after annealing treatments, and (ii) the precise lattice sites of the acceptor Ag and donor In under different conditions by implanting precursors Cd and In isotopes.

Further on we would like to test the application of a two-dimensional position and energy sensitive electron detector for emission channeling measurements which offers a significant im- provement of the method like much shorter measurement times, better angular resolution, and independence on instabilities in ion beam current. References ISC/94-1/PS9 257 Experimental setup of "on-line" emission channeling experiments at ISOLDE.

COOLING-DEVICE

POSITION SENSITIVE DETECTOR

GONIOMETE!

0.5 mm COLLIMATOR

VACUUM CHAMBER

Experiment IS342 Emission Channeling Studies on the Behaviour of Light Alkali Atoms in Wide-Band-Gap Semiconductors

258 ISOLDE IS342

Beam: LAI Approved: 16/JUN/94 Status: Data-Taking

Emission Channeling Studies on the Behaviour of Light Alkali Atoms in Wide-Band-Gap Semiconductors

Groningen Univ., Konstanz Univ., Isolde Collaboration

Gioningen Univ. WaMU. Konstanz Univ. Bharuth-Ram K. Hofcass E. Jahn S.G. Quintel H. Recknagel E. Restle M. Ronning C.

Spokesman: Hofsass H. Contact: Hofsass H.

A major problem in the development of electronic devices based on diamond and wide-band- gap II-VI compound semiconductors, like ZnSe, is the extreme difficulty of either n- or p-type doping. The only reports of successful n-type doping of diamond involves ion implanted Li, which was found to be an intersititial donor. Recent theoretical calculations suggest that Na, P and N dopant atoms are also good candidates for n-type doping of diamond. No experimental evidence has been obtained up to now, mainly because of the complex and partly unresolved defect situation created during ion implantation, which is necessary to incorporate potential donor atoms into diamond. In the case of ZnSe, considerable effort has been invested in trying to fabricate pn-junctions in order to make efficient, blue-light emitting diodes. However, it has proved to be very difficult to obtain p-type ZnSe, mainly because of electrical compensation related to background donor impurities. Li and Na are believed to be amphoteric, i.e. acting as donor or acceptor depending on their lattice site. Besides N, they are the only dopant atoms which met with any success in producing p-type ZnSe. Experimental data on the lattice site distribution of Li and Na dopant atoms and their stability on different lattice sites as a function of material properties, such as stoichiometry, are needed to understand the resulting electrical properties. This is also the subject of recent theoretical work. The lattice site occupation and the stability of impurity atoms on different lattice sites can be studied by the emission channeling technique, which was successfully applied for the investiga- tion of Si and III-V semiconductors at ISOLDE during the past few years. Initial promising results from emission channeling studies have been already obtained for8 Li in natural diamond and in as-grown ZnSe.

References ISC/94-9/P62, ISC/96-13/P62/Add.l 259 ISOLDE IS342

We propse to study the lattice site occupation of ion implanted 8Li and Na isotopes, such as 20Na, 21Na and 24Na, in natural and synthetic diamond as well as in ZnSe using the emission channeling technique. Our aim is to derive information on impurity lattice site distribution, the stability of interstitial impurities, the interaction with vacancy defects created during ion implantation, and the stability of substitutional impurity atoms. We request 15 shifts for 8Li and 15 shifts for Na isotopes

260 Figure 1. Schematic section through the RIST target (2cm diameter, 20cm long) showing the aperture in the centre of the foil discs to give constant proton beam power loss along the length of the target This results in a temperature rise to the centre of the foils of ~200°C at 100 pA proton current. The total power dissipated is reduced to 25 kW compared to 30 kW which would be developed in the target without the aperture.

Hot Tungsten Surface Ioniser Foil discs, 25 pm thick spaced apart by 25 urn.

F.xperiment IS343 Test of a High Power Target Design

262 ISOLDE IS343

Beam: GLM Approved: 16/JUN/94 Status: Data-Taking

Test of a High Power Target Design

CERN, Daresbury Lab., Manchester Univ., Rutherford Appleton Lab., Surrey Univ., Isolde Collaboration

CERN Evensen A.H. Kugler E. Lettry J. Ravn H.R. Tengblad O. Van Duppen P.

Daresbury Lab. Warner D.D. Manchester Univ. Billowes J. Freeman S. Grant I. Rutherford Appleton Lab. Bennett J.R.J. Densham C.J. Diumm P.V. Surrey Univ. GeUetlyW. Walker P.M.

Spokesman: Bennett J.R.J. Contact: Drumm P.V.

The production of intense accelerated radioactive beams is the focus of major R&D effort in Europe and North America. The techniques for the production of radioactive beams at low target power dissipation, of mass separation, and to a large extent acceleration, are well estab- lished. Hence, the next critical R&D step will be to develop the technology of a high-power target. The Radioactive Ion Source Test (RIST) Project at the Rutherford Appleton Labora- tory (UK) (in collaboration with ISOLDE, the Daresbury Laboratory and the UK university nuclear physics community) is to build a high power tantalum target for the production of radioactive ion beams capable of being used at up to 100 fiA, for example, with beams from the 800 MeV proton synchrotron of the ISIS spallation neutron source at RAL. Such a target has undergone successful thermal testing at up to 24 kW, and has produced low energy stable beams through the RIST separator.

A key measurement in the performance assessment of the high power target is the comparison of its yields to those of ISOLDE at the 2 fiA proton beam level, and ultimately the absolute yields produced by a 100 pA proton beam. To help the comparison, the RIST target and ioniser are as similar as possible to the ISOLDE system bearing in mind the enormously increased power dissipation capability of the RIST target. The target differs from an ISOLDE target mainly in the geometry of the tantalum foils to enable the dissipation of the beam power without melting the foils.

References ISC/94-12/P64, ISC/95-17/P64/Add.l, ISC/96-18/P64/Add.2 263 ISOLDE IS343

The first tests at ISOLDE have shown that the yields of the RIST target geometry are at least as good as the standard ISOLDE tantalum foil target and that the release curves are significantly faster in most cases. Further tests are underway to investigate the processes of diffusion and effusion in the target and find the optimum internal foil geometry. These investigations of the RIST foil geometry offer the possibility of reducing the delay losses of very short-lived isotopes, such as nLi. This has obvious advantages for both ISOLDE as well as RIST.

264 ISOLDE IS344

Beam: Approved: 16/JUN/94 Status: Data-Taking

Laser Spectroscopy of Bismuth Isotopes

Berlin, Hahn-Meitner Inst., CERN, Mainz Univ., Manchester Univ., SUNY Stony Brook, Isolde Collaboration

Berlin, Hahn-Meitnei Inst. Haas H. CERN Geoig U. Keim M. Mainz Univ. Neugait R. Wilbeit S. Manchester Univ. Billowes J. Campbell P. Giant I.S. Pearson M.R. Thompson G. Yeandle G.

SUNY Stony Brook Sprouse G.D.

Spokesman: Billowes J. Contact: Keim M.

The aim of the experiment is to measure the optical isotope shifts and hyperfine structures of bismuth isotopes across the N=126 shell closure in order to extract the change in mean square charge radii (S{r2)) and static moments. These include the first isotones of lead to be measured directly above the shell closure and will provide new information on the systematics of the kink (S(r2)) seen in the lead isotopic chain. After two very successful runs the programme has been extended to include the neutron deficient isotopes below 201Bi to study the systematics across the ii3/2 neutron sub-shell closure at N=118. During the initial 2 runs (9 shifts) the isotope shifts and hyperfine structures of three new isotopes, 210>212.213Bi and the 9~ isomer of 210Bi have been measured. The accuracy of the previous measurements of 205.206.208Bi have been greatly improved. The samples of 208.2">.210raBi were prepared by collecting beams of mass 208 and 210 on thin lead foils, the other isotopes 209 21 22 22 were prepared by collecting . °. °. iFr which decay to the isotopes of interest. In both cases the bismuth atoms were thermally released from the lead into an off-line gas cell filled with between 3 and 12 torr of argon. The fluorescence from the laser resonance of the 306.7nm line was detected on a 472.2nm decay branch with a photomultiplier tube. Measurements on the remaining neutron rich isotopes as well as all the neutron deficient ones will be made using an on-line gas cell mounted on a high voltage platform to accelerate the References ISC/94-7/P60, ISC/96-12/P60/Add.l 265 ISOLDE IS344

Isolde beam to 300 keV before injecting the ions into the cell through a thin (~ 500nm thick) plastic window. Tests on the windows were made with typically 3 mbar of argon in the cell. Beams of 165Tm at 260keV were successfully injected into the cell. Laser fluorescence of 23Na was also achieved in the cell for beam energies of 260keV and 60keV.

266 ISOLDE IS345

Beam: GHM, GLM Approved: 22/SEP/94 Status: Data-Taking

Nuclear Electrical and Optical Studies of Hydrogen in Semiconductors

Berlin, Hahn-Meitner Inst., Caen GANIL, CERN, Duisburg Univ., Erlangen-Nuernberg Univ., Jena, Friedrich-Schiller-Univ., Konstanz Univ., Lisbon Univ., Troitzk, Inst.of Spectroscopy, Isolde Collaboration

Berlin, Hahn-Meitner lust. Haas H. Caen GANIL Toulemonde M. CERN Forkel-Wirth D. Duisburg Univ. Prost W. Erlangen-Nuernberg Univ. Wellmann P. Winnacker A. Jena, Friedrich-Schiller-Univ. Achtziger N. Licht T. Reisloehnei. U. Rueb M. Witthuhn W.

Konstanz Univ. Burchard A. Deicher M. Magerle R. Recknagel E. Lisbon Univ. Correia J. Scares J.C. Troitzk, Inst.of Spectroscopy Fedoseyev V.N. Mishin V.I.

Spokesman: Forkel-Wirth D. Contact: Forkel-Wiith D.

During the last years, the understanding of H and its interaction with dopant atoms in Si, Ge and III-V semiconductors has improved considerably concerning the stability of the formed com- plexes, their structural arrangements, and the implications of this interaction on the electrical properties of the seimiconductors ("passivation") The perturbed angular correlation technique (PAC) has contributed to the understanding of this phenomena on an atomistic scale using radioactive isotopes provided by ISOLDE. The aim of the proposed experiments is twofold:

References ISC/94-1S/P65, ISC/96-3/P63/Add.l 267 ISOLDE IS345

(i) The H passivation mechanism of acceptors in GaN and ternary III-V compounds (AlGaAs, GalnP, AlGaN) shall be investigated, using the PAC probe atom 1UmCd as a "representative" of group IIB metal acceptors. The problems addressed in these tech- nological important systems are microscopic structure, formation and stability of the hydrogen correlated complexes as function of doping and stoichiometry (i.e. the size of the band gap). (ii) The H diffusion mechanism shall be directly studied by using the PAC probe atoms 73As/73Ge in Ge and U7Cd/117In in III-V compounds like InAs or InP. Here the parents act as dopant atoms (73As, u7Cd), being able to trap H whereas the actual measurement takes place at a daughter isotope (73Ge, 117In) chemically identical to one of the constituents of the semiconductor. As function of temperature, the free H diffusion can be observed, since no binding mechanism exists anymore between H and PAC probe atom. On the other hand, the PAC probe atom nlmCd/luCd allows to study the dynamics of a trapped hydrogen (diffusion around the acceptor due to its Coulomb potential), since H is trapped and observed at the Cd acceptor.

To get a link to the macroscopic properties of these systems, the combination of PAC with electrical (Hall-effect) and optical techniques (photoluminescence, ) on the same or identically prepared samples is essential.

268 MISTRAL - ISOLDE : IS346

Reference mass HV platform Detector ion source chamber

Magnet

IVJ O ISOLDE Switching Cooling beam deflector system (2nd stage) RF power

Mass spectrometer

Experiment MISTRAL: Mass Measurement at ISolde with a Transmission RAdiofrequency spectrometer on Line Experiment IS346 Mass Measurement of Very Short Half-Lived Nuclei MISTRAL-ISOLDE IS346

Beam: CDO Approved: 09/FEB/95 Status: Preparation

Mass Measurement of Very Short Half-Lived Nuclei

Bucharest, Inst.of Nucl.Phys.& Engin., CERN, Darmstadt GSI, Giessen Univ., Chalmers Univ. of Technology, Goteborg, Montreal McGill Univ., Orsay CSNSM/IN2P3-CNRS, IPN, Univ. Paris-Sud/CNRS-IN2P3, Orsay, Isolde Collaboration

Bucharest, Inst.of Nucl.Phys.fe Engin. Borcea C. Duma M. Iacob V.E. Toader C. CERN Lebee G. Darmstadt GSI Bollen G. Kluge H.-J. Giessen Univ. WollnikH. Chalmers Univ. of Technology, Goteborg Jonson B. Nyman G. Montreal McGill Univ. Moore R.B. Orsay CSNSM/IN2P3-CNRS Audi G. Doubre H. Henry S. Lunney M.D. Monsanglant C. Thibault C. de Saint Simon M. IPN, Univ. Paris-Sud/CNRS-IN2P3, Orsay Guillemaud-Mueller D. Mueller A.C.

Spokesman: de Saint Simon M. Contact: Lunney M.D.

We propose to take benefit of the fast and accurate measurement process obtained from a Smith type mass-spectrometer to undertake a program on the direct mass determination of nuclei with half-lives shorter than 1 second. These nuclei are located at the borderline of the ISOLDE production capability; their mass values should allow for a stringent test of nuclear models and mass formulas far from stability. The resolving power of the radio-frequency mass spectrometer (m/Am — 105) is high enough to rule out any isobaric contamination and to allow for an accuracy of 5. 107, (50 keV at A =100).

References ISC/93-27/P54, ISC/93-36/PS4/Add.l, ISC/94-26/P54/Add.2 271 Schematical layout and principle of the REX-ISOLDE post-accelerator

to other • experiments

ISOLDE 60keV (7 sits H \VN Platforn1 7-gap RFQ IH Resonators to Detector Array

m/q = 4-5 2 MeV/u

accumulation & cooling & bunching charge state breeding post-acceleration

Experiment IS347 Radioactive beam Experiments at ISOLDE: Coulomb excitation and neutron transfer reactions of exotic nuclei

272 REX-ISOLDE IS347

Beam: Approved: 09/FEB/95 Status: Preparation

Radioactive beam Experiments at ISOLDE: Coulomb excitation and neutron transfer reactions of exotic nuclei.

Aarhus Univ., Brookhaven Nat.Lab., CERN, Copenhagen Niels Bohr Inst., Daresbury Lab., Darmstadt GSI, Darmstadt T.H., Dubna JINR, Edinburgh Univ., Frankfurt /Main Univ., Chalmers Univ. of Technology, Goteborg, Gottingen Univ., Heidelberg MPI, Leuven University, Liverpool Univ., Insto.Estruct. de la Materia,CSIC Madrid, Mainz Univ., Munich TU, Munich Univ., Paris IN2P3, St. Petersburg, IFMO, Saclay LNS, Manne Siegbahn Inst.of Phys. Stockholm, Michigan State Univ., Royal Inst. of Tech. Stockholm, CRN, CNRS-IN2P3/Univ. Strasbourg, Surrey Univ., IPN, Univ. Lyon/CNRS-IN2P3, Villeurbanne, Isolde Collaboration

Aarhus Univ. Riisagei K. Brookhaven Nat.Lab. Beebe E. CERN Batznei K. Bollen G. Coneia G. Forkel-Wiith D. Kuglei E. Lettiy J. Ravn H.L.

Copenhagen Niels Bohi Inst. Heiskind B. Sletten G. Daresbury Lab. Warner D. Darmstadt GSI Klnge J. Ratzinger U. Darmstadt T.H. Schrieder G. Dubna JINR Donets E.D. Edinburgh Univ. Davinson T. Shotter A. Woods P.J. Frankfurt/Main Univ. Deitinghoff H. Schempp A. Chalmers Univ. of Technology, Goteborg Jonson B.

References ISC/94-25/P68 273 REX-ISOLDE IS347

Gottingen Univ. Lieb K.P. Uhrmacher M. Heidelberg MPI Griesei M. Haertlein T. Reiter P. Repnow R. Schwalm D. von Hahn R. Leuven University Huyse M. Van Duppen P. Liverpool Univ. Butler P. Nolan P. Insto.Estiuct. de la Materia,CSIC Madrid Borge M.J.G. Tengblad O.

Mainz Univ. Ames F. Backe H. Huber G. Kratz K.L. Werth G. Munich TU Nolte E. Munich Univ. Habs D. Kester O. Rudolph K. Thiiolf P. de Boei J. Paris IN2P3 Richard-Serre C. St. Petersburg, IFMO NovikovYu. Popov A.V. Saclay LNS Faure J. Visentin B. Manne Siegbahn Inst.of Phys. Stockholm L^jebyL. Rensfelt K.G. Michigan State Univ. Hansen P.G. Royal Inst. of Tech. Stockholm WyssR.

CRN, CNRS-IN2P3/Univ. Strasbourg Baumann P. Dessagne Ph. Huck A. Knipper A. Miehe Ch. Walter G.

Surrey Univ. Gelletly B.

IPN, Univ. Lyon/CNRS-IN2P3, Villeurbanne Marguier G.

Spokesman: Habs D. Contact: Bollen G.

We propose to perform a pilot experiment to study very neutron rich (A<32) Na-Mg and (A<52) K-Ca isotopes in the region around the neutron shell closures of N=20 and N=28 after Coulomb excitation and neutron transfer, and to demonstrate highly efficient and cost-effective ways to bunch, charge-state breed and accelerate already existing mass-separated singly-charged 274 REX-ISOLDE IS347 radioactive ion beams. To do this we plan to accelerate the ISOLDE beams up to 2 MeV/u by means of a novel acceleration scheme and to install an efficient 7-ray array for low-multiplicity events around the target position.

NEXT PAGE(S) left BLANK 275 ISOLDE IS348

Beam: Approved: 20/APR/95 Status: Data-Taking

Enzymatic Mercury Detoxification: The Regulatory Protein MerR

Harvard Medical School, Boston, Small Drug Dis. Genetics Inst. Cambridge, Leipzig Univ., Isolde Collaboration

Harvard Medical School, Boston Walsh C.T. Small Ding Dis. Genetics Inst. Cambridge Comess K.M. Leipzig Univ. Butz T. Ctortecka B. Lippert C. Troeger W.

Spokesman: Troeger W. Contact: Troeger W.

Mercury ions and organomercurial reagents are extremely toxic due to their affinity for thiol groups. Many bacteria contain an elaborate detoxification system for a metabolic conversion of Hg2+ and organomercurials to non-toxic elemental Hg°. The most common bacterial resistance mechanism involves three distinct steps: (i) uptake; (ii) cleavage of organomercurials; (iii) re- duction of mercuric ion to elementary Hg°. All three activities are performed by the mercury detoxification proteins Mer* (* = T, P, A, B, D). The main components of the detoxification system are the regulatory protein MerR, the organomercurial lyase MerB, and the mercuric ion reductase MerA.

The MerR protein, a mercury responsive genetic switch, controls expression of the other Hg detoxification proteins. In the absence of Hg2+, MerR inhibits DNA transcription. In the presence of very low concentrations (10~8 M) of Hg2+, MerR activates transcription. Although other metal ions (e.g. Cd2+) can bind to MerR, Hg is uniquely effective at stimulating DNA transcription. The molecular origin of the ultrasensitivity and selectivity phenomena are pos- tulated to arise from the unusual topology of the transcription complex and a rare trigonal mercuric ion coordination environment, respectively.

We propose to utilize the nuclear quadrupole interaction (NQI) of 199mHg and lllmCd detected by time differential perturbed angular correlation (TDPAC) to identify their metal site geometry in the MerR protein and to elucidate the interaction of Hg2+/Cd2+ - MerR with the DNA in order to probe the origin of ultrasensitivity and metal selectivity.

If these studies are successful we will perform preliminary 199mHg-TDPAC studies on MerB and MerA. NEXT PAGE(S) References • ... R, AMIf isc/9s-i/P69 I «e*t BLANK 277 ISOLDE IS349

Beam: TL, HG Approved: 20/APR/95 Status: Data-Taking

Meson-Exchange Enhancement of First-Forbidden Beta Transitions in the Lead Region

Bonn Univ., Leuven University, Louvain Cath. Univ., Rez, Nucl. Phys. Last. (NPI), Strasbourg CRN, NICOLE & ISOLDE Collaboration

Bonn Univ. Herzog P. Sevenich P. Will B. Leuven University Camps J. De Moor P. Schuurmans P. Severyns N. Van Geert A. Vanneste L. Louvain Cath. Univ. Deutsch J. Govaeits J. Prieels R. Rez, Nucl. Phys. Inst. (NPI) Venos D. Zakoucky D. Strasbourg CRN Baumann P. Didierjean F. Huck A. Knipper A. Walter G.

Spokesman: Severyns N. Contact: Richard-Serre C.

On-line nuclear orientation is used to measure the P asymmetry parameter for the first-forbidden g.s. -* g.s. 0 transitions 207Tl(l/2+) -> 207Pb(l/2-) and 2O6Hg(l/2-) -+ 2O6T1 (1/2+). From this, the ratio of the rank-zero and the rank-one strengths in these decays can be deduced, with the rank of a /3 transition being defined as the total angular momentum of the lepton system. Combining this result with the experimental ft-values yields for the first time a purely experimental determination of the rank-zero contribution in these AJ = 0 first-forbidden tran- sitions. This provides an independent check of the large enhancement (of about 100% over the impulse approximation) of the rank-zero matrix element of 75, caused by meson exchange currents (MEC), which was recently obtained from a comparison of calculated first-forbidden P decay rates with experimentally observed values for nuclei in the lead region (A = 205-212).

NEXT PAGE(S) left BLANK References ISC/9S-2/P70 279 ISOLDE IS350

Beam: Approved: 20/APR/95 Status: Data-Taking

Speciation of Aquatic Heavy Metals in Humic Substances by lllmCd/199mHg - TDPAC

Leipzig Univ., Isolde Collaboration

Leipzig Univ. Butz T. Franke K. Gottschalch U. Kupsch H. Roessler D. Troeger W.

Spokesman: Kupsch E. Contact: Ttoeget W.

Humic substances are ubiquitous in waters and soils and act as complexing agents for different heavy metals, e.g. Cd, Hg. Toxicity, reactivity, fixation and migration are therefore strongly influenced by the interactions between heavy metals and humic substances. Humic substances derive from postmortal materials such as rotten plants, have dark colours and usually a molec- ular weight between 500 and 10 000 Dalton. Complex formation studies with different heavy metal ions indicate at least two different kinds of metal sites. Usually, these studies are restricted to heavy metal concentrations 2 to 3 orders of magnitude higher than the natural heavy metal abundance (i.e. 1O~10 molar). This serious limitation can be overcome by the use of suitable radiosotope techniques capable of metal speciation at extreme sensitivity levels such as TDPAC (Time Differential Perturbed Angular Correlation of 7-rays). Thus, we studied the interaction of heavy metals with humic substances by monitoring the nuclear quadrupole interaction (NQI) of the short-lived radioisotopes lllroCd (n/2 = 49 min) and 199mHg (n/2 = 43 min) supplied by ISOLDE via 7-7-TDPAC and compared the "^Cd/^^Hg-NQIs in humic substances with the known NQI of model compounds (i.e. metal proteins, organometallic compounds).

At lowest Hg(II) concentrations (10~10 molar) only linear Hg(II) coordinations with nitrogen and/or sulfur were observed, with increasing Hg(II) concentration additional distorted trigonal (at 2.5 10~10 molar) and tetrahedral coordinations (at 2.5 10~8 molar) with various ligands show up and start to become dominant at Hg(II) concentrations of 10~7 molar and higher. Contrary to Hg(II), we observed upspecific binding for Cd(II) in the lllmCd-TDPAC experiments only, even in the 10~10 molar concentration range. This distinct difference of the heavy metals Cd and Hg as evidenced by our studies clearly shows that at natural concentrations the mechanisms of fixation and migration can not be generalized for all heavy metals as usually done in the literature.

In these studies an appropriate technique for metal speciation at natural occuring metal con- centrations was applied to Cd/Hg derivatives of humic substances for the first time. It is emphasized that the world-wide unique ISOLDE facility at CERN was an indispensible pre- requisite for these studies. References ISC/95-3/P71 281 , 0.75 mm scintillator

beam vacuum chamber

Ep, 500 jam Si AEp, 10 torr gas-detT K tape Ep&Ex, lOmmGe

Ey, HPGe(70 %

Figure 1: Measurement setup at IS351

Experiment IS351 Search for 73Rb and Investigation of Nuclear Decay Modes Near the Z=N Line in the Border Region of the Astrophysical RP-Process Path

282 ISOLDE IS351

Beam: GLM Approved: 15/JUN/95 Status: Completed 31/MAY/97

Search for 73Rb and Investigation of Nuclear Decay Modes Near the Z=N Line in the Border Region of the Astrophysical RP-Process Path

CERN, Jyvaskyla Univ., Leuven University, IPN, Univ. Lyon/CNRS-IN2P3, Villeurbanne, Oslo Univ., Paris IN2P3, St. Petersburg, NPI, Strasbourg CRN, Isolde Collaboration

CERN Jokinen A. Van Duppen P. Jyvaskyla Univ. Aysto J. Honkanen A. Lhersonneau G. Oinonen M. Leuven University Huyse M.

IPN, Univ. Lyon/CNRS-IN2P3, Villeurbanne Marguier G. Oslo Univ. HoffP. ParisIN2P3 Richard-Serre C. St. Petersburg, NPI Novikov Ya. Popov A. Seliverstov D.M. Strasbourg CRN Baumann P. Didierjean F. Huck A. Knipper A. Walter G.

Spokesman: Jokinen A. Contact: Jading Y.

Following a test experiment on the production rates of 73Rb and T4Rb and the negative result concerning the existence of 73Rb, we propose to measure the decays of 70Kr and 89Kr, whose existence was verified recently. These studies would provide interesting information on the nuclear structure and binding near the Z=N-line and on the proton drip line in this mass region, where rapid changes of ground state deformations have been predicted. The experiment would provide direct means to measure the possible ground state proton decay of 69Br. The knowledge of the decay modes and half-lives of these nuclides is important for determining the end region of the astrophysical rp-process.

References I NEXT PAGE{S) ISC/94- 10/P63, ISC/95-lS/P63.Add.l, ISC/97-3/P63.Add.2 I 283 •'• ISOLDE IS352

Beam: LAI Approved: 15/JUN/95 Status: Completed

Search for Deformation Signature in the Gamow-Teller Decay of N=Z Even Even Nuclei Above A=60

CERN, IPN, Univ. Lyon/CNRS-IN2P3, Villeurbanne, Insto.Estruct. de la Materia,CSIC Madrid, Paris IN2P3, Strasbourg CRN, Isolde Collaboration

CERN Jokinen A. IPN, Univ. Lyon/CNRS-IN2P3, Villeurbanne Maiguier G. Insto.Estruct. de la Materia.CSIC Madrid Borge M.J.G. Tengblad O. Paris IN2P3 Richard-Serre C. Strasbourg CRN Dessagne Ph. Giovinazzo J. Huck A. Knipper A. Miehe Ch. Ramdhane M. Rauch V.

Spokesman: Miehe Ch. Contact: Richard-Serre C.

According to the recent theoretical developments by I. Hamamoto and X.Z. Zhang, the Gamow- Teller (GT) process, which is a major tool to investigate the nuclear structure in the isospin degree of freedom, may also bring in valuable information on nuclear deformation.

The Gamow-Teller /3+-EC decay probability has been estimated for the N=Z nuclei 72Kr, 76Sr and ®°Zr, using a quasiparticle Tamm-Dancoff approximation (TDA) based on a Skyrme-type deformed Hartree-Fock calculation. For each isotope, the decays predicted for various deformations (oblate and prolate minima, spherical shape) exhibit clear differences be- tween them, in terms of both, integrated GT strength and GT strength distributions. The /?+-EC decay of these three nuclei is open to delayed proton emission, allowing to detect weak GT branches with high efficiency and, by the way, to establish the detailed decay schemes of 72Kr, 76Sr and wZr to bound and unbound states of the daughter nuclei, in the whole QEC window.

Experimental results have been obtained for 72Kr and 76Sr, for which the GT spread over the Jx=l+ states in the daughter nucleus and the delayed proton branching have been measured. Comparison with theoretical predictions to answer the question of deformation is in progress. References ISC/95-14/P72 285 E left ISOLDE IS353

Beam: Approved: 05/OCT/95 Status: Data-Taking

Beta Decay of 58Zn. A Critical Test for the Charge-Exchange Reaction as a Probe for the Beta Decay Strength Distribution

CERN, Jyvaskyla Univ., CRN, CNRS-IN2P3/Univ. Strasbourg, Isolde Collaboration

CERN Jokinen A. Jyvaskyla Univ. Aysto J. Dendooven P. Honkanen A. Oinonen M.

CRN, CNRS-IN2P3/Univ. Strasbourg Baumann P. Didierjean F. Huck A. Knipper A. Walter G.

Spokesman: Jokinen A. Contact: Jokinen A.

Due to its importance in fundamental physics and astrophysics, a great effort both theoretically and experimentally is devoted to study Gamow Teller (GT)-strength. The GT-strength and its distribution play a key role in late stellar evolution. During the pre-supernova core-collapse of massive stars, the electron capture and nuclear /? decay determine the electron-to-baryon ratio, which influences the infall dynamics and the mass of the final core. The cross-section of the charge-exchange reaction at forward angles with energies above 100 MeV is expected to be proportional to the squares of Fermi and GT matrix elements. This proportionality should provide a Q-value free method to probe the weak interaction strength and renormalization effects in nuclei. Thus charge-exchange reactions are often used to determine the experimental GT-strength. However, the connection between the GT-strength and the cross-section of the charge-exchange reaction is partially model dependent and the question arises: How reliable this method is to extract GT-strength distribution in nuclei? In this proposed experiment we want to answer this question by comparing the GT-strength from ft decay of 58Zn to the GT-strength extracted from 68Ni(p,n)58Cu reaction at 160 MeV.

NEXT PAGE(S) References left BLANK ISC/95-27/P75 287 ISOLDE IS354

Beam: LAI Approved: 11 /APR/96 Status: Data-Taking

Identification and Decay Studies of New, Neutron-Rich Isotopes of Bismuth, Lead and Thallium by means of a Pulsed Release Element Selective Method

CERN, Darmstadt GSI, Jyvaskyla Univ., Leuven University, Oslo Univ., Warsaw Univ., Isolde Collaboration

CERN Evensen A.-H. Jokinen A. Kugler E. Lettiy J. Ravn E.L. Rykaczewski K. Darmstadt GSI Giawe H. Pfutzner M. Jyvaskyla Univ. Aysto J. Hnhta M. Leuven University Andreyev A. Huyse M. Van Duppen P. Woehr A. Oslo Univ. HoffP. Warsaw Univ. Grzywack R. Janas Z. Karny M. Plochocki A. Szerypo J. Zylicz J.

Spokesman: Rykaczewski K. Contact: Ravn H.L.

It is proposed to produce, identify and investigate at ISOLDE new, neutron-rich isotopes of bismuth, lead and thallium at the mass numbers A=215 to A=218. A recently tested operation mode of the PS Booster-ISOLDE complex, taking an advantage of the unique pulsed proton beam structure, will be used together with a ThC target in order to increase the selectivity. The decay properties of new nuclides will be studied by means of /3-, 7- and X -ray spectroscopy methods. The expected information on the /3-half-lives and excited states will be used for testing and developing the nuclear structure models "south-east" of 208Pb, and will provide input data for the description of the r-process path at very heavy nuclei. The proposed study of the yields and the decay properties of those heavy nuclei produced in the spallation of 232Th by a 1 GeV proton beam contributes also the data necessary for the simulations of a hybrid accelerator-reactor system.

NEXT PAGE(S) left BLANK References ISC/9S-1/P76 289 ISOLDE IS355

Beam: LAI Approved: ll/APR/96 Status: Preparation

Search for Detour Transitions in the Radiative EC Decay of 81Kr

Aarhus Univ., CERN, Chalmers Univ. of Technology, Goteborg, Darmstadt GSI, Warsaw Univ., Isolde Collaboration

Aarhus Univ. Hornshoj P.

CERN Ravn H.L. Rykaczewski K. Chalmers Univ. of Technology, Goteborg Jonson B. Darmstadt GSI Pfutzner M. Warsaw Univ. Janas Z. Plochocki A. Zylicz J.

Spokesman: Pfutzner M. Contact: Rykaczewski K.

It is proposed to produce at ISOLDE the 81Kr activity and to study its 1-st forbidden unique (lu) radiative electron-capture decay in low background conditions available in Warsaw. The intensity of the photon spectrum will be compared to predictions of the internal-bremsstrahlung theory. A question is whether an excess of the intensity will be observed, indicating the role of detour *f/(3 transitions via intermediate virtual nuclear states, as detected already for the lu radiative decay of 41Ca.

NEXT PAGE(S) left BLANK References ISC/96-2/P77 291 ISOLDE IS356

Beam: F Approved: 13/JUN/96 Status: Preparation

Search for Physics Beyond the Standard Model via Positron Polarization Measurements with Polarized 17F.

Bonn Univ., CERN, Leuven University, Louvain Cath. Univ., Wisconsin Univ., Zurich ETH, NICOLE & ISOLDE Collaboration

Bonn Univ. Heizog P. Pauken R. Will B. CERN KeimM. Leuven University Camps J. De Moor P. Phalet T. Schuuimans P. Severijns N. Van Geert A. Vanneste L. Vereecke B. Louvain Cath. Univ. Deutsch J. Govaeits J. Prieels R. Wisconsin Univ. Quinn P.A. Zurich ETH Naviliat-Cuncic O.

Spokesman: Severijns N. Contact: Keim M.

This proposal aims at measuring the longitudinal polarization of positrons emitted from po- larized 17F nuclei. The experiment will have a comparable sensitivity to possible right-handed current contributions in the weak interaction as the experiment which was recently carried out with 107In in Louvain-la-Neuve, but will provide a more stringent limit due to the fact that, since 17F decays through a superallowed beta transition, the recoil-order corrections to the allowed approximation can be taken into account very precisely. Furthermore, because 17F decays via a mixed Fermi/Gamow-Teller beta transition, this experiment will also yield a new limit on possible scalar contributions to the weak interaction. Finally, it is to be noted that the relative character of this type of experiment eliminates most systematic uncertainties.

NEXT PAGE(S) left BLANK References ISC/96-11/P80 293 ISOLDE IS357

Beam: GHM, GLM Approved: 13/JUN/96 Status: Data-Taking

Gold and Platinum in Silicon - Isolated Impurities and Impurity Complexes

Aarhus Univ., Amsterdam Univ., Dublin City Univ., CERN, Konstanz Univ., Lisbon Univ., Isolde Collaboration

Aarhus Univ. Fanciulli M. Weyer G. Amsterdam Univ. Ammerlaan C.A.J. Dublin City Univ. Henry M. CERN Forkel-Wirth D. Konstanz Univ. Burchard A. Deicher M. Magerle R. Lisbon Univ. Correia J.

Spokesman: Henry M. Contact: Burchard A.

Gold and platinum impurities in silicon are exploited for the control of minority carrier lifetimes, and this important feature has resulted in sustained research interest over several decades. Although the properties of isolated sustitutional Au atoms are well understood, this is not the case for Pt. Considerable uncertainty exists regarding the nature of several Pt related defects observed in Electron Paramagnetic Resonance (EPR) and Photo Luminescence (PL). One of the objectives of this experiment is to exploit the transformation of radioactive Au isotopes as a means of producing specific Pt centres, and to use our thorough knoweledge of Au in silicon to guide us in the interpretation of data obtained for the centres when they transform to Pt.

In addition to isolated impurities, the experiment also addresses the question of pairs of atoms formed by Au and Pt with Fe and Li. Several separate studies of these impurity pairs have been reported, but the benefits of a direct comparison of the defects in both the Au and Pt forms should be substantial. A special case of impurity pairing is provided by pairs of identical atoms. Au-pairs in silicon have been cited as the source of both EPR and optical spectra, but for Pt-pairs no evidence of any optical effects has been reported. The use of radioactive Au provides the opportunity of not only producing Pt pairs but also Au-Pt pairs as an intermediate References ISC/96-1S/PS1, ISC/96-26/P81/Add.l 295 ISOLDE IS357 species. These issues will be addressed by means of photoluminescence, EPR and deep level transient spectroscopy and substantial progress in the understanding of these impurities in silicon is expected to result from the work.

296 ISOLDE IS358

Beam: Approved: 06/FEB/97 Status: Preparation

Magnetic Moment of 67Ni and 67Ni -+ 67Cu /?-Decay

CERN, Chalk River Nucl. Lab., Lund, Just, of Technology, Mainz Univ.-Inst.Nucl. Chemistry, Maryland Univ., Michigan State Univ., Novi Sad Univ., Oxford Univ., NICOLE & ISOLDE Collaboration

CERN Jading Y. Chalk River Nucl. Lab. Townei I.S. Lund, Inst. of Technology Moller P. Mainz Univ.-Inst.Nucl. Chemistry Kiatz K.-L. Pfeiffer B. Maryland Univ. Walters W.B. Michigan State Univ. Mantica P. Novi Sad Univ. Veskovic M. Oxford Univ. Copnell J. Rikovska-Stone J. Stone N.J. White G.

Spokesman: Rikovska-Stone J. Contact: Jading Y.

Magnetic dipole moments provide a unique tool in probing details of nuclear wave-functions. They are sensitive to nuclear coupling schemes on account of the great difference between g-factors associated with the various components of the total nuclear angular momentum (or- bital and spin momenta of protons and neutrons). It is not possible at present to obtain exact nuclear wavefunctions due to lack of knowledge of the internucleon potential. Instead, two major types of models are usually adopted: (1) shell models, in which nuclear wavefunctions are constructed from Slater determinants of single particle wavefunctions and (2) collective models in which individual nudeon coordinates are replaced by a lesser number of collective coordinates. For odd-A nuclei at, or in the near vicinity of major shells, the extreme shell model predicts so called 'Schmidt limits' for the value of magnetic dipole moments. Experimentally, almost

References ISC/96-28/P79 297 ISOLDE IS358 all measured moments deviate from the Schmidt limit by 0.5-1.5 fin. In almost all cases these deviations are inwards from the Schmidt lines. The average deviation of odd-proton nuclei is about 20% higher than the average deviation of odd-neutron nuclei. Nuclei that deviate from the Schmidt limit by less than 0.2 fijf are nearly all pi/2 nuclei. There are two reasons for the existence of these deviations. First, the wavefunctions of the extreme shell model are too simple. Even small configuration admixtures can significantly change the magnetic moments. Second, the form of the magnetic moment operator is incomplete because it does not include the two-body nucleon-nucleon meson exchange interaction. The corrections for configuration mixing (CP) and meson exchange currents (MEC), applied to otherwise pure single nucleon configuration, account for most of the difference between experimental moments and the Schmidt limit value. Magnetic moments of nuclei further away from closed shell must be treated in a rather phe- nomenological way. Both collective coordinates of the cores and intrinsic single-particle variable of the extra nucleons above the cores must be considered. Coupling between the collective and intrinsic variables must be taken into account, and the resulting Ml matrix elements will be de- pendent on both collective and single particle g-factors. A large variety of empirical models can be employed to calculate magnetic moments, including particle-rotor(vibrator) and interacting boson models. It is well known that most magnetic moments exhibit a considerable sensitivity to details of the nuclear state wavefunctions.

298 ISOLDE IS359

Beam: 3311 Approved: 06/FEB/97 Status: Data-Taking

Investigations of Deep-Level Fe-centres in Si by Mossbauer Spectroscopy

Aarbus Univ., Berlin, Hahn-Meitner Inst., CERN, Gottingen Univ., Konstanz Univ., Troitzk, Inst.of Spectroscopy, Isolde Collaboration

Aaihus Univ. Fanciulli M. Weyer G. Berlin, Hahn-Meitner Inst. Sielemann R. CERN Forkel-Wirth D. Gottingen Univ. Schroeter W. Konstanz Univ. Buichard A. Ttoitzk, Inst.of Spectroscopy Fedoseyev V.N. Mishin V.I.

Spokesman: Weyer G. Contact: Weyer G.

Electronic, vibrational and diffusional properties of interstitial and substitutional Fe impurities in silicon are studied by 57Fe Mossbauer emission spectroscopy utilizing implanted radioactive 57Mn+ parent ions from ISOLDE as probe atoms. Thus the electronic charge density and the impurity mean-square vibrational amplitude shall be determined for substitutional Fe, and for interstitial Fe,- in its two different charge states. These quantities are complementary to previously determined hyperfine interaction parameters and are expected to shed light on the nature of the deviations between calculated and measured parameters. The supposedly different diffusivities of interstitial Fe? and Fe* shall be measured by the broadening of the Mossbauer lines, i.e. at a temperature where diffusion jumps occur on an atomic scale within the lifetime of the Mossbauer state.

NEXT PAGE(S) Jf8 ISC/96-29/P8S 299 ISOLDE IS360

Beam: Approved: 06/FEB/97 Status: Preparation

Studies of High-Tc Superconductors Doped with Radioactive Isotopes

Aveiro Univ., Chalmers Univ. of Technology, Goteborg, Grenoble CEN, Leipzig Univ., Louvain Cath. Univ., Lisbon Univ., Porto Univ., Sacavem ITN, Stockholm Univ., Warsaw Univ., Isolde Collaboration

Aveiro Univ. Lourenco A.A. Chalmers Univ. of Technology, Goteborg Gatt R. Johansson G. Panas I. Grenoble CEN Capponi J.J. Loureiro S.M.

Leipzig Univ. Butz T. Troeger W. Louvain Cath. Univ. DeWachterJ. Langouche G. Wahl U. Lisbon Univ. Cardoso S. Correia J.G. Marques J.G. Ramos A.R. Soares J.C. Porto Univ. Amaral V.S. Araujo J.P. Sousa J.B. Sacavem ITN Alves E. da Silva M.F. Stockholm Univ. Bryntse I.

Warsaw Univ. Morawski A.

Spokesman: Correia J.G. Contact: Correia J.G.

We propose to study High Tc Superconductors (HTSc) doped with radioactive elements at ISOLDE, in order to investigate some of the problems that persist after use of conventional characterization techniques. Three main topics are proposed: a) Characterization of the order/disorder of Hg in the Hg-planes of the HTSc family HgiBa2R(n_i)Cun0(2n+2+«) (Tc > 130 K) due to defects or impurities such as C and Au. References ISC/98-30/P86 301 ISOLDE IS360 b) Studies of the doping of Infinite Layers Cuprates (RCuO2)n, R = Ca, Sr or Ba, using unstable nuclei of the alkaline-earth (IIA) group which decay to the alkaline nuclei (IA) group. The purpose is to introduce charge carriers in these materials by changing the valence of the cations during the nuclear transmutation. The possibility of using ion implantation to introduce directly an alkaline dopant will also be studied. c) Studies of the Hg/Au doping of high quality YBa2Cu306+a. thin films. We intend to char- acterize the behaviour of Hg/Au in these materials, since it has been reported that doping with Hg and Au improves the lattice stability and increases the critical temperature.

We present a new approach to study these problems, combining complementary techniques such as Perturbed Angular Correlation, Emission Channeling and Electrical/Magnetic Mea- surements in pellets, single crystals and high quality thin films of HTSc doped with radioactive 199m isotopes. Preliminary results obtained in YBa2Cu306+s thin films implanted with Hg and i97mjjg gjg gjgo presented.

302 ISOLDE IS361

Beam: LAI Approved: 12/JUN/97 Status: Preparation

Beta Decay Asymmetry in Mirror Nuclei: A = 9

Aarhus Univ., CERN, Chalmers Univ. of Technology, Goteborg, Insto.Estruct. de la Materia,CSIC Madrid, Stockholm Univ., Isolde Collaboration

Aarhus Univ. Fynbo H. Hornshoj P. Mukha I. Riisaget K.

CERN Jading Y. Mattel Bravo I. Chalmers Univ. of Technology, Goteborg Aielsson L. Jonson B. Nilsson T. Nyman G. Smedberg M.S. Wenander F. Insto.Estruct. de la Materia,CSIC Madrid Borge M.J.G. Fraile L.M. Tengblad O. Stockholm Univ. Wilhelmsen Rolander K.

Spokesman: Tengblad O. Contact: Martel Bravo I.

Investigations of light nuclei close to the drip lines have revealed new and intriguing features of the nuclear structure. A most spectacular phenomenon is the occurrence of halo structures in these loosely bound systems. As intriguing but not yet solved is the nature of transitions with very large beta strength. We propose here to investigate this latter feature by accurate measurements of the beta decay asymmetry between the mirror nuclei in the A = 9 mass chain. We ask for a total of 15 shifts of on-line data taking plus 3 additional shifts for stable beam adjustment and calibration measurements.

NEXT PAGE(S) left BLANK References ISC/97.2/P88, ISC/97.J/P«8/Rev. 303 ISOLDE IS362

Beam: Approved: 12/JUN/97 Status: Preparation

Diffusion in Intrinsic and Highly Doped III-V Semiconductors

Muenster Univ., Isolde Collaboration

Muenster Univ. Boskei G. Mehrer H. Popping J. Stolwyk N.

Spokesman: Mehrer H. Contact: Burchard A.

Diffusion plays a key role in the fabrication of semiconductor devices. The diffusion of atoms in crystals is mediated by intrinsic point defects. Investigations of the diffusion behaviour of self- and solute atoms on the Ga sublattice of gallium arsenide led to the conclusion that in intrinsic and n-type material charged Ga vacancies are involved in diffusion processes whereas in p-type material diffusion if governed by charged Ga self-interstitials. Concerning the As sublattice of gallium arsenide there is a severe lack of reliable diffusion data. The few available literature data on intrinic GaAs are not mutually consistent. A systematic study of the doping dependence of diffusion is completely missing. The most basic diffusion process - self-diffusion of As and its temperature and doping dependence - is practically not known. For GaP a similar statement holds.

The aim of the present project is to perform a systematic diffusion study of As diffusion in intrinsic and doped GaAs and in GaP. Preliminary experiments performed with the short-lived isotope 76As (produced by neutron activation of As) indicate that As self-diffusion is strongly influenced by the Fermi-level effect. We use the radiotracer technique, which is well established at our Laboratory in Miinster to study As diffusion. We plan to implant the isotope with mass 73 into GaAs of different doping levels at the ISOLDE. The implant decays within few hours into the radioisotope 73As (half-life 80 d), which is very well suited for radiotracer diffusion studies. In order to perform diffusion measurements over a wide temperature range and for different positions of the Fermi level a whole series of samples (intrinsic samples, samples with various doping levels) will be implanted. After implantation, the specimens will be diffusion- annealed under appropriate conditions of temperature and As pressure. Then concentration- depth profiles are determined by a serial sectioning technique (e.g. Ar-ion beam sputtering) in combination with activity measurements with nuclear counting facilities. Self-diffusion coeffi- cients will be determined by analysis of the resulting penetration profiles. We expect to gain information about self-diffusion of As, transport properties and charge states of the As-related point defect involved in intrinsic, n-type and p-type GaAs. Later on similar experiments are intended for As diffusion in GaP.

The necessary implantation dose is about 5x 1011 to 1012 atoms per sample. In one implantation run a whole series of samples with different doping levels will be implanted. Three implantation runs with three shifts each are necessary, that is, within a period of two years. References I NEXT PAGS(S) isc/97-iv™ ^ | left BLANK ISOLDE IS363

Beam: Approved: 12/JUN/97 Status: Data-Taking

Use of Radioactive Ion Beams for Bio-Medical Research

Basle Univ., Faculty of Medicine, Geneva Univ., Faculty of Medicine, Kogarah, St. George Cancer Centre, Munich TU, Isolde Collaboration

Basle Univ., Faculty of Medicine Maecke H. Geneva Univ., Faculty of Medicine Beyer G.J. Bucheggei F. Donath A. Offord R.E. Slosmann D. Terrier F.

Kogarah, St. George Cancer Centre Allen B. Munich TU Senekowitsch-Schmidtke R. Stoecklin G.

Spokesman: Beyer G.J. Contact: Beyer G.J.

With this Proposal we wish to replace the two previous proposals P42 and P48 (corresponding to the ISOLDE Experiments IS330 and IS331, respectively, including the Addendum 1 dated 04.05.94). Based on experimental results obtained during the last four year's research in the framework of the two proposals and considering modern trends in radiopharmaceutical devel- opments we propose as a first main direction to study systematically relationships between physico-chemical parameters, the concentration and specific activity of tracer molecules and the corresponding biological response. This kind of studies requires highest achievable quality and a universality of radio-tracers, available at ISOLDE. Special attention in this concern is paid to bio-specific tracers (receptor-binding ligands, bio-conjugates etc.) aiming to search for new and more efficient radiopharmaceuticals for radionuclide therapy. The second direction is to support clinical radionuclide therapy by a quantitative follow up of the radionuclide bio- distribution in vivo using PET (Positron emission tomography). ISOLDE produced positron emitting radionuclides (^Sr, 142Sm for example) are potential candidates for this kind of clin- ical research. A third direction is to evaluate the application of exotic radionuclides (as the alpha-emitting 149Tb for radionuclide therapy.

References ISC/97-U/P90 307 LEP

STATUS OF THE LEP PROGRAMME AS OF NOVEMBER 1997

NEXT PAGE(S) left BLANK MUON CHAMBERS

HADRON CALORIMETER

SUPIRCONDUC ING SOLENOID CALORIMETER BARREL

00 TIME PROJECTION CHAMBER o IT.P.C.

S.IIJIIAII I TRACK DETECTOR

!!i •i CALORIMETER END CAP

LEP - ALEPH 16500 SIDE ELEVATION JULY 1985 ALEPH: The ALEPH Detector (Apparatus for LEp PHysics) ALEPH

Beam: E+E- Approved: 18/NOV/82 Status: Data-Taking

The ALEPH Detector (Apparatus for LEp PHysics)

Annecy LAPP, Athens Demokritos/NRC, Barcelona Autonomous Univ. (IFAE), Bari Univ./INFN, Beijing HEP lust., CERN, Clermont-Ferrand Univ., Copenhagen Niels Bohr Inst., Florence Univ./INFN, Florida State Univ. Tallahassee, Frascati Nat.Lab. INFN, Glasgow Univ., Heidelberg Univ., Innsbruck Univ., Lancaster Univ., London, Imperial College, London, Royal Holloway and Bedford N.C., Univ. of Wisconsin at Madison, Mainz Univ.-Inst.of Physics, Marseille CPPM, Milan Univ./INFN, Munich MPI, Orsay LAL, Palaiseau Ecole Polytechnique, Pisa Univ./INFN, Rutherford Appleton Lab., Saclay CEN DPhPE, UC Santa Cruz, Univ. of Washington, Seattle, Sheffield Univ., University of Siegen, Trieste Univ./INFN

Annecy LAPP Baiate R. Buskulic D. Decamp D. Dufournaud D. Ghez P. Goy C. Jezequel S. Lees J.P. Lucotte A. Martin F. Merle E. Minard M.N. Nief J.-Y. Perrodo P. Pietrzyk B.

Athens Demokritos/NRC Daskalakis G. Kyriakis A. Maikou C. Simopoulou E. Siotis I. Spyropoulou-Stassinaki M. Vayaki A.

Barcelona Autonomous Univ. (IFAE) Bartolome E. Boir G. Bravo Gallart S. Casado-Lechuga M.P. Chmeissani M. Crespo J.M. Delfino M. Fernandez Durany G. Fernandez E. Fernandez-Bosman M. Garrido Beltran L. Grauges E. Juste A. Martinez M. Merino G. Miquel R. Mir L. Orteu S. Padilla C. Park Inkyu Pascual A. Perlas J. Riu I. Sanchez F. Bari Univ./INFN Colaleo A. Cieaaza D. De Palma M. Farilla A. Gelao G. Gervasoni R. Iaselli G. Liuzzi R. Maggi G. Maggi M. Marinelli N. Mastrogiacomo A. Natali S. Nuzzo S. Ranieri T. Raso G. Romano F. Ruggieri F. Selvaggi G. Silvestris L. Tempesta P. Tricomi A. Zito G. Beying HEP Inst. Huang Xiuping Lin Jian Feng Ouyang Qun Wang Tayie Xie Y. Xu Guofa Xu Rongfen Xue Sheng Tian Zhang Jiaquan Zhang Liangsheng Zhao Wei-Ren CERN Abbaneo D. Alemany R. Becker U. Bright-Thomas P. Callot 0. Cattaneo M. Cerutti F. Dissertori G. Drevermann H. Forty R. Frank M. Gianotti F. Hagelberg R. Hansen J.B. Harvey J. Janot P. Jost B. Kneringer E. Lehraus I. Loomis C. Mato-Vila P. Maugain J.M. Moneta L. Pacheco A. Ranjard F. Rizzo G. Rolandi L. Rousseau D. Schlatter W.D. Schmitt M. Schneider O. Tejessy W. Teubert F. Tomalin I. Vreeswyk M. Wachsmuth H.W.

References LEPC/82-3/I 1, LEPC/82-18/M7, LEPC/82-19/M8, LBPC/82-24/M12, LEPC/82-31/M17, LEPC/82-32/M18, LBPC/82-38/M23, LEPC/83-2/P1, LEPC/83-9/M40, LEPC/83-14/M41, LEPC/84-8/M46, LEPC/84-14/M49, LEPC/S4-15/M50, LEPC/85-9/M59, LEPC/85-16/M61, LEPC/85-34/PR12, LEPC/8S-40/M68, LEPC/86-4/M71, LEPC/S7-2/M77, LEPC/88-I2/M87, LEPC/90-3/M92, LBPC/90-8/M97, LEPC/91-1/M99, LEPC/92-1/M103, LEPC/93-8/Pl/Add.l 311 ALEPH

Clermont-Ferrand Univ. Ajaltouni Z. Badaud F. Brossard M. Chazelle G. Daudon F. Falvard A. Ferdi C. Gay P. Guicheney C. Henrard P. Jousset J. Michel B. Monteil S. Montret J.C. Pallin D. Petret P. Podlyski F.

Copenhagen Niels Bohr Inst. Andrasevic M. Bertelsen H. Hansen F. Hansen J.D. Hansen J.R. Hansen P. Lindahl A. Nilsson B. Ozel F. Petetsen B. Rensch B. Waananen A. Florence Univ./INFN Boccali T. Catacchini E. Focardi E. Mangiarotti A. Parrini G. Zachatiadou K.

Florida State Univ. Tallahassee Cavanaugh R. Corden M.J. Geoigioponlos C. Huehn T. Jaffe D.

Frascati Nat.Lab. INFN Antonelli A. Bendvenni G. Bologna G. Bossi F. Campana P. Capon G. Casper D. Chiarella V. Felici G. Laurelli P. Mannocchi G. Murtas F. Murtas G.P. Passalacqua L. Pepe-Altaielli M.

Glasgow Univ. Chalmers M. Curtis L. Devine S. Flavell A.J. Halley A. Lynch J.G. Martin D.J. Negus P.J. O'Shea V. Raine C. Scarr J.M. Smith K. Teixeira-Dias P. Thompson A.S. Thomson E. Thomson F. Ward J.

Heidelberg Univ. Braun O. Buchmuller O. Dhamotharan S. Geweniger C. Graefe G. Hanke P. Hansper G. Hepp V. Kluge E.E. Putzer A. Schmidt M. Sommer J. Tittel K. Werner S. Wunsch M.

Innsbruck Univ. Ghete V. Girtler P. Kuhn D. Rudolph G. Vogl R.

Lancaster Univ. Betteridge A. Bowdery C. Buck P. Colrain P. Crawford G. Finch A. Foster F. Hughes G. Jones R. Robertson N.A. Sloan T. Williams M. London, Imperial College Beuselinck R. Binnie D.M. Cameron W. Colling D. Dornan P.J. Girone M. Goodsir S. Greenwood S. Hassard J. Kasey V. Martin E.B. Morawitz P. Moutoussi A. Nash J. Price D. Sedgbeer J.K. Spagnolo P. Stacey A.M. Williams M. London, Royal Holloway and Bedford N.C. Blair G. Boorman G. Bryant L. Chambers J. Coles J. Dobson M. Gao Yuanning George S. Green B.J. Green M. Medcalf T. Von Wimmersperg J. Univ. of Wisconsin at Madison Armstrong S. Elmer P. Ferguson D. Gonzalez S. Greening T. Hayes O. McNamara P. Nachtman J. Nielson J. Orejudos W. Pan Y. Scott I. Wu Xidong Yamartino J. Zobernig G.

Mainz Univ.-Inst.of Physics Fuchs K. Geib K.H. Giehl I. Hoffmann C. Jakobs K. Kleinknecht K. Kroecker M. Muller A.-S. Nurn- berger H.A. Othegraven R. Quast G. Renk B. Rohne E. Sander H. Schmeling S. Van Gemmeren P. Zeitnits C. Ziegler T.

Marseille CPPM Aubert J.-J. Bazzoli R. Benchouk C. Bonissent A. Bujosa G. Carr J. Coyle P. Ealet A. Etienne F. Fouchez D. Gaily Y. Karst P. Leroy O. Motsch F. Payre P. Raguet J. Sadouki A. Talby M. Thulasidas M. Tilquin A. Trabelsi K.

312 ALEPH

Milan Univ./INFN Aleppo M. Antonelli M. Ragnsa F.

Munich MPI Abt I. Berlich R. Buescher V. Dietl H. Fischer H. Ganis G. Gotzhein C. Kroha H. Lutjens G. Lutz G. Maenner W. Manneit C. Moser H.-G. Richter R. Rosado-Schlossei A. Schael S. Settles R. Seywerd H. Stenzel H. Wiedenmann W. Wolf G.

Orsay LAL Arnault C. Boncrot J. Chandelier F. Chen Shaomin Choi Y.-I. Cordier A. Davier M. De Vivie J.B. Duflot L. Grivaz J.F. Heusse P. Hocker A. Jacholkowska A. Jean P. Kado M. Kim Do Won Lefrancois J. Lesage A. Lutz A.M. Nikolic I. Park Hyong-Jong Schune M.-H. Serin L. Tournefier E. Tsuji P. Veillet J.J. Videau I. Zerwas D. Palaiseau Ecole Polytechnique Badier J. Blondel A. Bonneaud G. Bourdon P. Brient J.-C. Fouque G. Machefert F. Matricon P. Maubras M. Mora De Freitas P. Rouge A. Roy C. RumpfM. Swynghedauw M. TanakaR. Valassi A. Verderi M. Videau H. Violet C. Pisa Univ./INFN Arezzini S. Azzurri P. Bagliesi G. Batignani G. Bettarini S. Bottigli U. Bozzi C. Braccini P.L. Calderini G. Carpinelli M. Ciocci M.A. Ciulli V. Davini M. Dell'Orso R. Fantechi R. Ferrante I. Forti F. Gambino D. Giassi A. Giorgi M. Ligabue F. Lusiani A. Marrocchesi P.S. Messineo A. Palla F. Sanguinetti G. Sciaba A. Sguazzoni G. Steinberger J. Tenchini R. Tonelli G. Triggiani G. Vannini C. Venturi A. Verdini P.G. Rutherford Appleton Lab. Botterill D.R. Brumfitt R. Clifft R. Edgecock R. Edwards M. Haywood S. Norton P.R. Thompson J.C. Wright A.

Saclay CEN DPhPE Bernard R. Bizeul P. Bloch-Devaux B. Colas P. Fabbro B. Faif G. Gournay J.-F. Jacquemet M. JoudonA. Kozanecki W. LanconE. Lemaire M.C. Locci E. MarxB. Perez P. Rander J. Renardy J.F. Rosowsky A. Roussarie A. Schuller J.P. Schwindling J. Ttabelsi B. Tuchming B. Vallage B.

UC Santa Cruz Black S. Dann J. Johnson R. Kim Hwi Konstantinidis N. Litke A. McNeil M. Taylor G.

Univ. of Washington, Seattle Putz J. Rothberg J. Wasserbaech S. Williams R.

Sheffield Univ. Beddall A. Booth C. Boswell R. Brew C. Cartwright S. Combley F. Kelly M. Lehto M. Newton W. Reeve J.A. Thompson L. University of Siegen Affholderbach K. Boehrer A. Brandt S. Cowan G. Feigl E. Foss J. Grupen C. Maier D. Minguet Ro- driguez J.A. Prange G. Rivera F. Saraiva P. Schreiber V. Sieler U. Smolik L. Stephan F. Walger T.

Trieste Univ./INFN Apollonio M. Bosisio L. Delia Marina R. Giannini G. Gobbo B. Gregorio A. Musolino G. Strizzolo C.

Spokesman: Dornan P. Contact: Dornan P. 313 ALEPH

ALEPH is a 4TT detector designed to give as much detailed information as possible about the complex events produced in high energy e+e~ collisions. A superconducting coil 5 metres in diameter and 6 metres long produces a 1.5 Tesla field in the beam direction. Particle detection is accomplished in layers, with each layer performing a particular function.

A high resolution vertex detector (VDET) consisting of two layers of silicon with double-sided readout provides r, and z coordinates and identifies decay vertices of tau leptons, charm and beauty hadrons. The Inner Tracking Chamber (ITC) is a cylindrical drift chamber with eight axial layers. It gives a high spatial resolution and good track separation, and is also an essential part of the trigger system. The Time Projection Chamber (TPC), 3.6 metres in diameter and 4.4 metres long, measures track momenta and directions. It also provides up to 338 energy loss measurements per track for particle identification. The momentum resolution of the three tracking detectors is

The strong points of the detector are the precision momentum measurement, the reliable elec- tron and muon identification even in jets, the high granularity of the e-7 calorimeter, and the excellent lifetime-measurement capability of the vertex detector.

The total energy is precisely measured making use of track momenta and taking advantage of the excellent photon, electron and muon identification capabilities over 97% of the solid angle. The jets are reconstructed with an angular resolution of 20 mrad both for the azimuthal and the polar angles, and an energy resolution,

NEXT PA&EJS) left BLAMK

314 ELECTROMAGNETIC MUON CHAMBERS CALORIMETERS

TIME OF FLIGHT HADRON AND PRESAMPLER CALORIMETERS

Z CHAMBERS FORWARD DETECTOR

JET CHAMBER

VERTEX CHAMBER

OPAL-ENSEMBLE EN PERSPECTIVE

OPAL: The OPAL Detector (an Omni Purpose Apparatus for Lep) OPAL

Beam: E+E- Approved: 18/NOV/82 Status: Data-Taking

The OPAL Detector (an Omni Purpose Apparatus for Lep)

Aachen TH, III Phys.Inst., Univ. of Alberta, Birmingham Univ., Bologna Univ./INFN, Bonn Univ., Budapest Res.Inst. of Physics (KFKI), Cambridge Univ., CERN, Chicago Univ., ATOMKI Inst. Debrecen, Duke Univ., Freiburg Univ., Haifa, Technion, Hamburg DESY, Heidelberg Univ., Indiana Univ., Kobe Univ., London UCL, London, Brunei Univ., London, Queen Mary & WestReld College, Manchester Univ., Maryland Univ., Montreal Univ., Munich Univ., Oregon Univ., Car let on Univ. - Ottawa, Ottawa, Carleton CRPP, Weizmann Inst. Rehovot, UC Riverside, Rutherford Appleton Lab., Saclay CEN DPhPE, Tel-Aviv Univ., Tokyo Univ. Dept. of Physics, Vancouver, Univ. B.C., Victoria Univ.

Aachen TH, III Phys.Inst. Bechtluft J. Bethke S. Biebel O. Hilgeis R. Lanske D. Movilla-Fernandez P. Pfeifenschneider P. Pflitsch M. Randeiath G. Ruppel U. Seuster R. Toennesmann M. Univ. of Alberta Caron B. Davis R. Faust A. Gingrich D. Hewlett J. Hossain R. Kayal P. McDonald J. Mullin S. Pinfold J. Rodning N. Routenbuig P. Schaapman J. Springer W. Birmingham Univ. Ashby S. Bell A.N. Bloodworth I.J. Bloomer J. Charlton D.G. Homer R.J. Jimack M. Jovanovic P. McMahon T.J. O'Neale S.W. Stokes W.N. Talbot S.D. Watkins P.M. Watson A.T. WatsonN. Wilson J.A. Bologna Univ./INFN Arcelli S. Brasolin F. Capiluppi P. Cotta A. Cuffiani M. Dallavalle G.M. Fabbri F. Ferrari M. FierroM. Giacomelli G. Giacomelli R. GrandiC. MacchioloA. Marcellini S. Michelini A. MontanariA. Odorici F. Poli B. Rossi A.M. Siroli G.P. Strumia F. Bonn Univ. Bartoldus R. Baumann S. Desch K. Fischer H.M. Geich-Gimbel C. Gross S. Hartmann C. Kokott T.P. Markus C. Menke S. Nellen B. Posthaus A. Raith B. Scharf F. Schumacher M. Stockhausen B. Voss H. Wermes N. von Toerne E. Budapest Res.Inst. of Physics (KFKI) Hajdu C. Horvath D. Pasztor G. Toth K. Cambridge Univ. Altekamp N. Batley R. Biguzzi A. Carter J.R. Gibson V. Goodrick M.J. Hawkes C. Hill J.C. Hutchcroft D.E. Jones C.R. Ward C.P. Ward D.R.

References LEPC/82-4/I 2. LEPC/82-15/M4, LEPC/82-16/M5, LEPC/82-17/M6, LEPC/82-33/M6/Add.l, LEPC/82-25/M13, LBPC/82- 28/M13/Add.l, LEPC/82-29/M16, LEPC/8S-34/M19, LEPC/82-46/M28, LEPC/82-47/M29, LEPC/82-S7/M34, LEPC/82-66/M37 LEPC/83-4/P3, LEPC/82-61/M3S, LEPC/84-4/M44, LEPC/84-17/MS1, LEPC/84-2/PR1, LEPC/8S-8/PR8, LEPC/8S-14/PR9 LEPC/85-3/PHI, LEPC/85-35/PR13, LEPC/86-6/M73, LEPC/87-4/M79, LEPC/8S-4/M84, LEPC/90-5/M93. LEPC/90-8/M96 LEPC/91-8/M100, LEPC/93-13/P3.Add.l, LEPC/93-13/P3.Add.2, LEPC/94-09/P3.Add.l ' 317 OPAL

CERN Ackerstaff K. Barberio E. Behnke T. Bentvelsen S. Burckhart H.J. Burgard C. Chatelain J.-P. Cooke O. Fleck I. Furtjes A. Glessing W. Gruwe M. Hammarstrom R. Hansroul M. Hauschild M. Heemskeik M. Heuei R.D. Hildreth M. Hill J. Jimenez M. Junk T. Kluth S. Lorenzi R. Mannelli M. McPherson R. Meyers F. Neal H. Nisius R. Perez-Ochoa R. Plane D. RembseiC. Renoux A. Runolfsson O. Scharff-Hansen P. Schmitt B. Schoening A. Schroeder M. Schwick C. Shepherd- Themistocleous C. Smith A.M. TeuscherR. Thomson M. TorrenceE. Turner-Watson M. Wells P. Zankel K. Zer-Zion D. Znoy M.

Chicago Univ. Anderson K.J. Coxe R. Evans H. Hart P. Hocker A. Merritt F.S. Meszaros M. Navickas V. Oreglia M.J. Pilcher J.E. Turcot A. ATOMKI Inst. Debrecen Dienes B. Palinkas J. Trocsanyi Z.

Duke Univ. Lautenschlager S. Lee IV A.

Freiburg Univ. Berlich P. Bobinski M. Burgin R. Herten G. Hike T. Joos D. Kobel M. Kolpin R. Kolrep M. Ludwig J. Messmer I. Mohr W. Patt J. Roeser H. Runge K. Soeldner-Rembold S. Stoll K. Thiergen M. Verzocchi M. Waeckerle F. Weber H.C. Wilkens B.

Haifa, Technion Dado S. GernitzkyY. Goldberg J. GraniteD. Hadash E. Lazic D. Lupu N. Robins S. Rozen Y. Tarem S. Hamburg DESY BlobelV. Fiedler F. Harder K. Hawkings R. Huentemeyer P. Meyer J. Oh Alexander Petzold S. Sittler A. Steuerer J. Wagner A. Wilson G.

Heidelberg Univ. Bock P. Bosch H.M. Buster A. Igo-Kemenes P. Jost U. Koch O. Kress T. Liebisch R. Matsumura H. Schieck J. Schleper P. Schmitt S. Utzat P. von Dobschuetz S. von Krogh J.

Indiana Univ. Anderson S. Braibant S. De Jong S. Hanson G. Letts J. Liu Dayong Ogren H.O. Rust D.R. Sulanke T. van Kooten R. Kobe Univ. Ishii K. Kawagoe K. Nakamura I. Takeda H. Tanaka S.

London UCL Anderson B.E. Attree D.J. Betts S.T. Charalambous A. Clarke P.E.L. Clay E.W. Conboy J.E. Cranfield R. CressweU M. Crone G.J. Hayes D.A. Lauber J.W. McKigney E.A. Miller D.J. Rooke T. Sherwood P. Skillman A. London, Brunei Univ. Hobson P. Imrie D.C. Rylio R. Sang W.M. Selby C.

London, Queen Mary & Westfield College Beck G.A. Carter A.A. Couyoumtzelis C. Evans M.D. Gibson W.R. Hapke M. Kyberd P. Lloyd S.L. Markopoulos C. Martin A.J. Morris J. Pritchard T.W.

318 OPAL

Manchester Univ. Allison J. Barlow R.J. Bird S. Dueidoth I.P. Eatough D. Edwards J. Futyan D. Hughes-Jones R.E. Ingram M. Jones G. Kartvelishvili V. Lafferty G.D. Loebinger F.K. Oldershaw N. Pater J. Shears T. Stephens K. Vokurka E. Wyatt T.R.

Maryland Univ. Ball A. Bard R. Chang Chung-Yun Dallapiccola C. Fong D. Gascon-Shotkin S. Herndon M. Jawa- hery A. Kellogg R.G. Martinez G. Skuja A. Snow G.A.

Montreal Univ. Azuelos G. Doucet M. Gascon J. Jeremie H. Joly A. Lefebvre E. Martin J.-P. Tafirout R. Taras P. Vikas P. Zacek V. Munich Univ. Boutemeur M. Dubbert J. Duckeck G. Mendez P. Sahr O. Schaile D. Schaile O. Schoerner T. Stroemer R. Vollman U. Oregon Univ. Kim Dae Hwan Lai W.-P. Strom D. Carleton Univ. - Ottawa Carnegie R.K. Donkers M. Estabrooks P.E. Hemingway R.J. Jones M. Karlen D. Koetke D. Krieger P. Towers S. Ottawa, Carleton CRPP Beaulne P. Durit M.S. Gagnon P. Gravelle P. Hargrove C.K. Losty M.J. Mes H. Neuheimer E. Oakham F.G. Weizmann lust. Rehovot Duchovni E. Folman R. Lellouch D. Levinson L. Maettig P. Mikenberg G. Mir R. Nagai K. Shoa M. Yekutieli G. UC Riverside Chrisman D. Del Pozo L. Gary J.W. Giacomelli P. Gorn W. Harin-Dirac M. Layter J.G. Shen Ben- jamin Rutherford Appleton Lab. Bell K.W. Brown R.M. Geddes N.I. Geralis T. Jacob F.R. Jeffreys P.W. Kennedy B.W. Patrick G.N. Scott W.G. Sproston M. Szymanski P.

Saclay CEN DPhPE Fabbro B. Gaidot A. Gentit F.-X. Lafoux H. Malik A. Pansart J.P. Vasseur G. Tel-Aviv Univ. Alexander G. Bella G. Cohen I. Etzion E. Grunhaus J. Sarkisyan E. Seidman A. Tsur E. Tokyo Univ. Dept. of Physics Asai S. Kanzaki J. Kawamoto T. Kobayashi T. Komamiya S. Mashimo T. MlharaS. Mori T. Morii M. Orito S. Saeki T. Tsukamoto T. Yamashita S. Vancouver, Univ. B.C. Axen D.A. Howard R. McKenna J. Sbarra C. Victoria Univ. Deatrich D. Graham K. Honma A. Keeler R.K. Lawson I. Long G. Poffenberger P. Robertson S. RoneyMJ. Sobie R. StumpfL. Vincter M. White J.

319 OPAL

Spokesman: Heuer R. Contact: Smith A.M.

OPAL is a general purpose detector designed to study a wide range of unexplored physics at LEP. At LEP1, one of the central issues is the precise determination of the mass, width and couplings to quarks and leptons of the Z° boson. At LEP2 the mass and couplings of the W* bosons will be determined. Accurate measurements of these quantities might reveal the mechanisms by which symmetries are broken. Many topics relating to heavy flavours are studied, including the properties of tau leptons, and the spectroscopy, lifetimes and mixing of hadrons containing b-quarks.

There is a very active QCD group. Among the topics being studied are the determination of the strong coupling constant, as, tests of the group structure of QCD, differences between quark- and gluon-induced jets and many aspects of the fragmentation process. These studies are continuing at LEP2. General searches for new particles, such as the Higgs boson and supersymmetric states, have been pursued at LEP1 and are now being extended at the higher energies of LEP2. These studies, as well as searches for more unexpected phenomena require a general purpose detector with good energy resolution and particle identification and which is capable of studying complicated events. The main components of the detector in order of increasing distance from the interaction point, are as follows (fig.l):

a) A silicon microvertex detector, installed around the beam pipe, which measures two points (T~4> and z) per track. b) Central detectors consisting of a Vertex and Jet detector, both of the multi A$ sector type, and a barrel of Z chambers. c) A warm conductor solenoid providing a uniform magnetic field of 0.4T, inside the central detector volume. d) A TOF scintillator barrel detector mounted around the solenoid, complimented by a scin- tillating tile end-cap detector. e) An electromagnetic calorimeter which covers 98% of the solid angle and which consists of ~9400 lead glass blocks in the barrel region and ~2300 lead glass blocks in the endcaps. Just inside the lead glass calorimeter and surrounding the pressure vessel thin gas detectors (presamplers) provide measurements of the position and energy of showers which start in front of the main calorimeter. f) A hadron calorimeter instrumented by streamer tubes and thin gap wire chambers which are mounted inside the gaps in the magnet iron yoke. The calorimeter is divided into 3 main parts, the barrel, the outer end caps and the pole tips. g) An external muon identifier consisting of 4 layers of drift chambers for the barrel part and of 2 layers of streamer tubes for the end caps.

320 OPAL h) A forward detector including a luminosity monitor and an e.m. calorimeter system. A small angle silicon-tungsten calorimeter with good spatial resolution provides a very accurate absolute luminosity measurement.

321 Magnet Yoke L3 Magnet Coil Forward Backward Muon Chambers Muon Chambers

Support Tube L3

Beam: E+E- Approved: 18/NOV/82 19/NOV/87 Status: Data-Taking

L3 Experiment

Aachen TH, I Phys.Inst., Aachen TH, III Phys.Inst., Amsterdam NIKHEF, Annecy LAPP, Basle Univ., Beijing HEP Inst., Berlin Humboldt Univ., Bologna Univ./INFN, Bombay TIFR, Boston Univ., Univ. of Bucharest, Budapest Res.Inst. of Physics (KFKI), Carnegie-Mellon Univ., CERN, Florence Univ./INFN, Geneva Univ., Hamburg Univ., Harvard Univ., Chinese Univ. Science & Tech. Hefei, Res. Inst. for HEP, SEFT, Helsinki, Johns Hopkins Univ., Korea Adv. Inst.of Sci.& Tech. (KAIST), Kyungpook Nat. Univ., Purdue Univ. Lafayette, Lausanne Univ., Lausanne, World Laboratory, Lecce Univ./INFN, Los Alamos Nat.Lab., Louisiana State Univ., Univ. of Lyon I (IPNL), Madrid CIEMAT, Univ. of Michigan, Milan Univ./INFN, MIT, Moscow ITEP, Naples Univ./INFN, Univ. of Cyprus, Nicosia, NIKHEF-H/Nijmegen Univ., Northeastern Univ., Oak Ridge Nat. Lab., CALTECH, Pasadena, Perugia Univ./INFN, Princeton Univ., Rome Univ.I/INFN, Salerno Univ./INFN, UC San Diego, Santiago de Compostela Univ., St. Petersburg, NPI, High Energy Physics Group, Taiwan, Univ. of Alabama, Tuscaloosa, Utrecht Univ., P.Scherrer Inst., Villigen, DESY-Zeuthen IHEP, Zurich ETH

Aachen TH, I Phys.Inst. Debye B. Dohmen M. Esser H. Franzke V. Kaipinski W. Kicchhoff G. Krenz W. Luebelsmeyer K. Nippe A. Pandoulas D. Pei Y. Schmitz D. Schwenke J. Schwering G. Siedenburg T. Siedling R. Syben O. Tenbusch F. Toporowsky M. WallraffW. Weber A. Zeng Ying Aachen TH, III Phys.Inst. Boehm A. Bosseler K. Commichau V. Fesefeldt H. Fetchenhauer G. Hangaiter K. Jenkes K. Lanske D. Paus C. Roehner S. Roth S. Schaefer C. Schmidt-Kaerst S. Schmitz P. Schultze K. Straessner A. Tonutti M. Von der Mey M. Wynhoff S. Amsterdam NIKHEF Bobbink G. Buijs A. Colijn A. De Boer R. De Waard A. Duinker P. Erne F. Eshghi S. Evers G. Gotink W. Gioenstege H. HommaJ. Jansen L. Jaspers M. Koffeman E. Koopstia J. Massaro G.G.G. Muijs A. Rietmeyer A. Van Der Graaf H. Van Der Zwaan B. Van Dierendonck D. Annecy LAPP Berthet M. Boucham A. Brochu F. Camberlin B. Chereau X. Chollet F. Coignet G. Cron R. A. Degre A. Dome I. Duchesneau D. Gaillard G. Girard C. Karyotakis Y. Lecoq J. Lees-Rosier S. Lesueur J. Mugnier P. Perret-Gallix D. Perrot G. Sauvage G. Vivargent M. Basle Univ. Haas D. Tauscher L. Vlachos S. Wadhwa M.

References LEPC/82-5/I 3, LEPC/82-45/I3/Add.l, LEPC/82-60/I3/Add.2, LEPC/82-26/M14, LEPC/82-42/M27, LEPC/82-70/M38, LEPC/83-5/P4, LEPC/84-4/PR3, LEPC/84-6/PR4, LEPC/84-7/M45, LEPC/84-21/M54, LEPC/85-15/M62, LEPC/85-17/M63, LEPC/8S-25/PR10, LEPC/85-39/PR14, LEPC/86-3/M70, LEPC/87-S/M80, LEPC/90-7/M95

323 L3

Beying HEP Inst. Chen He Sheng Liu Zhen An Shen Chang Quan Zhu Qing Qi Berlin Humboldt Univ. Gruenewald M.W. Hebbeker T. Lee Ho Jong Molnar P. Petrak S. Ruschmeier D. Bologna Univ./INFN Anselmo F. Antreasyan D. Basile M. Cara Romeo G. Casadei D. Cindolo F. Hatzifotiadou D. Bombay TIFR Banerjee S. Bhattacharya S. Dutta S. Ganguli S. Gurtu A. Katta S. Maity M. Majumder G. Mangla S. Mazumdar K. Moulik T. Nandakumar R. Sarkar S. Tonwar S. Boston Univ. Ahlen S. Goldstein J. Stoops K. Xu Jianguo Zhou Bing Univ. of Bucharest Cotorobai F. Indreias G. Mihul A. Militaru O. Preda M. Budapest Res.Inst. of Physics (KFKI) Boldizsai L. Csilling A. Nagy E. Toth J. Vesztergombi G. Cainegie-Mellon Univ. Blyth S.C. Brock I. Engler A. Ferguson T. Filthaut F. Hirschfelder J. Kraemer R. Park Hyangkyu Tsipolitis G. Vogel H. You Jianming CERN Allaby J. Bertucci B. Biasini M. Blaising J.J. Herve A. Innocente V. Kirkby J. Le Goff J.M. Lebeau M. Lecoq P. Linde F. Mnich J. Peach D. Pothier J. Zichichi A. Florence Univ./INFN Adriani O. Becattini F. Bellucci L. Buffini A. Cartacci A.M. Castellini G. Chiarusi T. Civinini C. D'Alessandro R. Favara A. Foresti L. Graziani G. Landi G. Lenti M. Lenzi M. Meschini M. Monteleoni B. Morini S. Naoumov V. Passaleva G. Piantelli S. Pieri M. Speranza A. Spillantini P. Geneva Univ. Achard P. Ambrosi G. Bene P. Bourquin M. Braccini S. Burger W. Christinet A. Clerc B. Deglon P. EmonetP. Extermann P. Field J.H. Fredj L. GoujonD. Hoorani H. Kienzle-Focacci M.N. LaMarraD. Leger A. Muheim F. Paus Cecchi C. Perrin E. Produit N. Ribordy M. Richeux J.-P. Sciarrino D. Susinno G.F. Hamburg Univ. Schopper H. Harvard Univ. Strauch K. Chinese Univ. Science & Tech. Hefei Chen Hongfang Xu Zizong Res. Inst. for HEP, SEFT, Helsinki Jarv L. Ostonen R. Saal M. Sarakinos M. Sipila J. Johns Hopkins Univ. Anticic T. Chien Chih-Yung. Gougas A. Kim Doris Paul T. Pevsner A.

324 L3

Korea Adv. Inst.of Sci.fe Tech. (KAIST) Kim Jae Kwan Kyungpook Nat. Univ. Oh Youngdo Son Dongchul. Purdue Univ. Lafayette Banicz K. Gutay L. Pompos A. Riemers B.C. Lausanne Univ. Alemanni G. Baehler P. Bay A. Buttet A. Chave M. Durrenmatt F. Frei R. Gailloud M. Goldfarb S. Kasser A. Lejeune E. Mi Yong Moser J. Pinard A. Reymond D. Rosselet P. Roth C. Lausanne, World Laboratory Chaturvedi U.K. Dova M.T. Kaur M. Khan R.A. Sultanov G. Swain J. Wu Shouxiang Lecce Univ./INFN Cesaroni F. Los Alamos Nat.Lab. Kinnison W. Shukla J. Louisiana State Univ. Kartik S. McNeil R. Stone JR A. L. Univ. of Lyon I (IPNL) Chemarin M. Depasse P. El Mamouni H. Ernenwein J.P. Fay J. Hie B. Laktineh I. Lebrun P. Lugnier L. Mabo J. Madjar N. Martin Jean-Paul. Maurelli G. Reynaud M. Sahuc P. Souga C. Madrid CIEMAT Aguilar-Benitez M. Alcaraz J. Ariza M. Berdugo J. Casaus J. Cerrada M. Chamizo M. Colino N. Daniel M. De La Cruz B. Falagan Bobillo M. Gonzalez A. Gonzalez R. M. Josa Mutuberria I. Ladron de Guevara P. Mana C. Martinez-Laso L. Palomares C. Puras J. Risco Sanchez J. Ro- driguez F.J. Romero L. Salicio J. Sanchez-Alvaro E. Univ. of Michigan Azemoon T. Button A. Draskic-Ostojic J. Jones L.W. Leggett C. Moore R. Riles K. Roe B.P. Zhou Yuan Milan Univ./INFN Acciarri M. Bernardi O. Furetta C. Gervasi M. Pensotti-Rancoita S. Pistolesi E. Rancoita P.-G. Rattaggi M. Rossi G. MIT Baumann A. Becker U. Berges P. Burger J.D. Cai Xudong Capell M. Clare I. Clare R. Dai Tiesheng. De Jong P. Eppling F. Fisher P. Forconi G. Kounine A. Kramer T. Lapoint C. Lapoint J. Lebedev A. Luckey D. Nahn St. Postema H. Rodin J. Smith B. Steuer M. Ting S.C.C. Ting S.M. Uchida Y. Wang Jianchun Wang Yi-Fang Moscow ITEP Areflev A. Choumilov E. Choutko V. Galaktionov Y. Klimentov A. Korolko I. Koutsenko V. Malinine A. Oulianov A. Pakhlov P. Plotnikov V. Plyaskine V. Pojidaev V. Vetlitski I. Vinogradov V. Vorobyev I.

325 L3

Naples Univ./INFN Aloisio A. Alviggi M.G. Armenante M. Boriiello M. Bove A. Carlino G. Cassese F. Cavallo N. Chiefari G. D'Aquino B. De Asmundis R. Delia Volpe D. Di Pietro M. Doria A. Farella C. Lista L. Manna F. Manto G. Marzullo V. Mele S. Merola L. Napolitano M. Pagano F. Paolucci P. Passeggio G. Patricelli S. Piccolo D. Soulimov V. Univ. of Cyprus, Nicosia Razis P. Vorvolakos A. NIKHEF-H/Nijmegen Univ. Buytenhuijs A. Kittel W. Konig A. Kuijten H. Mangeol D. Metzger W. Petersen B. Sanders M. Schotanus D.J. Schouten T. Tchekanov S. Van Der Vliet H. Van Hoek W. Van Mil A. Van de Walle R.T. Wertz D.J.G. Wijnen T. Northeastern Univ. Alverson G. Gau S. Leedom I. Palit S. Reucroft S. Ruuska D. Taylor L. Oak Ridge Nat. Lab. Plasil F. Read K. CALTECH, Pasadena Gratta G. Hafeez M. Kirkby D. Lu Wenwen Newman H.B. Roeber F. Shevchenko S. Shvorob A. Xia Lei Zhu Ren-Yuan Perugia Univ./INFN Alpat B. Babucci E. Banfalvi A. Bartalini P. Battiston R. Bilei G.M. Bizzaglia S. Bonifazi G. Caria M. Checcucci B. Cucciarelli S. Easo S. Ionica M. Lilli S. Mantovani G. Menichelli M. Mezzenga R. Pauluzzi M. Salvati F. Santocchia A. Servoli L. Princeton Univ. Denes P. Gupta V.K. Kominis I. Nemenman I. Piroue P. Stickland D. Stone H. Tully C.

Rome Univ.I/INFN Bagnaia P. Barone L. Borgia B. Bracci S. Cavallari F. Consoli M. Costantini S. De Notaristefani F. Diemoz M. Dionisi C. Faccini R. Falciano-Codino S. Ferroni F. Gentile S. Giagu St. Leonardi E. Longo E. Luci C. Ludovici L. Luminari L. Malgeri L. Marzano F. Mirabelli G. Morganti S. Organtini G. Paoletti S. Pascale G. Rescigno M. Valente E.

Salerno Univ./INFN Cifarelli-Strolin L. UC San Diego Branson J.G. Dominguez A. Fisk I. Raven G. Santiago de Compostela Univ. Duran I. St. Petersburg, NPI Andreev V. Andreev Val. Batourine V. Fedine O. Jelamkov A. Kovalenko S. Levtchenko P. Maleev V. Nadtotchi A. Prokofiev D. Saguidova N. Schegelsky V. Seliverstov M. Tsaregorodtsev A. Vodopianov I. Vorobiev A. Vorobyov A. Zaitsev N. Zalite A. Zalite Yu. High Energy Physics Group, Taiwan Chang Yuan-Hann Chen Ei Fong Hou Suen R. Lin Chih-Hsun Lin Willis Sens Jianchun Yeh Shew- Ching

326 L3

Univ. of Alabama, Tuscaloosa Baksay L. Behrens M. Busenitz J. Fenyi B. Marian L. Szillasi Z. Zilizi G. Utrecht Univ. Van Rhee T. Van Rossum W. P.Scherrer Inst., Villigen Deiters K. Fabre M. Lustermann W. Walter C. DESY-Zeuthen IHEP Garcia-Abia P. Gottlicher P. Kamrad D. Kantserov V. Kapinos P. Kiisch S. Kopp A. Lacentre P. Leiste R. Lieb E. Lohmann W. Nahnhauer R. Nowak H. Riemann S. Sachwitz M. Schoeneich B. Tonisch F. Trowitzsch G. Voelkert R. Vogt H. Ziegler F. Zurich ETH Anderhub H. Barczyk A.J. Behner F. Betev B. Biland A. Bourilkov D. Brigljevic V. Campan- elli M. Cannarsa P. Chen Guoming Chevenier G. Di Lodovico F. Dittmar M. Djambazov L. Faber G. Felcini M. Freudenreich K. Fritschi M. Haller C. Hartmann B. Hasan A. Herrmann J. Hofer Hans. Hofer Heinz Hofer T. Horisberger U. Horvath I. Hungerford W. Ingenito P. Jin Bingnian Jongmanns M. Kastli W. Klassen N. Lassila-Perini K. Le Coultre P. Lecomte P. Marchesini P. Mc- Nally D. M. Milesi M. Nessi-Tedaldi F. Pauss F. Pohl M. Rahal-Callot G. Ren Daning Robohm A. Rojkov A. Rosenbaum F. Roser U. Rykaczewski H. Scholz N. Suter H. Ulbricht J. Vergain M. Vier- tel G. Von Gunten H. Waldmeier S. Wittgenstein F. Wn Jian Yang Min Zemp P. Zhou Guangjing Zurcher D.

Spokesman: Ting S.C.C./Deputy Spokesman: Hofer H. Contact: Pohl M.

The detector consists of a large volume low field solenoid magnet, a small central tracking system with very high spatial resolution, a high resolution electromagnetic calorimeter encapsulating the central detector, a hadron calorimeter acting also as a muon filter, and high precision muon tracking chambers. The detector is designed to measure energy and position of leptons with the highest obtainable precision allowing a mass resolution Am/m smaller than 2% in dilepton final states. Hadronic energy flux is detected by a fine-grained calorimeter, which also serves as muon filter and tracking device.

The outer boundary of the detector is given by the iron return-yoke of a conventional magnet, using aluminium plates for the coil. The field is 0.5 T over a length of 12 m. This large volume allows a high precision muon momentum measurement, performed by three sets of drift chambers in the central detector region. From the multiple measurement of the coordinate in the bending plane a momentum resolution of 2.5% for 45 GeV muons is obtained. A forward- backward muon detection system extends the polar angle coverage to 22 degrees in the forward region. This system is made out of three layers of trapezoidal multi-wire drift chambers for the reconstruction of \i trajectories, two layers of Resistive Plate Chambers (RPC) providing a fast \i trigger, and aluminium coils surrounding the main magnet doors to create a toroidal field which provides additional bending power.

Going radially inwards, the combined hadron calorimeter and muon absorber consists of wire chambers operating in the proportional mode, sandwiched with U-plates as energy converter. A subdivision into 3000 space elements covering the full solid angle (except the beam pipe) allows

327 L3 localization and determination of the hadronic energy flow with around 11% energy resolution at the Z pole energy.

The electromagnetic energy flow is determined by approximately 11000 crystals of BGO (Be4Ge3Oi2), a transparent scintillator with 1.1 cm radiation length. Full electromagnetic shower containment over nearly 4?r solid angle coverage is achieved. An energy resolution about 1.4% and a spatial resolution better than 2 mm is obtained for photon energies larger than 1 GeV, with a rejection against hadrons of better than 1000.

Surrounding the 10 cm diameter beam pipe, a high precision Silicon Microstrip Detector (SMD) and a small drift chamber operating in the time expansion mode (TEC) act as charged particle vertex detectors. The drift chamber has achieved a space resolution down to 45 /im. The SMD consists of two layers, each providing readout if the R- and Z coordinates with an intrinsic resolution of about 7 /im and 15 /xm, respectively. The polar angle of the micro vertex detector extends from 22 degrees to 158 degrees. The combination of TEC and SMD allows a good momentum and charge determination for particles up to 45 GeV, an efficient electron-photon separation and a measurement of the impact parameter of the tracks of long-lived charged particles.

NEXT PAGE(S) left BLANK

328 Forward Chamber A Barrel Muon Chambers

Forward RICH Barrel Hadron Calorimeter

Forward Chamber B Scintillators

Forward EM Calorimeter Superconducting Coil

Forward Hadron Calorimeter High Density Projection Chamber

1 Forward Hodoscope Outer Detector

Forward Muon Chambers Barrel RICH Surround Muon Chambers

U) 00 Small Angle Tile Calorimeter o

luadrupole

Very Small Angle Tagger

Beam Pipe

Vertex Detector

Inner Detector DELPHI Time Projection Chamber DELPHI

Beam: E+E- Approved: 18/NOV/82 Status: Data-Taking

The DELPHI Detector (DEtector with Lepton Photon and Hadron Identification)

Ames, Iowa State Univ., Amsterdam NLKHEF, Antwerp Univ., Athens Demokritos/NRC, Athens Nat.Tech.Univ., Athens Univ., Bergen Univ., Bologna Univ./INFN, Bratislava, Comenius Univ., IIHE ULB-VUB, Brussels, CERN, Copenhagen Niels Bohr Inst., Cracow Inst.Nucl.Phys., Dubna JINR, Genoa Univ./INFN, Grenoble ISN, Helsinki, Inst. of Physics (HIP), Karlsruhe IEKP, Lancaster Univ., Lisbon LIP, Liverpool Univ., Ljubljana Univ. Inst. Jozef Stefan, Lund Univ., Univ. ofLyon I (IPNL), Madrid Univ. Complutense, Univ. Aix-Marseille II, CPPM/IN2P3, Milan Univ./LNFN, Mons Univ.- Hainaut, Orsay LAL, Oslo Univ., Oviedo Univ., Oxford Univ., Padova Univ./INFN, Paris College de France, Paris LPNHE-P.et M.Curie Univ., Prague, Charles Univ., Prague, FZU-Inst. of Phys. Acad. of ScL, LAFEX/CBPF-PUC, Rio de Janeiro, Univ. Fed. Rio de Janeiro (UFRJ), Rome Sanita/INFN, Rome Univ.II/INFN, Rutherford Appleton Lab., Saclay, CEA, DAPNIA, Santander Univ., Serpukhov LHEP, Stockholm Univ., Strasbourg, IReS, Trieste Univ./INFN, Torino Univ./INFN, Udine Univ./INFN, Uppsala Univ., LFIC, Valencia, Vienna HEPHY, Warsaw Univ., Wuppertal Univ.

Ames, Iowa State Univ. Ciawley H.B. Edsall D. Firestone A. Gorn L. Lamsa J.W. Lane D.W. Legan C.K. Meyer W.T. Rosenberg E.I. Yi J. Amsterdam NIKHEF Boudinov E. Holthuizen D. Kjaer N.J. Kluit P.M. Nieuwenhuizen M. Ruckstuhl W. Timmeimans J. Toet D.Z. Van Apeldoorn G.W. Van Dam P. Van Eldik J. Antwerp Univ. De Brabandere S. Tomaradze A. Verbeuie F. Athens Demokritos/NRC Adzic P. Bozovic I. Fanourakis G. Karafasoulis C. Kaivelas E. Kokkinias P. Leisos A. Lonkas D. Markou A. Papageorgiou K. Tzamarias S. Zevgolatakos E. Athens Nat.Tech.Univ. Dris M. Filippas T.A. Fokitis E. Gazis E.N. Katsoufis E.C. Papadopoulou T. Rahmani H.

Athens Univ. Kourkoumelis C. Resvanis L.K.

References LEPC/82-8/I 6, LEPC/82-58/I6/Add.l, LEPC/S2-59/I6/Add.2, LEPC/82-23/M11, LBPC/82-37/M22, LEPC/82-49/M31, LEPC/82- 50/M32, LEPC/83-3/P2, SPSC/84-50/M379, LEPC/84-3/PR2, LEPC/84-ll/PR2/Add.l, LEPC/84-16/PR6, LEPC/84-18/M52, LEPC/85-T/PR7, LEPC/85-10/PR6/Add.l, LEPC/8S-4/MS6, LBPC/85-ll/PR6/Add.2, LEPC/65-12/PR6/Add.3, LEPC/S5-21/PR6/Add.4, LEPC/85-22/PR6/Add.S, LEPC/8S-33/PR11, LEPC/8S-42/M69, LEPC/86-S/M72, LEPC/86-ll/PR6/Add.6, LEPC/86-15/PR6/Add.7, LEPC/87-3/M78, LEPC/87-12/M82, LEPC/87-13/M83, LEPC/88-10/M85, LEPC/88-H/M86, LEPC/90-6/M94, LEPC/92-6/P2/Add.l, LEPC/92-5/I-11, LEPC/92-13/P2/Add.2, LBPC/93-6/P2/Add.3, LEPC/93-J0/M108

331 DELPHI

Bergen Univ. Borgland A. Eigen G. Frodesen A.G. Keranen R. Lillestol E. Stugu B. Bologna Univ./INFN Benvenuti A.C. Cavallo F.R. Navarria F. Paiano S. Perrotta A. Rovelli T. Valenti G. Bratislava, Comenius Univ. Chochula P. Janik R. Kubinec P. Rosinski P. Sitar B. IIHE ULB-VUB, Brussels Bertrand D. De Clercq C. Lefebure V. Lemonne J. Van Doninck W.K. Van Lysbetten A. Van- der Velde C. Wickens J.H. CERN Amaldi U. Andreazza A. Antilogus P. Augustinus A. Baillon P. Barker G. Brown R.C.A. Camporesi T. Carena F. Cattai A. Chabaud V. Charpentier P. Chorowicz V. Collins P. Davenport M. De Angelis A. Dijkstra H. Elsing M. Feindt M. Foeth H. Gaspar C. Gavillet P. Hahn F. Eerr H. Jalocha P. Joram C. Klein H. Koratzinos M. Kreuter C. Lacasta C. Liko D. Marin J.C. Mariotti C. McNulty R. Monig K. Paganoni M. Pape L. Podobrin O. Rebecchi P. Reid D. Treille D. Tsirou A. Ullaland O. Wetherell A.M. Wilkinson G.R. Copenhagen Niels Bohr Inst. Damgaaid G. Moiler R. Nielsen B.

Cracow Inst.Nud.Phys. HajdukZ. Korcyl K. Kucewicz W. Michalowski J. Muryn B. PalkaH. Polok G. Witek M. Zalewska- Bak A. Dubna JINR Alekseev G.D. Bilenki M. Chelkov G.A. Khovanski N.N. Kouznetsov O. Kroumchtein Z. Malychev V. Nikolenko M. Olchevski A. Pozdniakov V. Pukhaeva N. Sadovsld A. Sedykh Yu. Sissakian A.N. Tiapkin I. Tkatchev L.G. Vertogradov L.S. Zimine N.

Genoa Univ./INFN Bozzo M. Canepa M. Caso C. Contri R. Crosetti G. Fontanelli F. Gracco V. Morettini P. Parodi F. Petrolini A. Piana G. Sannino M. Squarcia S. Grenoble ISN Arnond Y. Ledroit F. Naraghi F. Nicolaidou R. Sajot G.

Helsinki, Inst. of Physics (HIP) Battaglia M. Czellar S. Kurvinen K. Lauhakangas R. Orava R. Osterberg K. Saarikko H. Karlsruhe IEKP Apel W.D. De Boer W. Ehret R. Heising S. Kaiser M. Maehlum G. Muller Heinz. Oberschulte- Beckmann W. Schneider H. Schwickerath U. Seitz A. Lancaster Univ. Ratoff P. Seager P. Lisbon LIP Abreu P. Barao F. Espiiito Santo M. Infante Henriques R. Maio A. Onofre A. Peralta L. Pimenta M. Spassov T. Tome B.

332 DELPHI

Liverpool Univ. Allport P. Booth P.S.L. Bowcock T. Carroll L. Cowell J.H. Galloni A. Green C. Houlden M. Jackson J.N. King B. Marti S. McCubbin M. Normand A.M. Ljubljana Univ. lust. Jozef Stefan Cindro V. Erzen B. Golob B. Stank S. Zavrtanik D. Lund Univ. Almehed S. Barring O. Falk E. Hedberg V. Jarlskog C. Jarlskog G. Jonsson L. Jonsson P. Kronkvist I.J. Lorstad B. Mjornmark U. Nygren A. Smiinova O. Transtromer G.

Univ. ofLyonl(IPNL) AugnstinJ.E. Bertini D. Chanssard L. DurandJ.-D. KatsanevasS. Laktineh I. Miiabito L. SmadjaG. ZachF. Madrid Univ. Complntense Barrio Una J.A. Sanchez J. Univ. Air-Marseille II, CPPM/IN2P3 Delpierre P.

Milan Univ./INFN Bonesini M. Bonivento W. Caccia M. Calvi M. Ferrari P. Matteuzzi C. Meroni C. Negri P. Pullia A. Ragazzi S. Redaelli N.G. Tabarelli de Fatis T. Terranova F. Tonazzo A. Troncon C. Vegni G. Mons Univ.- Hainaut Deghorain A. Grard F. Herqnet P. Hoorelbeke S. Huet K. Orsay LAL BambadeP. Bouquet B. BourdariosC. CosmeG. D'AlmagneB. FuldaF. Grosdidier G. Jean-Marie B. Lepeltier V. Paganini P. Richard F. Roudeau P. Stocchi A. Trombini A. Wlodek T.

Oslo Univ. Bugge L. Buran T. Myklebust T. Read A.L. Rohne O. Skaali T.B. Stapnes S.

Oviedo Univ. Cuevas Maestro J. Maitinez-Rivero C. Oxford Univ. Demaria N. Harris F.J. Hessing T. Holt P.J. Libby J. Loken J.G. Lyons L. Myatt G. Parkes C. Radojicic D. Renton P. Segar A.M. Stevenson K.J. Thomas J. Williams W.S.C.

Padova Univ./INFN Brand K.D. Bruckman de Renstrom P. Checchia P. De Min A. Gasparini U. Lippi I. Margoni M. Mazzncato M. Michelotto M. Nomerotski A. Pegoraro M. Ronchese P. Simonetto F. Stavitski I. Ventura L. Verlato M. Zumerle G. Paris College de France Beilliere P. Brunet J.M. Dolbeau J. Tristram G. Paris LPNHE-P.et M.Curie Univ. Baubillier M. Billoir P. Da Silva W. De la Vaissiere C. Fayot J. Fichet S. Kapusta F. Moreau X. Pain R. Roos L. Vincent P. Prague, Charles Univ. Chudoba J. Leitner R. Masik J.

333 DELPHI

Prague, FZU-Inst. of Phys. Acad. of Sci. Nemecek S. Novak M. Rames J. Ridky J. Vrba V. LAFEX/CBPF-PUC, Rio de Janeiro Begalli M. Gandelman M. Mahon J-R. Martins Mundim Filho L. Pol M.E. Santos de Souza D. Shellard R. Univ. Fed. Rio de Janeiro (UFRJ) Amato S. Beiggren M. De Paula L. Dos Santos Barbi M. Marechal B. Rome Sanita/INFN Baroncelli A. Bosio C. Branchini P. Graziani E. Passeri A. Spiriti E. Stanescu C. Tortora L. Rome Univ.II/INFN Canale V. Di Ciaccio L. Di Diodato A. Matthiae G. Privitera P. Verzi V. Rutherford Appleton Lab. AdyeT. Bates M.J. Crennell D. DaunceyP.D. Franek B. GopalG. GuyJ. Murray W.J. Phillips H.T. Sekulin R. Smith G.R. Tyndel M. Venus W. Saclay, CEA, DAPNIA Besancon M. Boonekamp M. Borissov G. Gris Ph. Jarry P. Laugier J.P. LethuiUier M. Lutz P. Ouraou A. Pierre F. Ruhlmann V. Sacquin Y. Silvestre R. Turluer-Faccini M.L. Vilanova D. Zito M. Santander Univ. Camacho A.J. Garcia Perez J. Lopez-Garcia J-M. Marco J. Marco R. Matorras F. Ruiz Jimeno A. Serpukhov IHEP Ajinenko I. Belokopytov I. Beloous K. Chapkine M. Chliapnikov P. Feniouk A. Guerdioukov L. Gumeniouk S. Iouchtchenko O. Khokhlov Yu. Kostioukhine V. Lapin V. Miagkov A. Obraztsov V. Ostankov A. Ouvarov V. Smirnov N. Sokolov A. Solovianov O. Tchikilev O. Vlassov E. Zaitsev A. Stockholm Univ. Andersson P. Asman B. Ekspong G. Holmgren S.-O. Hultqvist K. Jacobsson R. Johansson E.K. Lipniacka-Wesolowska A. Malmgren T. Moa T. Niss P. Walck C. Zucchelli G.C. Strasbourg, IReS Bloch D. Dracos M. Engel J.P. Fischer P.A. Gele D. Gerber J.P. Juillot P. Nikolaenko V. Orazi G. Pages P. Strub R. Todorov T. Todorovova S. Winter M. Trieste Univ./INFN Barbiellini G. Cossutti F. Delia Ricca G. Fassouliotis D. Lanceri L. Petridou C. Poropat P. Vallazza E. Vitale L. Torino Univ./INFN Bianchi F. Bigi M. Chierici R. Gamba D. Gouz Y. Migliore E. Rinaudc-Werbrouck G. Romero A. Sciolla G. Udine Univ./INFN De Lotto B. Scuri F. Waldner F. Uppsala Univ. Botner O. Brenner R. EkelofT. Gunther M. Hallgren A. Medbo J.

334 DELPHI

IFIC, Valencia Alemany Fernandez R. Cabrera Urban S. Castillo Gimenez M.V. Colomer Pellicer M. Cortina Gil E. Ferrer A. Fuster J. Garcia C. Hernandez J.J. Higon-Rodriguez E. Martinez-Vidal F. Navas Concha S. Ortuno S. Salt J. Vienna HEPHY AdamW. Fruhwirth R. Hrubec J. Krammer M. Leder G. MacNaughton J. Mandl F. MitaroffW.A. Neumeister N. Pernegger H. Pernicka M. Regler M. Strauss J. Warsaw Univ. Doroba K. Gokieli R. Gorski M. Grzelak K. Nawrocki K. Sosnowski R. Szczekowski M. Szeptycka M. Zalewski P. Wuppertal Univ. Becks K.H. Blume M. Brenke T. Burgsmuller T. Buschmann P. Dahm J. Drees J. Drees K.-A. Grefrath A. Hahn S. Hamacher K. IQapp O. Langefeld P. Lenzen G. Neumann W. Reale M. Schyns M.A.E. Sponholz P. Uberschar B. Wahlen H. Wicke D.

Spokesman: Treille D. Contact: Venus W.

DELPHI is a general purpose detector for physics at LEP on and above the Z°, offering three- dimensional information on curvature and energy deposition with fine spatial granularity as well as identification of leptons and hadrons over most of the solid angle. A superconducting coil provides a 1.2 T solenoidal field of high uniformity. Tracking relies on the silicon vertex detector, the inner detector, the Time Projection Chamber (TPC), the outer detector and forward drift chambers. Electromagnetic showers are measured in the barrel with high granularity by the High Density Projection Chamber (HPC) and in the endcaps by 1° x 1° projective towers composed of lead glass as active material and phototriode read-out. Hadron identification is provided mainly by liquid and gas Ring Imaging Counters (RICH). The instrumented magnet yoke serves for hadron calorimetry and as filter for muons, which are identified in two drift chamber layers. In addition, scintillator systems are implemented in the barrel and forward regions, as well as a Scintillation Tile Calorimeter (STIC) and a Very Small Angle Tagger (VSAT) for luminosity determination, a 3-layer micro vertex silicon detector for high precision vertex and lifetime measurements and a very Forward Silicon Tracker (VFT) for improved tracking and hermeticity at small polar angles.

335 LHC

STATUS OF THE LHC PROGRAMME AS OF NOVEMBER 1997

NEXT PAGE(S) left BLANK Muon Detectors

Barrel Toroid End-cap Toroid

Electromagnetic calorimeters

Inner Detector

Solenoid Forward Calorimeters Hadronic calorimeters

ATLAS-1: The ATLAS Detector for LHC

338 ATLAS

Beam: Approved: 31 /JAN/96 Status: Preparation

ATLAS

Albany SUNY, Univ. of Alberta, Univ. of New Mexico, Albuquerque, Almaty HEPI, Amsterdam NIKHEF, Annecy LAPP, Argonne Nat. Lab., Arlington, Univ. of Texas, Athens Nat.Tech.Univ., Athens Univ., Baku, Azerbaijan Acad. of Sciences, Barcelona Autonomous Univ. (IFAE), Bergen Univ., Berkeley LBL and UC, Bern Univ., Birmingham Univ., Bonn Univ., Boston Univ., Bratislava U./Slovak Acad.Science Kosice, Brookhaven Nat.Lab., Bucharest, Inst. for Atomic Physics, Cambridge Univ., U. Hassan II Casablanca/Mohamed V Rabat, CERN, Chicago Univ., Clermont-Ferrand Univ., Columbia Univ., Copenhagen Niels Bohr Inst., Cosenza, Calabria Univ./INFN, Cracow Inst.NucI.Phys., Cracow, FPNT, Univ. Mining & Metallurgy, Dallas, Southern Methodist Univ., Dortmund Univ., Dubna JINR, Duke Univ., Edinburgh Univ., Frascati Nat.Lab. INFN, Freiburg Univ., Fukui Univ., Geneva Univ., Genoa Univ./INFN, Glasgow Univ., Grenoble ISN, Haifa, Technion, Hampton Univ., Harvard Univ., Heidelberg Univ., Helsinki, Inst. of Physics (HIP), Hiroshima Univ., Hiroshima, Inst. of Tech., Indiana Univ., Innsbruck Univ., UC Irvine, Istanbul, Bogazici Univ., Jena, Friedrich-Schiller-Univ., Kobe Univ., Kyoto Univ., Lancaster Univ., Lecce Univ./INFN, Lisbon LIP, Liverpool Univ., Ljubljana Univ. Inst. Jozef Stefan, London UCL, London, Queen Mary <£r WestHeld College, London, Royal Holloway and Bedford N.C., Lund Univ., Madrid Univ. Autonoma, Mainz Univ., Manchester Univ., Mannheim Univ., Marseille CPPM, Medford, Tufts Univ., Melbourne Univ., Michigan State Univ., Univ. of Michigan, Milan Univ./INFN, Minsk, IPASB, MIT, Montreal Univ., Moscow Eng.Phys.Inst., Moscow ITEP, Moscow Lebedev Phys.Inst., Moscow State Univ. NPI, Munich MPI, Munich Univ., Shinshu Univ. Nagano, Naples Univ./INFN, Naruto Univ. of Education, NIKHEF-H/Nijmegen Univ., Norfolk State Univ., Northern Illinois Univ., Novosibirsk, Budker Inst.NucI.Phys., Oklahoma Univ., Orsay LAL, Oslo Univ., Ottawa, Carleton CRPP, Oxford Univ., Paris VI and VII Univ., Pavia Univ./INFN, Univ. of Pennsylvania, Pisa Univ./INFN, Pittsburgh Univ., Prague TU, Prague, Charles Univ., Prague, FZU-Inst. of Phys. Acad. of ScL, Protvino IHEP, Weizmann Inst. Rehovot, Univ. Fed. Rio de Janeiro (UFRJ), Univ. of Rochester, Rome Univ.I/INFN, Rome Univ.II/INFN, Rome, Terza Univ., Rutherford Appleton Lab., Saclay DAPNIA, UC Santa Cruz, Sao Paolo Univ., Univ. of Washington, Seattle, Sheffield Univ., University of Siegen, St. Petersburg, NPI, Stockholm Univ., Stockholm, Royal Inst. of Tech. (KTH), Sydney ANSTO, Sydney Univ., Tbilisi State Univ., Tbilisi, Inst.of Phys. Georgian Ac. Sci., Tel-Aviv Univ., Thessaloniki Univ., Tokyo Metropolitan Univ., Tokyo Univ. ICEPP, Tokyo Univ. of Agr. & Tech., Toronto Univ., Tsukuba, KEK, Univ. of Arizona, Tucson, Udine Univ./INFN, Uppsala Univ., Univ. of Illinois at Urbana-Champaign, Valencia Univ., Vancouver, TRIUMF, Vancouver, Univ. B.C., Victoria Univ., Waltham, Brandeis Univ., Wisconsin Univ., Wuppertal Univ., Yerevan Phys.Inst.

References LHHCC/94-43/P2, SP5LC/96-46/M590 339 ATLAS

Albany SUNY Alam S. Athar B. Mahmood A. Ovunc S. Severini H. Timm S. Wappler F. Zhichao L. Univ. of Alberta Armstrong W.W. Burris W. Davis R. Gingrich D.M. Hewlett J.C. Holm L. Macpherson A.L. Mullin S. Pinfold J.L. Schaapman J. Soukup J. Wampler L. Univ. of New Mexico, Albuquerque Gold M. Gorfine G. Matthews J. Seidel S. Almaty HEPI Boos E. Pokrovsky N. Zhautykov B. Amsterdam NIKHEF Bakker F.E. Bobbink G.J. Bos K. Boterenbrood H. Buis E.J. Dankers R.J. Daum C. Groenstege H. Hartjes F. Hendriks P. Heubers W. Kaan B. Kieft G.N.M. Kluit R. Massaro G.G.G. Meddeler G. Metselaar J. Pols G-J. Reichold A. Rewiersma P.A.M. Schuijlenburg H. Spelt J. Vermeulen J.C. Werneke P. Woudstra M. van Eyk B. van der Graaf H. Annecy LAPP Aubert B. Colas J. Eynard G. Jezequel S. Linossier 0. Massol N. Minard M.N. Nicoleau S. Perrodo P. Sauvage G. Wingerter-Seez I. Zitoun R. Zolnierowski Y. Argonne Nat. Lab. Berger E.L. Blair R. DawsonJ. Guarino V. Hill N. May E.N. Nodulman L.J. Price L.E. Proudfoot J. Schlereth J.L. Stanek R. Wagner R.G. Wicklund A.B. Arlington, Univ. of Texas De K. Gallas E. Li Jiangfeng Sawyer L. Stephens R. White A. Athens Nat.Tech.Univ. Dris M. Filippas A. Fokitis E. Gazis E. Katsoufis E. Maltezos S. Papadopoulou T. Athens Univ. Giokaris N. Ioannou P. Kouikoumelis C. Papadopoulos I. Tatsis S. Tzanakos G.S. Baku, Azerbaijan Acad. of Sciences Abdinov O.B. Aliyev F.M. Khalilzade F.T. Mekhdiyev R.R. Rzayev H.J. Usubov Z.U. Barcelona Autonomous Univ. (IFAE) Blanchot G. Bosman M. Casado P. Cavalli-Sforza M. Chmeissani M. Crespo J.M. Delfino M. Fernandez E. Grauges E. Juste A. Martinez M. Miralles LI. Pacheco A. Park Inkyu Perlas J.A. Riu I. Vichou I. Bergen Univ. Eigen G. Frodesen A.G. Klovning A. Stugu B. Berkeley LBL and UC Barnett M. Bintinger D. Ciocio A. Dahl O. Einsweiler K. Ely R. Gilchriese M. Haber C. Hinchliffe I. Holland S. Joshi A. Kipnis I. Kleinfelder S. Milgrome O. Nygren D. Palaio N. Pengg F. Shapiro M. Siegrist J. Spieler H. Trilling G. Bern Univ. Beck H.-P. Borer K. Hess M. Lehmann G. Mommsen R. Pretzl K.

340 ATLAS

Birmingham Univ. Charlton D.G. DowellJ.D. GaiveyJ. Hillier S.J. Homer R.J. Jovanovic P. Kenyon I.R. McMahonT.J. O'Neale S.W. Rees D.L. Staley R.J. Watkins P.M. Watson A.T. Watson N.K. Wilson J.A. Bonn Univ. Desch K. Fischer P. Geich-Gimbel C. Hilger E. Meuser S. Ockenfels W. Raith B. Wermes N. Boston Univ. Hazen E. Shank J. Simmons E. Whitaker J.S. Zhou Bing Bratislava U./Slovak Acad. Science Kosice BanJ. Bruncko D. Chochula P. DubnickovaA. Ferencei J. JuskoA. Kladiva E. Kubinec P. Kurca T. Masarik J. Povinec P. Rosinsky P. Stanicek J. Stavina P. Strizenec P. Sykora I. Tokar S. Vanko J. Brookhaven Nat.Lab. Citterio M. Gibbard B. Gordeev A. Gordon H. Graf N. Gratchev V. Kandasamy A. Kotcher J. Lissauer D. Ma Hong Makowiecki D. Murtagh M.J. Nevski P. O'Connor P. Paige F. Polychronakos V. Protopopescu S. RadekaV. RahmD.C. Rajagopalan S. Rescia S. Smith G. Sondericker J. Stephani D. Stumer I. Takai H. Tcherniatine V. Yu Bo Bucharest, Inst. for Atomic Physics Arsenescu R. Boldea V. Caprini I. Caprini M. Constantin F. Constantinescu S. Dita P. Dita S. Legrand I.C. Maniu G. Micu L. Niculescu M. Pantea D. Popeneciu G. Serban T. Cambridge Univ. Batley J.R. Carter J.R. Drage L. Goodrick M.J. Hill J.C. Munday D.J. Parker M.A. Robinson D. Wyllie K.H. U. Hassan II Casablanca/Mohamed V Rabat Chakir H. Cherkaoui R. Hoummada A. Saidi H. Sayouty E. CERN Aleksa M. Anghinolfi F. Bachy G. Barberio E. Benincasa G. BergsmaF. Bjorset L. BlockiJ. Bloess D. BockR. BogaertsJ. Brawn I. Burckhart H.J. Butin F. Campbell M. Cataneo F. Cerutti F. Chesi E. Chevalley J.L. Christiansen J. Cobal M. Dabrowski W. Dauvergne J.P. Dell'Acqua A. Dittus F. Dobinson R. Drakoulakos D. Dydak F. Efthymiopoulos I. Ellis N. Fabjan C.W. Farthouat P. Fassnacht P. Flegel W. Francis D. Froidevaux D. Gebart R. Gianotti F. Gildemeister O. Gschwendt- ner E.M. Hansen J. Hatch M. Haug F. Hauser R. Hauviller C. Heeley R. Heijne E. Henriques A. Hoffmann H.F. Hoimyr N. Jarp S. Jarron P. Jenni P. Jones R. Kantardjian G. Kaplon J. Kliouch- nikova T. Knobloch J. Koski K. Lacasta C. Langhans W. Lasseur C. Lehraus I. Lemeilleur F. Lichard P. Liebhart M. Linde F. Madsen N. Mapelli L. Martin B. Maugain J.-M. McLaren R.A. Meier D. Michelotto M. Moreira P. Mornacchi G. Myers D. Nessi M. Nicquevert B. Niinikoski T. Onions C. Pailler P. Pal T. Passardi G. Petrolo E. Placci A. Poppleton A. Posch C. Poulard G. Price M. Radel G. Riedler P. Riegler W. Rios A. Roe S. Rohrbach F. Ros E. Rousseau D. Rudge A. Ryjov V. Sbrissa E. Schaller M. Schmid P. Schmitt M. Schuler G. Sessler M. Snoeys W. Spegel M. Spiwoks R. Stavrianakou M. Stavropoulos G. Stiegler U. Strong J.A. Tartarelli G.F. Taylor B. Ten Kate H. Treichel M. Van der Bij H. Voss R. Vreeswyk M. Vuillemin V. Waeffier S. Wedenig R. Weilhammer P. Werner P. Witzeling W. Wotschack J. von Boehn-Bucholz R. Chicago Univ. Anderson K. Blucher E. Evans H. Glenzinsky D. Merritt F. Oreglia M. Pilcher J. Pod E. Sanders H. Shochet M. Turcot A.

341 ATLAS

Clermont-Ferrand Univ. Brette Ph. Chadelas R. Chevaleyre J.C. Crouau M. Daudon F. Grenier P. Hebrard C. Montarou G. Pallia D. Poirot S. Reinmuth G. Santoni C. Says L.P. Vazeille F. Columbia Univ. Cartiglia N. Cunitz H. Dodd J. GaraJ. Leltchouk M. Parsons J. Seman M. Shaevitz M. Sippach W. Willis W. Copenhagen Niels Bohr Inst. Dam M. Hansen J.D. Hansen J.R. Hansen P. Rensch B. Cosenza, Calabria Univ./INFN Arneodo M. Ayad R. Capua M. La Rotonda L. Schioppa M. Susinno G. Valdata-Nappi M. Cracow Inst.Nucl.Phys. GadomskiS. GodlewskiJ. HajdukZ. Kisielewski B. Korcyl K. Malecki P. Moszczynski A. OlszowskaJ. Richter-Was E. Sobala A. Cracow, FPNT, Univ. Mining & Metallurgy Grybos P. Idzik M. Jagielski S. Jelen K. Kiesilewska D. Kowalski T. Rulikowska-Zarebska E. Dallas, Southern Methodist Univ. Coan T.E. Olness F. Stroynowski R. Teplitz V. Dortmund Univ. Becker C. Fuss J. Goessling C. Lisowski B. Luthaus P. Wunstorf R. Dubna JINR Alexandrov I. Alexeev G. AJikov B. Anosov V. Astvatsaturov A. Azhgirei L. Bannikov A. Bara- nov S. Boyko I. Budagov J. Chelkov G. Cheplakov A. Chirikov-Zorin I. Chlachidze G. Dodonov V. Feshenko A. Flyagin V. Glagolev V. Golikov V. Golubykh S. Gornushkin Y. Iamburenko V. Ig- natenko M. Juravlev N. Kakurin S. Kalinichenko V. Kazarinov M. Kazymov A. Kekelidze V. Khasanov A. Khomenko B. Khovansky N. Kotov V. Kovtun V. Krumstein Z. Kukhtin V. Kul- chitsky Y. Kuznetsov O. Ladygin E. Lazarev A. Lebedev A. Ljablin M. Lomakin Y. Malyshev V. Malyukov S. Merekov Y. Merz^akov S. Minashvili I. Nikolenko M. Nozdrin A. Obudovsky V. 01- shevski A. Peshekhonov V. Pisarev I. Podkladkin S. Pose R. Pukhov O. Romanov V. Rumyantsev V. Russakovich N. Ryabchenko K. Salihagic D. Samoilov V. Savin I. Scheltckov A. Sedykh Y. Se- menov A. Senchishin V. Shabalin D. Shalyugin A. Shigaev V. Shilov Y. Sissakian A. Snyatkov V. SorokinaJ. Tkachev L. Tokmenin V. Topilin N. Tskhadadze E. UsovY. Vertogradov L. VinogradovV. Vorozhtsov S. Yarygin G. Yatsunenko Y. Zhuravlev V.

Duke Univ. Ebenstein L.E. Fortney L.R. Goshaw A.T. Lee Alfred Oh Seog Robertson W.J. Wang Chi-Ho Wesson D. Edinburgh Univ. Boyle O. Candlin D.J. Candlin E.R.S. Knowles I.G. Frascati Nat.Lab. INFN Bilokon H. Chiarella V. Curatolo M. Esposito B. Ferrer M. Maccarrone G. Pace E. Pepe-Altarelli M. Spitalieri M. Zuffranieri F.

342 ATLAS

Freiburg Univ. BaerTh. ChenJ. Ebling D.G. Goeppert R. Herten G. Irsigler R. Kollefrath M. Kolpin R. LandgrafU. Lauxtermann S. Ludwig J. Mohr W. Paschhoff V. Rehmann V. Rolker B. Runge K. Schaefer F. Scherberger G. Schmid T. Webel M. Weber C. Fukui Univ. Kawaguti M. Tanaka S. Geneva Univ. Bonino R. Clark A.G. Couyoumtzelis C. Demierre Ph. Kambara H. Kowalewski R. La Marra D. Leger A. Perrin E. Vuandel B. Wu Xin Genoa Univ./INFN Barberis D. Bozzo M. Caso C. Dameri M. Darbo G. Gagliardi G. Gemme C. Morettini P. Musico P. Olcese M. Osculati B. Parodi F. Pozzo A. Ridolfi G. Rossi L. Sette G. Glasgow Univ. Doyle A.T. Flavell A.J. Lynch J.G. Martin D.J. O'Shea V. Raine C. Saxon D.H. Skillicorn I.O. Smith K.M. Grenoble ISN Andrieux M.L. Ballon J. Collot J. De Saintignon P. Dzahini D. Ferrari Ar. Guerre-Chaley B. Hostachy J.Y. Laborie G. Martin Ph. Pouxe J. Rabier C. Rey-Campagnolle M. Rossetto O. Stassi P. Haifa, Technion Dado S. Goldberg J. Lupu N. Hampton Univ. Baker K. Harvard Univ. Feldman G.J. Franklin M.E.B. Huth J. Oliver J. Heidelberg Univ. Geweniger C. Hanke P. Kluge E.-E. Mass A. Putzer A. Tittel K. Wunsch M. Helsinki, Inst. of Physics (HIP) Jalas P. Schulman T. Hiroshima Univ. Iwata Y. Ohsugi T. Hiroshima, Inst. of Tech. Asai M. Indiana Univ. Hanson G. Luehring F. Ogren H. Rust D.R. Innsbruck Univ. Girtler P. Hortnagl C. Kiener Ch. Kneringer E. Kuhn D. Rudolph G. UC Irvine Fahlund T. Hackett C. Lankford A.J. Pier S. Schernau M. Stoker D. Istanbul, Bogazici Univ. Arik E. Birol I. Cicek Z. Gun S. Hacinliyan A. Mailov A. Nurdan K. Perdahci Z. Turk I. Unel G.

343 ATLAS

Jena, Friedrich-Schiller-Univ. Doeising V. Erhard W. Kammel P. Reinsch A. Kobe Univ. Kawagoe K. Nozaki M. Takeda H. Kyoto Univ. Takashima R. Lancaster Univ. Brodbeck T.J. Chilingarov A. Henderson R.C.W. Hughes G.H. Komorowski T. RatoffP.N. Sloan T. Lecce Univ./INFN Creti P. Gorini E. Grancagnolo F. Palamara O. Panareo M. Perrino R. Petrera S. Primavera M. Lisbon LIP Amaial P. Amorim A. Carvalho J. Casarejos E. David M. Gomes A. Gomes J. Ivanyuchenkov I. Maio A. Maneira M. Martins J.P. Onofre A. Pinhao J. Santos J. Silva J. Varanda M. Wolters H. Liverpool Univ. Allport P.P. Booth P.S.L. Carroll L.J. Cooke P.A. Greenall A. Houlden M.A. Jackson J.N. Jones T.J. King B.T. Marti-i-Garcia S. Maxfield S.J. Moreton A. Richardson J.D. Smith N.A. Sutcliffe P. Turner P.R. Ljubljana Univ. Inst. Jozef Stefan Cindro V. Filipcic A. Kramberger G. Mikuz M. Tadel M. Zontar D. London UCL Bignall P. Clarke P. Cranfield R. Crone G. Esten M. Jones T. Lane J. Sherwood P. London, Queen Mary & Westfield College Beck G.A. Carter A.A. Eisenhandler E.F. Hughes D.M. Kyberd P. Landon M. Lloyd S.L. Newman- Coburn D. Pentney J.M. Pritchard T.W. Thompson G. London, Royal Holloway and Bedford N.C. Blaii G.A. GeorgeS. Green B.J. MedcalfT. Lund Univ. Akesson T. Almehed S. Carling H. Danielson H. Egede Andersen U. Hedberg V. Jarlskog G. Korsmo H. Lorstad B. Lundberg B. Mjornmark U. Soderberg M. Madrid Univ. Autonoma Barreiro F. Del Peso J. Hervas L. Labarga L. Mainz Univ. Buchholz P. Hoelldorfer F. Jakobs K. Kleinknecht K. Koepke L. Maxschalkowski E. Merle K. Othegraven R. Renk B. Schaefer U. Schue Y. Walkowiak W. Manchester Univ. Duerdoth I.P. Dunne P.W. Foster J.M. Freestone J. Hughes-Jones R.E. Ibbotson M. Kolya S.D. Loebinger F.K. Marshall R. Mercer D. Snow S. Thompson R.J. Mannheim Univ. Kugel A. Lay R. Ludvig J. Manner R. Noffz K-H. Ruhl S.

344 ATLAS

Marseille CPPM Basa S. Bee C. Blanquait L. Bonzom V. Clemens J-C. Cousinou M-C. Dargent P. Delpierre P. Dinkespiler B. Djama F. Duval P-Y. Etienne F. Fouchez D. Hallewell G. Henry-Couannier F. Karst P. Laugier-Fenato D. Le Van Suu A. Martin L. Martin O. Meessen C. Mirea A. Monnier E. Mouthuy T. Nacasch R. Nagy E. Nicod D. Quian Zuxuan Repetti B. Rondot C. Rozanov A. Sauvage D. Tisserant S. Touchard F. Vacavant L. Wielers M. Medford, Tufts Univ. Mann A. Milburn R. Napier A. Sliwa K. Melbourne Univ. Dick B. Fares F. Guy L.P Moorhead G.F. Sevior M.E. Taylor G.N. Tovey S.N. Michigan State Univ. Abolins M. Brock R. Bromberg C. Edmunds D. Ermoline Y. Gross S. Huston J. Laurens P. Linnemann J. Miller R. Owen D. Pope B.G. Richards R. Weerts H. Univ. of Michigan Ball R. Campbell M. Chapman J. Neal H.A. Qian Jianming Tarle G. Tomasch A. Milan Univ./INFN Battistoni G. Bonivento W. Camin D. Cavalli D. Costa G. Fedjakin N.N. Ferrari Al. Gozzi L. La Banca N. Mandelli L. Mazzanti M. Perasso L. Perini L. Resconi S. Sala P. Minsk, IPASB Baturitsky M.A. Bogush A.A. Demchenko A.I. Gazizov A.Z. Gilevsky V.V. Golubev V.S. Levchuk M.I. Satsunkevich I.S. Shevtsov V.V. MIT Haridas P. Osborne L.S. Paradiso J.A. Pless LA. Taylor F.E. Wadsworth B.F. Montreal Univ. Azuelos G. Ben El Fassi A. Depommier P. Leon-Florian E. Leroy C. Martin J.P. Marullo F. Roy P. Savard P. Moscow Eng.Phys.Inst. Bondarenko V. Dolgoshein B. Konstantinov A. Romaniouk A. Semenov S. Smirnov S. Sosnovtzev V. Moscow ITEP Artamonov A. Epchtein V. Gorbunov P. Gurin R. Jemanov V. Khovansky V. Koutchenkov A. Kiuchinin S. Maslennikov A. Ryabinin M. Shatalov P. Tsoukerman I. Zaitsev V. Zeldovich S. Moscow Lebedev Phys.Inst. Akimov A. Baranov S. Belov M. Blagov M. Fedorchuk S. Gavrilenko I. Komar A. Konovalov S. Kopytine M. Mouraviev S. Popov L. Shikanyan A. Shmeleva A. Snesarev A. Speransky M. Sulin V. Tikhomirov V. Vassilieva L. Yakimenko M. Moscow State Univ. NPI Bashindjagian G.L. Basiladze S.G. Chudakov E.A. Erasov A.B. Grishkevich Y. Karmanov D.E. Kra- marenko V.A. Larichev A.N. Melikhov D.I. Merkin M.M. Nikitin N.V. Rizatdinova F.K. Selikov A.V. Sivoklokov S.Yu. Smirnova L.N. Zhukov V.Yu. Zverev E.G.

345 ATLAS

Munich MPI Ackermann K. Aderholz M. Andricek L. Blum W. Bratzler U. Brettel H. Dietl H. Dulny B. Fent J. GiuhnC. HaufFD. KofFeman E. Kroha H. Lutz G. Manz A. Moser H.-G. Oberlack H. Ostapchuk A. Richter R. Richter R.H. Schacht P. Schael S. Soergel V. Stenzel H. Striegel D. Tribanek W. Munich Univ. Deile M. Dubbert J. Faessler M.A. Hessey N.P. Sammei T. Staude A. Trefzger T. Shinshu Univ. Nagano Takeshita T. Naples Univ./INFN Aloisio A. Alviggi M.G. Cevenini F. Chiefaii G. De Asmundis R. Merola L. Napolitano M. Patricelli S. Naruto Univ. of Education Nagamatsu M. Yoshida H. NIKHEF-H/Nymegen Univ. Bergman R. Brouwer C. Crijns F.J.G.H. DijkemaJ.A. KittelW. Klok P.F. Koenig A.C. Metzger W.J. Schotanus D.J. Visser E.J. Wynen Th.A.M. Norfolk State Univ. Khandaker M. McFarlane K. Punjabi V. Salgado C.W. Northern Illinois Univ. Fortner M. Sirotenko V.I. Willis S.E. Novosibirsk, Budker Inst.Nucl.Phys. Batrakov A. Chekhtman A. Fedotov M. Gaponenko I. Klimenko S. Kollegov M. Kozlov V. Kuper E. Merzlyakov Y. Panin V. Shamov A. Telnov V. Tikhonov Y. Velikzhanin Y. Oklahoma Univ. Gutierrez P. McMahon T. Nemati B. Skubic P. Snow J. Strauss M. Orsay LAL Ardelean J. Arnault C. Auge E. Barrand G. Belot G. Bouchel M. Boucrot J. Breton D. Chollet C. Coulon J-P. De la Taille C. Delebecque P. Ducorps A. Fallou A. Fayard L. Founder D. Gonzales J. Grivaz J-F. Hrisoho A. Iconomidou-Fayard L. Imbert P. Jacquier Y. Jean Ph. Lavigne B. Mace G. Martin-Chassard G. Merkel B. Nikolic I. Noppe J-M. Parrour G. PetrofF P. Puzo P. Richer J-P. Schaffer A-C. Seguin-Moreau N. Serin L. Tisserand V. Togut V. Unal G. Vales F. Veillet J-J. Vernay E. Oslo Univ. Bugge L. Buran T. Kristiansen H. Read A.L. Stapnes S. Ottawa, Carleton CRPP Armitage J. Dbdt M. Dubeau J. Estabrooks P. Losty M. Neuheimer E. O'Neil M. Oakham G. Oxford Univ. Bibby J.H. Buira-Clarke D. Fox-Murphy A. Grewal A. Harris F.J. Hawes B.M. Hill J. Holmes A. Howell D. Hunt S.J. Kundu N. Lloyd J. Loken J.G. Nickerson R.B. Renton P.B. Segar A.M. Wastie R.L. Weidberg A.R. Paris VI and VII Univ. Alexanian H. Baubillier M. Bezamat J. Billoir P. Blouzon F. Canton B. David J. Genat J-F. Imbault D. Le Dortz O. Nayman P. Poggioli L. Rossel F. Savoy-Navarro A. Schwemling P.

346 ATLAS

Pavia Univ./INFN Cambiaghi M. Caselotti G. Conta C. Ferrari R. Fraternali M. Lanza A. Livan M. Polesello G. Rimoldi A. Vercesi V. Univ. of Pennsylvania Dressnandt N. Keener P. Newcomer F.M. Van Berg R. Williams H.H. Pisa Univ./INFN Antiero D. Bellettini G. Bosi F. Cavasinni V. Cologna S. Costanzo D. De Santo A. Del Prete T. Di Girolamo B. Flaminio V. Lami S. Latino G. Mazzoni E. Paoletti R. Raffaelli F. Renzoni G. Rizzi D. Pittsburgh Univ. Cleland W.E. Clemen M. Prague TU JakubekJ. Kubasta J. Machal. Ota J. Pospisil S. Sinor M. Sopko B. Tomiak Z. Prague, Charles Univ. Davidek T. Dolejsi J. Dolezal Z. Kucera M. Leitner R. Soustruznik K. Suk M. Tas P. Trka Z. Valkar S. Wilhelm I. Zdrazil M. Prague, FZU-Inst. of Phys. Acad. of Sci. Boehm J. Hrivnac J. Lednicky R. Lokajicek jr. M. Nemecek S. Sicho P. Simak V. Stastny J. Stedron M. Vanickova M. Vrba V. Protvino IHEP Amelin D.V. Ammosov V.V. Antipov Yu.M. Batarin V. Bogoliubsky M.Yu. Borissov A.A. Borissov E. BozkoN.I. Bryzgalov V.V. Chekulaev S.V. Denisov S.P. Dushkin A.Yu. Fakhroutdinov R. FenyukA.B. Gapienko V.A. Gilitsky Yu.V. Goryatchev V. Gouz Yu.P. Karyukhin A.N. Khokhlov Yu.A. Kir- sanov M.M. Kiryunin A.E. Klyukhin V. Kojine A. Kononov A.I. Konstantinov V. Kopikov S.V. Korotkov V.A. Kostrikov M.E. Kostyukhin V.V. Kravtsov V.I. Kulemzin A. Kurchaninov L.L. Lapin V.V. Levitsky M.L. Los S. Maximov V. Miagkov A.G. Mikhailin V.N. Minaenko A.A. Moi- seev A.M. Onuchin V.A. Pleskach A.V. Salomatin Yu.I. Senko V.A. Shein I. Soldatov A.P. Solod- kov A.A. Solovianov O.V. Starchenko E.A. Sviridov Yu. Sytnik V.V. Tchmil V. Tchountonov A. Tikhonov V.V. Tsyupa Yu. Usenko E. Vorobiev A.P. Vovenko A.S. Zaets V.G. Zaitsev A.M. Zimin S. Zmushko V. Weizmann Inst. Rehovot Breskin A. Chechik R. Duchovni E. Eisenberg Y. Gross E. Hass M, Karshon U. Lellouch D. Levinson L. Mikenberg G. Revel D. Univ. Fed. Rio de Janeiro (UFRJ) Caloba L.P. Galvez-Durand F. Maidantchik C.L. Marroquim F. Seixas J.M. Thome Z.D. Univ. of Rochester Bazizi K. England D. Ferbel T. Ginther G. Glebov V. Haelen T. Lobkowicz F. Slattery P. Zielinski M. Rome Univ.I/INFN Bagnaia P. Bini C. Caloi R. Cavallari A. Ciapetti G. De Zorzi G. Falciano S. Gauzzi P. Gentile S. Lacava F. Luci C. Luminari L. Mirabelli G. Nisati A. Oberson P. Pontecorvo L. Veneziano S. Zanello L. Rome Univ.II/INFN Camarri P. Cardarelli R. Di Ciaccio A. Santonico R.

347 ATLAS

Rome, Terza Univ. Bacci C. Ceradini F. Orestano D. Pastore F. Rutherford Appleton Lab. Apsimon R.J. Baines J.T. Baynham D.E. Botterill D.R. Campbell D.A. Clifft R.W. Edwards M. En- glish R.L. Fisher S.M. Gee C.N.P. Gibson M.D. Gillman A.R. Hart J.C. Hatley R.W. Haywood S.J. Hill D.L. Madani S. McCubbin N.A. McPhail D.J. Middleton R.P. Morrissey M.C. Murray W.J. Nichols A. Norton P.R. Payne B.T. Perera V.J.O. Phillips P.W. Pilling A. Quinton S.P.H. Saun- ders B.J. Seller P. Shah T.P. Tappern G.J. Tyndel M. White D.J. Wickens F.J. Saday DAPNIA Belorgey J. Bernard R. Berriaud C. Berthier R. Borgeaud P. Bourdinaud M. Bystricky J. Calvet D. Chalifoui M. Chevalier L. Clone O. Dael A. Delagnes E. Desages F. Desportes H. Ernwein J. Gache- lin O. Gallet B. Giacometti J. Gosset L. Guyot C. Hansl-Kozanecka T. Heitzmann J. Hubbard J.R. Huet M. Kozanecki W. Laporte J.F. Le Du P. Lesmond C. Lottin J-P. Lugiez F. Mandjavidze I. Mansoulie B. Mayri C. Molinie F. Mur M. Pabot Y. Pascual J. Pelle J. Perrin P. Pinabiau M. Renardy J.F. Schuller J.P. Schune Ph. Schwindling J. Simion S. Smizanska M. Taguet J.P. Teiger J. Thooris B. Tirler R. Van Hille H. Veenhof R. Veyssiere C. Virchaux M. Walter C. de Girolamo P. UC Santa Cruz Dorfan D. Dubbs T. Grillo A. Heusch C. Kashigin S. Litke A. Popelvine P. Sadrozinski H. Seiden A. Spencer E. Sao Paolo Univ. DaSilva N.C. Dietzsch O. Leite M.A.L. Sakanoue M.H. Takagui E.M. Zandona F. Univ. of Washington, Seattle Burnett T.H. Chaloupka V. Cook V. Daly C. Davisson R. Forbush D. Guldenmann H. Lubatti H.J. Mockett P.M. Reinhall P. Rothberg J. Wasserbaech S. Zhao Tianchi Sheffield Univ. Booth C.N. Buttar CM. Cartwright S.L. Combley F.H. Lehto M.H. Sellin P.J. Spooner N.J.C. Thompson L.F. University of Siegen Gillessen G. Holder M. Kreutz A. St. Petersburg, NPI Fedin O. Filimonov V. Gavrilov G. Ivochkin V. Khomoutnikov V. Kolos S. Kiivchitch A. Lochak I. Maleev V. Nadtochy A. Patritchev S. Prokofiev D. Riabov J. Schegelsky V. Soloviev I. Spiiidenkov E. Zalite A. Stockholm Univ. Agnvall S. Berglund S. Bohm C. Engstrom M. Fristedt A. Hellman S. Holmgren S-O. Johansson E. Jon-And K. Sellden B. Silverstein S. Tardell S. Yamdagni N. Zhao X. Stockholm, Royal Inst. of Tech. (KTH) Akerman D. Carlson P. Clement C. Leven S. Lund-Jensen B. Pearce M. Soderqvist J. Vanyashin A. Sydney ANSTO Alejriev D. Donnelly I.J. Varvell K.E. Williams M.L. Sydney Univ. Hashemi-Nezhad R. Peak L. Saavedra A. Ulrichs J.

348 ATLAS

Tbilisi State Univ. Chiladze B. DjobavaT. Khelashvili A. Khubua J. Liparteliani A. Metreveli Z. Mosidze M. Saluk- vadze R. Tbilisi, Inst.of Phys. Georgian Ac. Sci. Cbikovani L. Gabunia L. Gogiberidze G. Gogoladze G. Grigalashvili T. Khorguashvili Z. Kipiani K. Koshtoev V. Sopromadze D. Topchishvili L. Tvalashvili O. Tel-Aviv Univ. Abiamowicz H. Alexander G. Bella G. Benary O. Dagan S. Etzion E. Grunhaus J. Oren Y. Thessaloniki Univ. Bouzakis C. Chardalas M. Chouridou S. Dedoussis S. Efstatbiou K. Gavris G. Kaptsis G. LagouriTh. Liolios A. Paschalias P. Petridou C. Sampsonidis D. Sergiadis G. Zamani M. Tokyo Metropolitan Univ. Fukunaga C. Hamatsu C. Tokyo Univ. ICEPP Hasegawa Y. Imori M. Kawamoto T. Kobayashi T. Mashimo T. Tokyo Univ. of Agr. & Tech. Emura T. Toronto Univ. Bailey D.C. Bhadra S. Martin J.F. Mayer J.K. Orr R.S. Sinervo P.K. Stairs G.G. Trischuk W. Tsukuba, KEK Amako K. Arai Y. Pujii H. Ikeno M. Iwasaki H. Kanzaki J. Kohriki T. Kondo T. Manabe A. MoritaY. Nomachi M. OhskaT.K. Sasaki O. Sasaki T. Terada S. UnnoY. WataseY. YamamotoA. YasuY. Univ. of Arizona, Tucson Cheu E. Johns K. Loch P. Rutherfoord J. Savine A. Shaver L. Shupe M. Steinberg J. Tompkins D. Udine Univ./INFN Cauz D. D'Auria S. De Angelis A. Pauletta G. Santi L. Scuri B. Waldner F. del Papa C. Uppsala Univ. Bingefors N. Botner O. Brenner R. Bystrom O. Ekelof T. Gustafsson L. Hallgren A. Kullander S. Staaf P. Univ. of Illinois at Urbana-Champaign Downing R.W. Errede D. Errede S. Haney M.J. Simaitis V.J. Thaler J. Valencia Univ. AlbiolF. Ballester F. Benlloch J.M. Bernabeu J. Cases R. Castillo M.V. Ferrer A. Fuster J. Garcia C. Gill. Gonzalez V. Lopez J.M. Romance J.B. Salt J. Sanchez J. Sanchis E. Sanchis M.A. Sebastia A. Zuniga J. Vancouver, TRIUMF Astbury A. Birney P. Hodges T. Langstaff R. Cram C. Roberts B. Rosvick M. Wellisch H.P. Vancouver, Univ. B.C. Axen D.

349 ATLAS

Victoria Univ. Bishop S. Fincke-Keeler M. Honma A. Keeler R. Lefebvre M. O'Neil D. Poffenberger P. Roney M. Sobie R. Waltham, Brandeis Univ. Behrends S. Bensinger J.R. Blocker C. Cunningham J. Hashemi K. Kirsh L.E. Lamoureux J. Wellenstein H. Wisconsin Univ. Fasching D. Gonzalez S. Jaied R.C. Pan Y.B. Scott I.J. Wu Sau Lan Yamartino J.M. Zobernig G. Wuppertal Univ. Becks K.H. Braun H. Diees J. Gerlach P. Glitza K.W. Hamacher K. Kersten S. Lenzen G. Linder C. Thadome J. Wablen H. Yerevan Phys.Inst. Aiiapetian A. Grabsky V. Hakopian H. Vartapetian A.

Spokesman: Jenni P.

ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1997) with more than 1700 physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersym- metric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP vio- lation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and £°-mixing. The ATLAS dectector, shown in the Figure, includes an inner tracking detector inside a 2 T solenoid providing an axial field, electromagnetic and hadronic calorimeters outside the solenoid and in the forward regions, and barrel and end-cap air-core-toroid muon spectrome- ters. The precision measurements for photons, electrons, muons and hadrons, and identification of photons, electrons, muons, r-leptons and b-quark jets are performed over |T/|<2.5. The com- plete hadronic energy measurement extends over |?7|<4.7.

The inner tracking detector consists of straw drift tubes interleaved with transition radiators for robust pattern recognition and electron identification, and several layers of semiconductor strip and pixel detectors providing high-precision space points. The e.m. calorimeter is a lead-Liquid Argon sampling calorimeter with an integrated preshower detector and a presampler layer immediately behind the cryostat wall for energy recovery. The end-cap hadronic calorimeters also use Liquid Argon technology, with copper absorber plates. The end-cap cryostats house the e.m., hadronic and forward calorimeters (tungsten- Liquid Argon sampling). The barrel hadronic calorimeter is an iron-scintillating tile sampling calorimeter with longitudinal tile geometry. Air-core toroids are used for the muon spectrometer. Eight superconducting coils with warm voussoirs are proposed in the barrel region complemented with superconducting end-cap toroids

350 ATLAS in the forward regions. The toroids will be instrumented with Monitored Drift Tubes (Cathode Strip Chambers at large rapidity where there are high radiation levels). The muon trigger and second coordinate measurement for muon tracks are provided by Resistive Plate Chambers in the barrel and Thin Gap Chambers in the end-caps.

The ATLAS trigger scheme is a three-level trigger and data-acquisition system. The first-level trigger signatures are: high-Py muons, electrons, photons, jets and large missing transverse energy. For low-luminosity operation of LHC, a low-Py muon signature will be used in addition. At levels two and three, more complex signatures will be used to select the events to be retained for analysis.

351 CMS A Compact Solenoidal Detector for LHC

~'""~

Total weight 12,500t. Overall diameter 15.00m Overall length 21.60m Magnetic field 4 Tesla CMS-PARA-001-11/07/97 JLB.PP

CMS-1 : Three Dimensional View of CMS

1.23 %

3.800 m

^2.4

n = 3.o ^jp«lfa«| HF/1 1 = 5.31, F7 I E E £ /, EE E E E EE E E E to to n tn .9 0 .6 8 en w in en .2 4 0> *? m 4.33 2 CMS-2 : Longitudinal View of CMS

- The Compact Muon Solenoid

352 CMS

Beam: Approved: 31/JAN/96 Status: Preparation

CMS The Compact Muon Solenoid

Aachen TH, I Phys.Inst., Aachen TH, III Phys.Inst., Adana, Cukurova Univ., Ames, Iowa State Univ., Ankara, Middle East Technical Univ., Annecy LAPP, Antwerp Univ., Aquila Univ./INFN, Athens Univ., INP and IME ofNCSR Demokritos, Attiki, Bari Univ./INFN, Basle Univ., Beijing HEP Inst., Beijing, Peking Univ., Berlin Humboldt Univ., Bhubaneswar Inst. of Phys., Bologna Univ./INFN, Bombay BARC, Bombay TIFR, Boston Univ., Bratislava, Slovak Univ. of Tech., Bristol Univ., Brno, Inst. of Scientific Instruments, Brookhaven Nat.Lab., IIHE ULB-VUB, Brussels, Budapest Res.Inst. of Physics (KFKI), Carnegie-Mellon Univ., Catania Univ./INFN, CERN, Chandigarh Panjab Univ., Cheju Nat. Univ., Univ. of Illinois at Chicago, Chonnaxn National Univ., Choongbuk Nat. Univ., Texas Univ.at Dallas, UC Davis, ATOMKI Inst. Debrecen, Kossuth Lajos Univ. Debrecen, Dubna JINR, Fairfield Univ., Batavia, Fermilab (FNAL), Florence Univ./INFN, Florida State Univ. Tallahassee, Genoa Univ./INFN, Chinese Univ. Science &: Tech. Hefei, Helsinki Univ., Helsinki, Inst. of Physics (HIP), Ioannina Univ., Iowa City, Univ. of Iowa, Iri, Wonkwang Univ., Quaid-I-Azam Univ. Islamabad, Johns Hopkins Univ., Jyvaskyla Univ., Kangnung National Univ., Kangwon Nat. Univ., Karlsruhe Univ., Kharkov Inst. of Monocrystals (ISC), Kharkov Inst. of Phys. & Tech. (KhFTI), Kharkov State Univ. (KSU), Kyungpook Nat. Univ., Purdue Univ. Lafayette, Lab. Instrum. e Particules, Lisbon, Lawrence Livermore Nat. Lab., London, Brunei Univ., London, Imperial College, Los Alamos Nat.Lab., UCLA, Louvain Cath. Univ., LPN, Univ. Lyon/CNRS-IN2P3, Villeurbanne, Madrid CIEMAT, Madrid Univ. Autonoma, Maryland Univ., Univ. of Minnesota, Minneapolis, Byelorussian State Univ. Minsk, Inst. of Nuclear Problems, Minsk, Minsk, NCPHEP, Res. Inst.of App.Phys. Problems, Minsk, MIT, Mons Univ.- Hainaut, Moscow ITEP, Moscow Lebedev Phys.Inst., Moscow State Univ. NPI, Moscow, Inst. Nucl. Research (INR), Naju, Dongshin Univ., Univ. of Delhi South Campus, New Delhi, Univ. of Cyprus, Nicosia, Northeastern Univ., Northwestern Univ., Univ. of Notre Dame, Novosibirsk, Budker Inst.Nucl.Phys., Ohio State Univ., Univ. of Oulu, Padova Univ./INFN, LPNHE, Ecole Poly/CNRS-IN2P3, Palaiseau, CALTECH, Pasadena, Pavia Univ./INFN, Perugia Univ./INFN, Pisa Univ./INFN, Pohang Univ. of Sci. &: Tech., Prague TU, Prague, Charles Univ., Prague, Inst. of Computing Machines, Princeton Univ., Protvino IHEP, Rez, Nucl. Phys. Inst. (NPI), Rice University, Inst.of Electronics & Computer Sci.Riga, UC Riverside, Univ. of Rochester, Rome Univ.I/INFN, Rutgers Univ., Rutherford Appleton Lab., Saclay DAPNIA, UC San Diego, Santander Univ., Seo Nam Univ., Kon-Kuk Univ. Seoul, Seoul National Univ., Seoul, Korea Univ., INRNE, Sofia, SoRa Univ., Technical Univ. of Split, Univ. of Split, St. Petersburg, NPI, SUNY Stony Brook, CRN, CNRS-IN2P3/Univ. Strasbourg, Tallinn, Inst. of Chem. Phys. &c Biophys., Tampere Univ. of Technology, Tashkent Inst.Nucl.Pbys., Tbilisi, High Energy Phys. Inst.,

References LHCC/94-38/P1 353 CMS

Tbilisi, Inst.of Phys. Georgian Ac. ScL, Texas Tech. Univ., Torino Univ./INFN, Univ. of Alabama, Tuscaloosa, Univ. of Florida, Gainesville, Univ. of Mississippi, Univ. of Nebraska, Lincoln, Vienna HEPHY, P.Scherrer Inst., Villigen, Virginia Poly./Univ., Blacksburg, Warsaw Univ., Warsaw, Sol tan Inst. Nucl. Studies, Wisconsin Univ., Yerevan Phys.Inst., Inst. of Computing Machines, Zilina, Zurich ETH, Zurich Univ.

Aachen TH, I Phys.Inst. Braunschweig W. Breibach J. Gn Weihua Gundlfingei K. Karpinski W. Kirn Th. Kubicki T. Kukulies Ch. Lubelsmeyer K. Pandoulas D. Pierschel G. Rente C. Schmitz D. Schultz von Dratzig A. Schwenke J. Siedling R. Syben O. Tenbusch F. Topotowsky M. Wittmer B. Xiao Wen-Jian Aachen TH, III Phys.Inst. Beissel F. Bethke S. Biebel 0. Commichau V. Faissner H. Fesefeldt H. Flugge G. Hangarter K. Kremp J. Macke D. Pooth O. Rein D. Reithler H. Schmitz P. Schulte R. Schwarthoff H. Sonder- mann V. Tano V. Teykal H. Tonutti M. Tutas J. Wegner M. Adana, Cukurova Univ. Dumanoglu I. Eskut-Akkus E. Kayis A. Kuzucu-Polatoz A. Onengut G. Ozdes Koca N. Oztuik H. Ames, Iowa State Univ. Anderson E.W. Hauptman J. Wightman J. Ankara, Middle East Technical Univ. Ayan A.S. Pesen E. Serin-Zeyiek M. Sever R. Tolun P. Zeyrek M. Annecy LAPP Bassompierre G. Bohner G. Ditta J. Drobychev O. Forlen M. Guillaud J.P. Lecoq J. Leflour T. Lieunard S. Make M. Mendiburu P. Nedelec P. Oriboni L. Peigneux J.P. Schneegans M. Sillon D. ThenardJ.M. ViaUe J.P. Antwerp Univ. Beaumont W. Beckers T. De Troy J. Van Dyck Ch. Verbeure F.

Aquila Univ./INFN Cavanna F. Piano-Mortari G. Rossi C. Verdecchia M. Athens Univ. Resvanis L. INP and IME of NCSR Demokritos, Attiki Fanourakis G. Harissopulos S. Kokkinias P. Kyriakis A. Loukas D. Markou A. Markou Ch. Siotis I. Spyropoulou-Stassinaki M. Tzamarias S. Vayaki A. Zevgolatakos E.

Bari Univ./INFN Angarano M. Colaleo A. Creanza D. De Palma M. Fiore L. Iaselli G. Loddo F. Maggi G. Maggi M. Marangelli B. My S. Natali S. Nuzzo S. Ranieri A. Raso G. Romano F. Ruggieri F. Selvaggi G. Tempesta P. Zito G. Basle Univ. Tauschei L. Wadhwa M. 354 CMS

Beijing HEP Inst. Chen Guoming Chen Yu Cheng Baosen Gu Yifan Guo Yanan He Jingtang Jin Bingnian Ke Z.J. Li Jin Li Weiguo Li Xiaonan Lin Jin Shen Benwei Shen Chang Quan Shen Peiio Shen Xi- aoyan Sheng Huayi Shi Huanzhang Song Xiao-Fei Wang Yunyong Wu Yingiong Xu Rong Sheng Zhang Bingyun Zhang Shaoqiang Zhao Wei-Ren Zheng Jianping Zhu Guoyi Beijing, Peking Univ. Ban Y. Chen Jia-Erh Liu Hongtao Liu Songqiu Lou Binqiao Qian Syin Ye Yanlin Beilin Homboldt Univ. Hebbeker Th. Bhubaneswai Inst. of Phys. Behari S. Chondhary B. Mahapatia D.P. Mahaiana J.

Bologna Univ./INFN BenvenutiA. CapiluppiP. CavalloF. CuffianiM. D'Antonel. Dalla ValleG.M. Fabbri F. Frabetti P.L. Giacomelli G. Guerzoni M. Maicellini S. Mazzanti P. Montanari A. Navairia F. Odorici F. Rossi A. Rovelli T. Siroli G. Valenti G. Bombay BARC Chaudhury R.K. Jawale S.B. John B. Kataria S.R. Koppikar R.S. Mohanty A.K. Sastry S.V. Srikantiah R.V. Bombay TIFR Acharya B.S. Aziz T. Banerjee Sd. Banerjee Sn. Dugad S. Ganguli S.N. Gupta S.K. Guitu A. Krishnaswamy M.R. Mazumdai K. Mondal N.K. Naiasimham V.S. Raghavan R. Sudhakar K. Tonwar S.C. Boston Univ. Carey R. Hazen E. Johnson O.C. Keains E. Kim Soo-Bong Machado E. Miller J. Osborne D. Roberts B.L. RohlfJ. Salen J. Sulak L. Sullivan J. Worstell W. Bratislava, Slovak Univ. of Tech. Ballo P. Dobiovodsky J. Lipka J. Necas V. Pavlovic M. Seberini M. Vitazek K. Bristol Univ. Bailey D.S. Head R.D. Heath G.P. Heath H.F. Newbold D. Tapper R.J.

Brno, Inst. of Scientific Instruments Dupak J. Hanzelka P. Hoiacek M. Srnka A.

Brookhaven Nat.Lab. Woody C. IIHE ULB-VUB, Brussels Bouhali O. DewulfJ.P. Lemonne J. Sacton J. Stefanescu J. Tavernier S. Udo F. Van Doninck W. Van Lancker L. Vander Velde C. Vanlaer P. Zhukov V. Budapest Res.Inst. of Physics (KFKI) Bencze G. Calling A. Denes E. Ero J. Hajdu C. Horvath D. Kiss D. Manno I. Odor G. Pa'sztor G. Sikler F. Ster A. Urban L. Vesztergombi G. Zalan P. Zsenei M.

Carnegie-Mellon Univ. Blyth S. Engler A. Ferguson Th. Hoorani H. Kraemer R. Procario M. Russ J. Vogel H.

355 CMS

Catania Univ./INFN Albergo S. Bellini V. Boemi D. Caccia Z. Castorina P. Costa S. Lo Monaco L. Potenza R. Tricomi A. Tuve C. CERN Aarnio P.A. Abbaneo D. Antilogus P. Arbet-Engels V. Argante E. Aspell P. Auffray E. Bailion P. Barillere R. Barney D. Bell W. Blechschmidt D. Bloch Ph. Bosteels M. Boutotte J. Bozzo M. Breaker H. Calvo A. Campi D. Caner A. Cargnel E. Carraro A. Cattai A. Cervelli G. Chevenier G. Christiansen J. Cittolin S. Crotty I. Cure B. D'Ambrosio C. Delikaris D. Delia Negra M. Desirelli A. Dezillie B. Elliott-Peisert A. Foeth H. Fucci A. Furtjes A. Gautheron F. Gayde J.C. Gerwig H. Gill K. Glessing W. Gonzalez Romero E. Grillet J.P. Gutleber J. Hackl C.E. Hahn F. Hammarstrom R. Hansen M. Hansroul M. Herve A. Hoch M. Holtman K. Euhtinen M. Die S. Innocente V. Jank W. Jarron P. Jusko A. Kachelhoffer Th. Kershaw K. Klumb F. Kruse A. Kurzbauer W. Ladzinski T. Lasseui Ch. LeGoff3.M. Lebeau M. Lecoq P. Lejeune N. Lemeilleui F. Letheien M. Ljuslin Ch. Lofstedt B. Loos R. Mackenzie R. Malina R. ManneUi M. Manola-Poggioli E. Marchioio A. Marino M. Maugain J.M. Meyers F. Merlino A. Meyer Th. Mommaert C. Nappey P. Nyman T. Onnela A. Paoletti S. Passardi G. Peach D. Perriollat F. Petagna P. Pimia M. Pintus R. Pirollet B. Placci A. Porte J.P. Pothier J. Price M.J. Racz A. Radermacher E. Reynaud S. Ribeiro R. Roche J. Rodrigues Simoes Moreira P. Runolfsson O. Samyn D. Santiard J.C. Schmitt B. Schroder M. Sciacca F. Siegrist P. Silvestris L. Sinanis N. Stefanini G. Taylor B. Tsirou A. Varela J. Vasey F. Virdee T.S. Wikberg T. Wilhelmsson M. Willers I.M. Wrochna G. de Visser Th.

Chandigarh Panjab Univ. Beri S. Kaur M. Kohli J.M. Singh J.B.

Chejn Nat. Univ. Kim Yong Joo

Univ. of Illinois at Chicago Adams M. Chung M. Solomon J. Chonnam National Univ. Jang Han II Kim Jae Yool Kim Tae Ick Lim In Taek Choongbuk Nat. Univ. Kim Yong Uhn Texas Univ.at Dallas Chaney R.C. Fenyves E.J. Hammack H.D. O'Malley M.R. Suson D.J. Vassiliev A.V. UC Davis Breedon R. Fisyak Y. Grim G. Holbrook B. Ko W. Lander R. Lin Fengcheng Mani S. Pellett D. Smith J. ATOMKI Inst. Debrecen Bader A. Dajko G. Fenyvesi A. Molnar J. Palinkas J. Sohler D. Trocsanyi Z.L. Vegh J. Kossuth Lajos Univ. Debrecen Bondar T. Brunei L. Juhasz S. Marian G. Raics P. Szabo J. Szabo Z. Szegedi S. Szillasi Z. Sztaricskai T. Zilizi G.

356 CMS

Dubna JINR Afanasiev S. Anisimov I. Bandurin D. Belosludtsev D. Chatrchyan S. CheremukhinA. Chvyiov A. Dmitriev A. Elsha V. Erchov Y. Filippov A. Golutvin I. Gorbunov N. Gramenitsky I. Ivantchenko I. Kalagin V. Katjavin V. Khabarov S. Khabarov V. Kiryushin Y. Kolesnikov V. Konoplyanikov V. Korenkov V. Kossarev I. Koutov A. Kiasnov V. Litvinenko A. Lyssiakov V. Malakhov A. Mechtcheri- akov G. Melnichenko I. Moissenz P. Movchan S. Palichik V. Perelygin V. Petukhov Y. Popov M. Pose D. Pose R. Samoshkin A. Savina M. Selunin S. Seigeev S. Shmatov S. Skachkov N. Slavin N. Smolin D. Tikhonenko E. Tyukov V. Uzhinskii V. Vlasov N. Volodko A. Yukaev A. Zamiatin N. Zarubin A. Zaiubin P. Zubarev E. Zubov C. Fairfield Univ. Beetz C.P. Podiasky V. Sanzeni C. Toobig T. Winn D.

Batavia, Fetmilab (FNAL) Atac M. Barsotti E. Baumbangh A. Baur U. Beietvas A. Bowden M. Butler J. Byon-Wagnei A. Churin I. Denisov D. Diesburg M. Eaitly D.P. Elias J.E. Freeman J. Gaines I. Glass H. Gourlay S. Green D. Hanlon J. Harris R. Knopf W. Kwan S. Lamm M. Lammel S. Mantsch P. Marrainno J. Mishra S. Mokhov N. Ozelis J. Para A. Patrick J. Pla-Dalmau A. Raja R. Ronzhin A. Sager T. Shea M. Smith R.P. Tschirhart R. Vidal R. Walsh D. Wands R. Wilmsen E. Womersley W.J. WuWeimin YagU A.

Florence Univ./INFN Becattini F. Biggeri U. Boichi E. Bruzzi M. Capaccioli M. Castellini G. Catacchini E. Civinini C. D'Alessandro R. Focardi E. Landi G. Meschini M. Parrini G. Passaleva G. Pieri M. Salamone A. Sciortino S. Florida State Univ. Tallahassee Baer H. Bertoldi M. Corden M. Georgiopoulos Ch. Hagopian V. Hays K. Huehn T. Johnson K.F. Thomaston J. Wahl H. Youssef S. Genoa Univ./INFN Fabbricatore P. Farinon S. Musenich R. Priano C. Chinese Univ. Science & Tech. Hefei AnQ. Bian Z. Li Cheng Shi Chaoshu Sun Lazhen WangXiaolian Wang Zhao Min WuJian Ye Shuwei Zhang Ziping Helsinki Univ. Lehti S. Helsinki, Inst. of Physics (HIP) Bouianov O. Eiden N. Eklund C. Eronen L. Hahkala J. Heikkinen M. Karimaki V. Kinnunen R. Klem J. Kotamaki M. Pietarinen E. Saarikoski H. Skog K. Tuominiemi J. Ioannina Univ. Evangelou I. Kloukinas K. Kolovos P. Manthos N. Pagonis A. Triantis F.A. Iowa City, Univ. of Iowa Akchurin N. Cooper A. McCliment E. Merlo J.P. Miller M. Onel Y. Winsor R. Iri, Wonkwang Univ. Bahk Sang YuU Quaid-I-Azam Univ. Islamabad Hoodbhoy P. Niaz A. Quieshi I.E. Qureshi K.N.

357 CMS

Johns Hopkins Univ. Anticic T. Barnett B. Chien C.Y. Prautschi M. A. Gerdes D. Newman D. OrndorffJ. Pevsner A. XieX. Jyvaskyla Univ. Aysto J. Julin R. Ruuskanen V. Kangnung National Univ. Ho Y. Kang K.S. Kim D.S. Kim Do Won Lee Sung-Chul Kangwon Nat. Univ. Nam Soon Kwon Karlsruhe Univ. Blum P. De Boer W. Feindt M. Gemmeke H. Heising S. Knoblauch D. Menchikov A. Muller Th. Neuberger D. Simonis H.J. Thummel W.H. Wenzel H. Weseler S.

Kharkov Inst. of Monocrystals (ISC) KobaV.C. Troiimenko V. Kharkov Inst. ofPhys. & Tech. (KhFTI) Levchuk L.G. Nemashkalo A.A. Popov V.E. Rubashkin A.L. Sorokin P.V. Zatzerklyany A.E.

Kharkov State Univ. (KSU) Kluban N.A. Lebedev V. Kyungpook Nat. Univ. Jeon H. Kim Dong Hee Kim W.Y. Park I.H. Son Dongchul

Purdue Univ. Lafayette Barnes V.E. Bolla G. Bortoletto D. Bujak A. Carmony D. Fahling M. Garnnkel A.F. Gutay L. Laasanen A.T. Medved S. Lab. Instrum. e Particules, Lisbon Bordalo P. Da Silva J. Ferreira A. Gomes J. Nobrega R. Ramos S. Silva S.

Lawrence Livermore Nat. Lab. Bertolini L. Kerns J. Klem D. Kreisler M. Shi Xiaorong Van Bibber K. Wenaus T. Wright D. Wuest C.R. London, Brunei Univ. Hobson P. Imrie D. Mackay C.K. Matheson J. Osborne M. Watts S.

London, Imperial College Barber G. Batten J. Beuselinck R. Britton D. Cameron W. Davies G. Gentry D. Graham D.J. Hall G. Hassard J.F. Hays J. Long K. Martin E.B. Miller D.G. Potts A. Price D.R. Raymond D.M. Seez C. Toudup L. Troska J.

Los Alamos Nat.Lab. Barber R. Chen Zukun Hanlon J. Michaud B. Mills G. Palounek A. Ziock H.J. UCLA Arisaka K. Bonushkin Y. Chase F. Cline D. Erhan S. Hauser J. Kubic J. Lindgren M. Matthey C. Otwinowski S. Park Jun Pichalnikov Y. Schlein P. Shi Y. Louvain Cath. Univ. Bernier K. Favart D. Govaerts J. Gregoire G.

358 CMS

IPN, Univ. Lyon/CNRS-IN2P3, Vffleurbanne Ageion M. Augustin J.E. Bedjidian M. Benhammou Y. Chorowicz V. Cluzel P. Contardo D. Delia Negia R. Depasse P. Diapier O. El Mamouni H. Essertaize D. Fay J. Gaidien S. Genie R. Goyot M. Guyon J. Haroutounian R. Die B. Jacquet G. Lebrun P. Lemoine Ch. Madjai N. Martin J.P. Mathez H. Miiabito L. Muanza S. Pangaud P. Rebouillat M. Sahuc P. Smadja G. Tissot S. Walder J.P. Zach F. Madrid CIEMAT Aguilar-BenitezM. Albeidi J. Baicala J.M. Beidugo J. Buigos C. Ceirada M. Colino N. Daniel M. Fernandez Garcia M. Fenando A. Fouz M.C. Josa M.I. Ladron de Guevara P. Marin J. Mar- tin Suarez F. Mocholi J. Molinero A. Navarrete J. Oiler J.C. Pablos J.L. Romero L. Salicio J. Willmott C. Madrid Univ. Autonoma Albajar C. Maryland Univ. Baden A. Ball A. Bard R. Eno S.C. Fong D. Garza M. Hadley N.J. Kellogg R.G. Kunori Sh. Murbach M. Skuja A. Univ. of Minnesota, Minneapolis Border P. Cushman P. Heller K. Marshal: M. Rusack R. Timmermans Ch. Byelorussian State Univ. Minsk Petrov V.V. Prosolovich V.S. Inst. of Nuclear Problems, Minsk Baryshevsky V.G. Fedorov A.A. Korzhik M.V. Missevitch O.V. Minsk, NCPHEP Basalyga G.V. Chekhlova N.E. Chekhovsky V.A. Dvornikov O.V. Emelianchik I.F. Khomitch A.P. Kolpaschikov V.L. Kurilin A.S. Kuvshinov V.I. Litomin A.V. Mossolov V.A. Panfilenko A.K. Raspereza A.V. Reutovich S.I. Shumeiko N.M. Solin A.V. Stefanovich R.V. Stepanets V.J. Sushkov S.V. Vetokhin S.S. Yurenya Y. Zalessky V.B. Zyazyulya F.E. Res. Inst.of App.Phys. Problems, Minsk Ermalitsky F.A. Kuchinsky P.V. Lomako V.M.

MIT Bauer G. Friedman J. Hafen E. Pavlon S. Rosenson L. Sphicas P. Sumorok K.S. Tether S. Tseng J. Mons Univ.- Hainaut Boulogne I. Daubie E. Herquet Ph. Windmolders R. Moscow ITEP Abdullin S. Dorochkevitch E. Gavrilov V. Gershtein Y. Gorelov I. Kaftanov V. Khanov A. Kolossov V. Litvintsev D. Nikitenko A. Nikitin A. Ouzounian S. Papin A. Pogorelko O.I. Rusinov V. Semechkin V. Semenov Y. Stepanov N. Stoline V. Trebukhovsky Y. Ulyanov A. Yumashev A. Moscow Lebedev Phys.Inst. Devitsin E. Fomenko A.M. Kozlov V. Lebedev A.I. Potashov S. Rusakov S.V. Moscow State Univ. NPI Belsky A. Bodyagin V.A. Demianov A. Galkin V. Gribushin A. Kodolova O.L. Korotkikh V. Kruglov N.A. Kryukov A. Lokhtin I. Mikhailin V. Sarycheva L. Snigirev A. Vardanyan I. Vasil'ev A. Yershov A. 359 CMS

Moscow, Inst. Nucl. Research (INR) Atoyan G.S. Bachtin B. Djilkibaev R. Gninenko S. Goloubev N. Gushin E.V. Isakov V. Kli- menko V. Kiasnikov N. Lebedev V.A. Marin V. Matveev V. Pashenkov A. Popov V. Postoev V.E. Pioskouriakov A. Semeniouk I. Semenov B. Shmatkov V. Skassyrskaia A. Toropin A.

Naju, Dongshin Univ. Pac Myoung Youl Univ. of Delhi South Campus, New Delhi Chand T. Cherian J. Shivpuri R.K. Verma V.K.

Univ. of Cyprus, Nicosia Hasan A. Razis P.A. Vorvolakos A. Northeastern Univ. Alverson G. Fenker H. Moromisato J. Musienko Y.V. Paul Th. Reucroft S. Swain J. Taylor L. Von Goeler E. Yasuda T. Northwestern Univ. Gobbi B. Rubinov P. Tilden R. Univ. of Notre Dame Baumbaugh B. Bishop J.M. Biswas N. Ruchti R. Warchol J. Wayne M.

Novosibirsk, Budker Inst.Nucl.Phys. Aulchenko V. Baiboussinov B. Bondar A. Eidelman S. Nagaslaev V. Purlatz T. Shekhtman L. Sidorov V. Tatarinov A. Ohio State Univ. Acosta D. Bylsma B. Durkin L.S. Hoftiezer J. Hughes R. Johnson M. Larsen D. Ling Ta-Yung Rush C.J. Sehgal V. Winer B.

Univ. of Oulu Palmu L. Piila M. Remes K. Skantsi R. Suhonen E. Tuuva T. Padova Univ./INFN Azzi P. Bacchetta N. Benettoni M. Bettini A. Bisello D. Busetto G. Carlin R. Castro A. Centro S. Conti E. Da Rold M. De Giorgi M. De Min A. Dosselli U. Fanin C. Gasparini F. Gasparini U. Guaita P. Lippi I. Loreti M. Martinelli R. Meneguzzo A.T. Paccagnella S. Pegoraro M. Pescara L. Ronchese P. Sancho Daponte A. Sartori P. Stanco L. StavitskL I. Torassa E. Ventura L. Zotto P. Zumerle G. LPNHE, Ecole Poly/CNRS-IN2P3, Palaiseau Badier J. Bercher M. Busata A. Busson Ph. Chamont D. Chariot C. Chaurand B. Debraine A. Dobrzynski L. Faurlini L. Ferreira O. Hillemanns H. Karar A. Kluberg L. Lecouturier D. Matricon P. Milleret G. Paganini P. Poilleux P. Romana A. Vanel J.C. Violet C.

CALTECH, Pasadena Bunn J. Galvez Ph. Kirkby A. Newman H. Shevchenko S. Zhu Ren-Yuan

Pavia Univ./INFN Arena V. Belli G. Boca G.L. Bonomi G. Gianini G. Merlo M. Ratti S.P. Riccardi C. Viola L. Vitulo P.

360 CMS

Perugia Univ./INFN AragonaA. Babucci E. Bartalini P. Bilei G.M. Checcucci B. Ciampolini P. Lariccia P. Mantovani G. Passeri D. Placidi P. Santocchia A. Seivoli L. Wang Yefa

Pisa Univ./INFN Angelini F. Bagliesi G. Baidi A. Basti A. Bedeschi F. Belforte S. Bellazzini R. Borrello L. Bosi F. Bozzi C. Braccini P.L. Brez A. Carosi R. Castaldi R. Chiarelli G. Chiarelli M. Ciulli V. D'Alessandro CapriceM. Dell'Orso M. Dell'Orso R. Donati S. Frediani A. Galeotti S. Giambas- tiani A. Giannetti P. Giassi A. Iannaccone G. Incagli M. Latronico L. Lebedenko V. Ligabue F. Lumb N. Magazzu G. Massai M.M. Meschi E. Messineo A. Moneta L. Morsani F. Oriunno M. Palla F. Punzi G. Raffaelli F. Raffo R. Ristori L. Sanguinetti G. Spagnolo P. Spandre G. Spinella F. Starodumov A. Tenchini R. Tonelli G. Ttoiani E. Vannini C. Venturi A. Verdini P.G. Xie Z. Zetti F. Pohang Univ. of Sci. & Tech. KimG.N. Prague TU Laub M. Nova'k R. Vognar M. Zicha J. Prague, Charles Univ. Finger M. Kracikova T. Linka A. Picek J. Slunecka M. Sulc M.

Prague, Inst. of Computing Machines Tomasek M. Princeton Univ. Denes P. Gupta V. Marlow D. Piroue P. Stickland D. Stone H. Tully Ch. Wilted R.

Protvino IHEP Abramov V. Azhgirey I. Bitioukov S. Dolgopolov A. Donskov S. Dyshkant A. Evdokimov V. Goncharov P. Gorin A. Katchanov V. Khodyrev V. Kondashov A. Korablev A. Korneev Y. Kostrit- skii A. Krinitsyn A. Kryshkin V. Manuilov I. Medvedev V. Obraztsov V. Ostankov A. Oukhanov M. Petrov V. Rykalin V.V. Shagin P. Singovsky A. Solovianov V. Sougonyaev V. Soushkov V. Surkov A. Talanov V. Tereschenko S. Turchanovich L. Tyurin N. Uzunian A. Volkov A. Zaitchenko A.

Rez, Nud. Phys. Inst. (NPI) Janata A. Rice University Adams D.L. Corcoran M. Eppley G. Miettinen H.E. Padley B.P. Platner E. Roberts J. Yepes P.

Inst.of Electronics & Computer Sci.Riga Bilinskis Y. UC Riverside Chrisman D. Gary J.W. Giacomelli P. Gorn W. Layter J.G. Shen Benjamin

Univ. of Rochester Bodek A. Budd H. Ruggiero D. Sakumoto W. Skup E. Tipton P. de Barbaro P.

Rome Univ.I/INFN Baccaro S. Barone L. Borgia B. Cavallari F. Dafinei I. De NotaristefaniF. Diemoz M. Festinesi A. Leonardi E. Leone A. Longo E. Mattioli M. Montecchi M. Organtini G. Puccini M. Valente E. Zullo A.

361 CMS

Rutgers Univ. Bartz E. Conway J. Devlin T. Jacques P. Kalelkai M. Schnetzer S. Sherman S. Somalwar S. Stone R. Thomson G. Watts T. Rutherford Appleton Lab. Bateman E. Bell K.W. Brown R.M. Burge S.R. Campbell D.A. Cockerill D.J. Connolly J.F. Coughlan J.A. Denton L.G. Flower P.S. French M. Halsall R. Haynes W.J. Jacob F.R. Jeffreys P.W. Kennedy B. Lintern L. Maddox J. Noyes G. Patrick G.N. Smith B. Smith M. Sproston M. Stephenson R. Saclay DAPNIA Anfrevifle M. Besson P. Bonamy P. Bougamont E. Chipaux R. Da Ponte V. De Beer M. De Girolamo P. Dejardin M. Denegri D. Faure J.L. Geleoc M. Gentit F.X. Givernaud A. Lemoigne Y. Locci E. Lottin J.C. Lyraud Ch. Pansart J.P. Rander J. Rebourgeard Ph. Reymond J.M. Rondeaux F. Rosowsky A. Roth P. Verrecchia P. Villet G.

UC San Diego Branson J. Kobrak H. Masek G. Mojaver M. Paar H. Raven G. Sivertz M. Swanson R. White A.

Santander Univ. Cuevas J. Figueroa C. Gonzalez I. Lopez J.M. Marco J. Matorras F. Rodrigo Anoro T. Ruiz Jimeno A. Vila I. Seo Nam Univ. Lee Seok Jae Kon-Kuk Univ. Seoul Rhee June-Tak Seoul National Univ. Koo Duk Gil Seoul, Korea Univ. Hong Byungsik Hong Seong Jong Kim Young Sang Lee Kyong Sei Park Sung Keun Sim Kwang-Souk

INRNE, Sofia Anguelov T. Antchev G. Atanasovl. Bourilkov D. Dimitrov L. Genchev V. Georgiev G. Hristov P. Iaydjiev P. Ivanov I. Penchev L. Penev V. Shklovskaja A. Sultanov G. Vankov I.

Sofia Univ. Gritskov A. Jordanov A. Litov L. Petev P. Spassov V. Tsenov R. Velev G.

Technical Univ. of Split Godinovic N. Milin M. PuJjak I. Soric I. Stipcevic M. Tudoric-Ghemo J. Univ. of Split Antunovic Z. Dzelalya M.

St. Petersburg, NPI Bondar N. Gavrilov G. Gusev Y. Kisselev O. Prokofiev O. Rasmislovich V. Seliverstov D. Smirnov I. Sobolev S. Soulimov V. Velitchko G. Vorobyov A.

SUNY Stony Brook Engelmann R. Mohammadi Baarmand M. Ng K.K. Steffens J. Yoon S.Y.

362 CMS

CRN, CNRS-IN2P3/Univ. Strasbourg Anstotz F. Berst J.D. BromJ.M. Charles F. Coffin J. CroixJ. DrouhinF. DulinskiW. Fontaine J.C. Geist W. Goerlach U. Helleboid J.M. Henkes T. Hilt B. Hoffmann Ch. Hu Yoncai Huss D. Jeanneau F. Juillot P. Lorentz P. Lounis A. Maazouzi Ch. Mack V. Michel J. Pallares A. Pralavorio P. Racca C. Riahi Y. Ripp I. Schmitt Ph. Schunck J.P. Schwaller B. Todorov Th. Turchetta R. Zghiche A.

Tallinn, Inst. of Chem. Phys. & Biophys. Aguraiuja R. Hall A. Lippmaa £. Lippmaa J. Pikver R. Subbi J.

Tampere Univ. of Technology Niittylahti J. Vainio O.

Tashkent Inst.Nud.Phys. Avezov A. Bisenov N. Gafarov A. Gasanov E. Gulamova R. Ibragimova E. Kim Genchan Koblik Y. Miikarimov D. Morozov A. Rakhmatov N. Rustamov I. Urkinbaev A. Yuldashev B. Tbilisi, High Energy Phys. Inst. Amaglobeli N. Bagaturia I. Glonti L. Kartvelishvili V. Kvatadze R. Mzavia D. Sakhelashvili T. Shanidze R. Tchikovani E. Tbilisi, Inst.of Phys. Georgian Ac. Sci. Iashvili I. Kharchilava A. Roinishvili N. Roinishvili V. Rurua L. Texas Tech. Univ. Ganel O. Papadimitriou V. Sill A. Wigmans R.

Torino Univ./INFN Arneodo M. Bertolino F. Cirio R. Costa M. Daudo F. Ferrero M.I. Maselli S. Monaco V. Peroni C. Petrucci M.C. Sacchi R. Solano A. Staiano A. Univ. of Alabama, Tuscaloosa Baksay L. Fenyi B. Li Jundong

Univ. of Florida, Gainesville Avery P. Field R. Gorn L. Konigsberg J. Korytov A. Mitselmakher G. Nomerotski A. Ramond P. Yelton J. Univ. of Mississippi Bhatt K. Booke M. Cremaldi L. Kroeger R. Reidy J. Sanders D. Summers D.

Univ. of Nebraska, Lincoln Campbell W. Claes D.R. Hu Martin Lundstedt C. Snow G.R.

Vienna HEPHY Adam W. Fruehwirth R. Hrubec J. Kluge A. Krammer M. Neumeister N. Pernegger H. Pernicka M. Porth P. Rakoczy D. Rohringer H. Scherzer J. Szoncso F. Walzel G. Wildschek T. Wulz C.E.

P.Scherrer Inst., Villigen Ayranov O. Bertl W. Deiters K. Dick P. Dijksmann A. Fabre M. Flugel Th. Gabathuler K. Gobrecht J. Heidenreich G. Horisberger R. Ingram Q. Kotlinski D. MorfR. Renker D. Schnyder R. Walter H.Ch. Virginia Poly./Univ., Blacksburg Meyer H. Mo L. Nunamaker Th.A. Warsaw Univ. Cwiok M. Dominik W. Fengler A. Krolikowski J. Kudla I. Majewski P. Pozniak K.

363 CMS

Warsaw, Soltan Inst. Nucl. Studies Gorski M. Zalewski P. Wisconsin Univ. Badgett W. Cailsmith D. Dasu S. Feyzi F. Foudas C. Jaworski M. Lackey J. Loveless R. Lusin S. Reeder D. Smith W. Yerevan Phys.Inst. Bayatian G.L. Grigorian N.K. Khachatrian V.G. Margarian A. Sirunian A.M. Stepanian S.S.

Inst. of Computing Machines, Zilina Drevenak R. Sluneckova V. Zurich ETH Anderhub H. Behnei F. Betev B. Biland A. Delia Marina R. Di Lodovico F.R. Dittmar M. Djam- bazov L. Dioge M. Eichler R. Faber G. Felcini M. Freudenreich K. Giab C. Hodin E. Hofer H. Hoivath I. Iglesias Lago A. Ingenito P. Lassila-Perini K. Le Coultie P. Lecomte P. Lusteimann W. Maichesini P. McNally D. Nessi-Tedaldi F. Pauss F. Pitzl D. Pohl M. Rahal-Callot G. Reu Daning Riedlberger J. Roeser U. Rykaczewski H. Suter H. Terribilini D. Ulbricht J. Viertel G. Von Gunten H. Waldmeier-Wicki S. Zurich Univ. Amsler C. Ould-Saada F. Regenfus Ch. Robmann P. Spanier S. Steiner S. Truol P.

Spokesman: Delia Negia M.

CMS is a general purpose proton-proton detector designed to run at the highest luminosity at the LHC. It is also well adapted for studies at the initially lower luminosities. The CMS Collaboration consists of 1600 scientists and engineers from 152 institutes in 32 countries. The main design goals of CMS are:

i) a highly performant muon system; ii) the best possible electromagnetic calorimeter consistent with (i); iii) high quality central tracking to achieve (i) and (ii); iv) a detector costing less than 475 MCHF.

• Magnet The detector (Figure CMS-1,2) will be built around a long (13 m) and large bore (^=5.9 m) high-field superconducting solenoid (4 T) leading to a compact design for the muon spec- trometer. The magnetic flux is returned through 1.5 m of saturated iron yoke (1.8 T) instrumented with muon chambers. The Technical Design Report for the magnet was submitted and approved in 1997. The construction of the magnet has started and is scheduled to be tested on the surface in 2003. • Inner Tracking

All high pt muons, isolated electrons and charged hadrons, produced in the central rapidity region, are reconstructed with a momentum precision of Apt/pt = 0.005 + 0.1bpt (pt in 364 CMS

TeV). The high momentum precision is a direct consequence of the high magnetic field. The tracking volume is given by a cylinder of length 6 m and a diameter of 2.6 m. In order to deal with high track multiplicities tracking detectors with small cell sizes are used. Solid-state and gas microstrip detectors provide the required granularity and precision. Stereo information is provided by double-sided microstrip detectors. Pixel detectors placed close to the interaction region improve the measurement of the track impact parameter and secondary vertices. High track finding efficiencies are achieved for isolated high pt tracks. It is also fairly high for such tracks in jets. • Muon System Centrally produced muons are measured three times, in the inner tracker, after the coil and in the return flux. They are then identified and measured in four identical muon stations (MB) inserted in the return yoke. Special care has been taken to avoid pointing cracks and to maximize the geometric acceptance. Each muon station consists of twelve planes of aluminium drift tubes designed to give a muon vector in space, with 100 (im precision in position and better than 1 mrad in direction. The four muon stations include RPC triggering planes that also identify the bunch crossing and enable a cut on the muon transverse momentum at the first trigger level. The endcap muon system also consists of four muon stations (ME). Each station consists of six planes of Cathode Strip Chambers. The chambers are arranged such that all muon tracks traverse four stations at all rapidities, including the transition region between the barrel and the endcaps. The last muon stations are after a total of > 20A of absorber so that only muons can reach them. The four muon stations lead to a redundant and robust muon system. The large bending power is the key to very good momentum resolution even in the so called "stand alone" mode especially at high transverse momenta. The combined (using the inner tracker as well as the muon chambers) muon momentum resolution is better than 5% at 0.3 TeV in the central rapidity region \r]\<2 and w 10% for pt=2 TeV. Low-momentum (pt< 100 GeV) muons are measured before the absorber with a precision of about 1.5% up to a rapidity of 2. • Calorimetry The coil radius is large enough to install essentially all the calorimetry inside and hence avoid the coil-electromagnetic calorimeter interference. A high precision electromag- netic calorimeter (ECAL) using lead tungstate (PbWC^) crystals has been chosen. Lead tungstate is a dense and relatively easy crystal to grow from readily available raw ma- terials and substantial production capacity already exists. Scintillating crystals such as lead tungstate offer the best energy resolution for electrons and photons. The scintil- lation light is detected by silicon avalanche photodiodes in the barrel region (EB, \rj\ <1.48) and vacuum photodiodes in the endcap region (EE, 1.48<|7/| <3.0). The expected energy resolution is better than 0.6% for electrons and photons with energies greater than 75 GeV. For example an energy resolution of 0.45% is measured in a test beam for 280 GeV electrons. A preshower system is installed in front of the ECAL (EB, EF) at high luminosities to measure the photon direction in the region \r]\ < 1.1, and TT° rejec- tion at all luminosities in the endcap (1.6 < \rj\ < 2.6). The ECAL is followed by a copper/scintillator sampling hadronic calorimeter (HB, HF). The light is channelled by clear fibres fused to wave-length shifting fibres embedded in scintillator plates. The light is detected by photodetectors that can provide gain and operate in high axial magnetic fields (proximity-focussed hybrid photodiodes). Coverage up to rapidities of 5.0 is pro-

365 CMS vided by a Cu/quartz fibre calorimeter. The Cerenkov light emitted in the quartz fibres is detected by photomultipliers. The Technical Design Report for the HCAL was submitted and approved in 1997. Its construction is underway.

Trigger and Data Acquisition The trigger and data acquisition consists of four parts: the front-end detector electron- ics, the calorimeter and muon first level trigger processors, the readout network and an on-line event filter system. The first two parts are synchronous and pipelined with a pipeline depth corresponding to «3 (is. The latter two are asynchronous and based on in- dustry standard data communication components and commercial RISC processors. The resources that would have been required for a hardware second level trigger processors are invested in a high bandwidth (« 500 Gbit/s) readout network and in the event fil- ter processing power (106-107 MIPs), both of which are more suitable for upgrading as commercially available technology develops.

Physics Performance Although high luminosity is essential to cover the entire range of mechanisms of elec- troweak symmetry-breaking, the LHC machine will start at significantly lower luminosi- 33 2 1 ties (L <10 cm" ^" ). The pixel detectors and the PbWO4 crystal electromagnetic calorimeter considerably enhance the discovery potential of CMS at low luminosities. A Standard Model (SM) Higgs boson with mass between 95 and 150 GeV would be discovered via its two photon decay after an integrated luminosity of about 3.104 pb"1. The same integrated luminosity gives a discovery range covering masses from 135 to 525 GeV in the four lepton (e or fi) channel, with only a small gap in the coverage 5 1 34 2 1 around 2 mr An integrated luminosity of 10 pb" (taken at 10 cm~ s~ ) would allow discovery via these channels over the full range between 85 and 700 GeV. Tagging the events produced by WW- and ZZ-fusion by detecting characteristic forward jets, and using decay modes with larger branching ratios (H —*• WW —>• h>jj, and H —• ZZ —* lljj), should allow the discovery range for a SM Higgs boson to be extended up to 1 TeV for the same integrated luminosity. The two photon and four lepton channels are also crucial for the discovery of a Higgs boson in the Minimal Supersymmetric Standard Model (MSSM). Various channels involving the 0 tau lepton (h°, H°, A -*• rr, H* —• rv) help to cover much of the remaining allowed (mA, tan/3) parameter space. Precise impact parameter measurements using the pixel detector play an important role here. Many physics studies have been carried out in the context of supergravity models (SUGRA). A many-point scan of the gaugino / scalar mass parameter space has been conducted. Squarks and gluinos weighing up to 2 TeV can be detected using, as signature, events with one or more charged leptons, missing transverse energy and two or more jets. Sleptons weighing as much as 400 GeV can be found by looking for events without hadronic jets, but with lepton pairs and missing transverse energy with distinctive kinematic charac- teristics. Three-lepton states are particularly promising for the detection of charinos and neutralinos. In many cascade decays a heavier neutralino is produced that subsequently decays into the lightest one with the emission of a pair of charged leptons. The spectrum of the di-lepton invariant masses shows a strikingly sharp end-point determined by the difference in neutralino masses. This feature can be used to select and almost fully re- construct some events yielding e.g. the mass of the bottom squark. The above studies of

366 CMS specific SUSY models indicate that it is possible to detect and measure a large fraction of the expected SUSY spectrum in CMS. Within the SUGRA models it should be possible to determine the fundamental parameters at the GUT scale. The copious production of B mesons at LHC opens the way for significant measurements of CP violation effects in the B system. Using the B|}—• J/ij> K° and B^—• ir* channels two of the angles in the unitarity triangle can be measured. Furthermore, by observing the time development of B° — B® oscillations, the mixing parameter x, can be measured for values up to 20-25. In addition to running as a proton-proton collider, LHC will be used to collide heavy ions at a centre of mass energy of 5.5 TeV per nucleon pair. A new form of deconfmed hadronic matter, the quark-gluon plasma (QGP), should be formed at the resulting high energy densities (4-8 GeV/fm3). The formation of quark-gluon plasma in the heavy ion collisions is predicted to be signalled by a strong suppression of Y' and Y" production relative to Y production when compared to pp collisions. The CMS detector is well suited to detect low momentum muons and reconstruct the Y, Y' and Y" mesons produced. The good mass resolution (cr=37 MeV at Y mass), afforded by the 4T field, enables the measurement of the suppression.

367 L3 MflGNET

- A Large Ion Collider Experiment ALICE

Beam: Approved: 06/FEB/97 Status: Preparation

ALICE A Large Ion Collider Experiment

Alessandria, Torino Univ. Fac.Science, Aligarh, Muslim Univ., Athens Demokritos/NRC, Athens Univ., Bari Polytechnic/INFN, Bari Univ./INFN, Beijing HEP Inst., Bergen Univ., Birmingham Univ., Bombay, Indian Inst. of Tech., Bratislava, Comenius Univ., Budapest Res.Inst. of Physics (KFKI), Caghari Univ./INFN, Saha Inst. ofNucl. Phys. Calcutta, VECC Calcutta, Catania Univ./INFN, CERN, Chandigarh Panjab Univ., Clermont-Ferrand Univ., Copenhagen Niels Bohr Inst., Cracow Inst.Nucl.Phys., Darmstadt GSI, Dubna JINR, Dubna, RCANP, Frankfurt/Main Univ., Geneva Univ., Heidelberg MPI, Heidelberg Univ., Ioannina Univ., Jaipur Rajasthan Univ., Jammu Univ., Kharkov Inst. of Phys. &: Tech. (KhFTI), Kharkov, Scientific Resch. Tech. Inst., Kiev, Ukrainian Acad. of Sciences (ITP), Kosice, IEP Slovak Ac. Sci &: Safarik U., Legnaro Nat.Lab./INFN, Lund Univ., Univ. ofLyon I (IPNL), Marburg Univ., Mexico CINVESTAV - IPN, Byelorussian State Univ. Minsk, Moscow Eng.Phys.Inst., Moscow ITEP, Moscow Kurchatov Inst., Moscow, Inst. Nucl. Research (INR), Muenster Univ., Subatech, Nantes, Novosibirsk, Budker Inst.Nucl.Phys., Oak Ridge Nat. Lab., Ohio State Univ., LPN, Univ. Paris-Sud/CNRS-IN2P3, Orsay, Oslo Univ., Padova Univ./INFN, Prague, FZU-Inst. of Phys. Acad. of Sci., Protvino IHEP, Rez, Nucl. Phys. Inst. (NPI), Rome Univ.I/INFN, Salerno Univ./INFN, Sarov, Russian Federal Nuclear Center, St. Petersburg, NPI, St.Petersburg S.U.- Mendeleev Inst. Met., Strasbourg, IReS, Tbilisi State Univ., Tbilisi, Inst.ofPhys. Georgian Ac. Sci., Trieste Univ./INFN, Torino Univ./INFN, Utrecht Univ., Warsaw, Soltan Inst. Nucl. Studies, Wuhan Hua-Zhong Normal Univ., Yerevan Phys.Inst., Zagreb Rudjer Boskovic Inst.

Alessandria, Torino Univ. Fac.Science Beole S. Dellacasa G. Ramello L. Soave C. Aligarh, Muslim Univ. Ahmad N. Ahmad S. Ahmad T. Bari Tak W. Irfan M. Zafar M. Athens Demokritos/NRC Kalfas K.A. Athens Univ. Angelas A.L.S. Antoniou N. Kapogiannis A. Mavromanolakis G. Panagiotou A.D.

Bari Polytechnic/INFN Cantatore E. Corsi F. De Venuto D. Di Ciano M. Gramegna G. Grimaldi A. Marzocca C. Monno E.

Bari Univ./INFN Colonna N. Di Bari D. Elia D. Fini R.A. Ghidini B. Lenti V. Liberti L. Loconsole R. Manzari V. Nappi E. Navach F. Posa F. Tomasicchio G.

References LHCC/95-71/P3, LHCC/96-32/P3/Add.l 369 ALICE

Beying HEP Inst. Sun Znxun Beigen Univ. Andersen E. Fanebust K. Helstrup H. Klovning A. Maeland O. Odland O.H. Thorsteinsen T.F.

Birmingham Univ. Bloodworth I.J. Evans D. Jones G.T. Jovanovic P. Kinson J.B. Kirk A. Villalobos Baillie O. Votruba M.F. Bombay, Indian Inst. of Tech. Varma R. Bratislava, Comenius Univ. Bracinik J. Cerny V. Ftacnik J. Hlinka V. Ivanov M. Janik R. Lietava R. Pikna M. Pisut J. Pisut N. Sitar B. Strmen P. Szarka I. Budapest Res.Inst. of Physics (KFKI) Denes E. Eged B. Fodor Z.P. Kiss T. Meggyesi Z. Palla G. Rubin G. Szendrei L. Sziklai J. Zimanyi J.

Cagliari Univ./INFN Ceru M. Cicalo C. De Falco A. Macciotta-Serpi M.P. Masoni A. Puddu G. Serci S. Temnikov P. UsaiG. Sahalnst. ofNud. Phys. Calcutta Bhattacharya P. Bose S. Chattopadhyay S. Roy S. Sen P. Sen S.K. Sinha B.C. VECC Calcutta Chattopadhyay S. Dutta Majumdar M.R. Ganti M.S. Nayak T. Singaraju R.N. Viyogi Y.P.

Catania Univ./INFN Badala A. Barbera R. Becciani U. Caligiore C.E. Gulino M. Insolia A. Lo Presti D. Palmeri A. Panebianco S. Pappalardo G.S. Pappalardo L. Petta C. Randazzo N. Reito S. Riggi F. Russo A.C. Russo G.V. Russo M. CERN Baechler J. Beker H. Berset J.C. Brun R. Campbell M. Carena W. Chesi E. Christiansen J. Davenport M. De Groot J. Di Mauio A. Divia R. Engster C. Fischer H.G. Formenti F. Goossens M. Goret B. Gregory C. Eeyne H. Holme A.K. Innocenti P.G. Jacholkowski A. Klempt W. Knudson K. Kralik I. Lasseur C. Legrand J.C. Leistam L. Lourenco C. Macowicz M. Martinengo P. Morsch A. Mota M. Musa L. Pigni L. Piuz F. Quercigh E. Raynaud J. Renshall H.R. Rosso E. Safarik K. Schukraft J. Scomparin E. Snoeys W. Sonderegger P. Stucchi S. Swoboda D. Vande Vyvre P. Vascotto A. Vranic D. Wenig S. Williams T.

Chandigarh Panjab Univ. AggarwalM.M. Bhati A.K. Bhatia V.S. Clermont-Ferrand Univ. Alard J.P. Baldit A. Bastid N. Blanchard G. Brossard M. Brun N. Castor J.B. Chambon T. Daudon F. Devaux A. Dupieux P. Espagnon B. Fargeix J. Force P.N. Manso F. Roche G. Roig O.M.L. Saturnini P. Copenhagen Niels Bohr Inst. Bearden I.G. Boggild H. Gaardhoje J.J. Hansen O. Nielsen B.S.

370 ALICE

Cracow Inst.Nud.Phys. Baitke J. Gladysz-Dziadus E. Gornicki E. Kowalski M. Rybicki A. Stefanski P.A.

Darmstadt GSI Averbeck R. Braun-Munzinger P. Crochet P. Deusser A. Eschke J. Herrmann N. Kolb B. Luehning J. Lynen U. Miskowiec D. Mueller W.F.J. Neyer C. Sandoval A. Sann H. Schmidt H.R. Stelzer H. Von Rueden W. Worner A. Dubna JINR Akichine P.G. Arefiev V.A. Arkhipov E.V. Astakhov V.I. Baldine A. Baldine A. Bartenev V.D. Batiou- nia B.V. Belikov J.A. Blinov N.A. Boreiko V.F. Borissovskaia Z.V. Boraunov Y.T. Chabounov A.V. Chabratova G.S. Chichov LA. Datskov V.I. Dodokhov V.K. Efimov L.G. Fedounov A.G. Golo- vanov L.B. Guouskov B.N. Iouldachev O.I. Kadychevsky V.G. Korolev V.S. Kovalenko A.D. Lioubochits V.L. Lobanov V.I. Lykasov G.I. Matiouchevski E.A. Maximov A.N. Mekhtiev R.R. Mikhailov K.V. Mikhalev D.P. Nomokonov P.V. Parfenov A.N. Pouzynin I.V. Sadovski A.B. Se- mashko S.V. Senner A.E. Shelaev LA. Sidorov A.V. Slavine N.V. Slepnev R.V. Tsvineva G.P. Vodopianov A.S. Yuldasheva M.B. Zaporozhets S.A. Zintchenko A.I.

Dubna, RCANP Diomkin V. Kuznetsov V. Shestakov V. Tkatchouk I. Frankfurt/Main Univ. Bormann C. Buncic P. Foka P. Gazdzicki M. Guenther J. Renfordt R.E.A. Rohrich K. Roland G. Stock R. Strobele H. Szymanski P. Geneva Univ. Martin M. Rosselet L. Heidelberg MPI Ceretto F. Fuchs C. Rak J. Wurm J.P. Heidelberg Univ. Appelshauser H. Baur R. Ernst P. Esumi S. Glassel P. Lenkeit B.C. Messer M. Pfeiffer A. Schmitz W. Stachel J. Tilsner H. Voigt C. Voloshin S. Wessels J.P. Wienold T.

Ioannina Univ. Aslanoglou X.

Jaipur Rajasthan Univ. Agnihotri A. Bhalla K.B. Bharti A. Gupta S. Kumar V. Raniwala R. Raniwala S.

Jammu Univ. BabaP.V.K.S. Badyal S.K. Bhasin A. Gupta A. Gupta V.K. MangotraL.K. Rao N.K. Sambyal S.S.

Kharkov Inst. of Phys. & Tech. (KhFTI) Bochek G.L. Boldychev V.F. Cheivonny I.F. Dovbnya A. Kulibaba V.I. Maslov N.L Potin S. Prokhorets I.M. Pugachov D.G. Kharkov, Scientific Resch. Tech. Inst. Borshchov V.N. Fyodorov A.G. Kiprich S.K. Listratenko O.M. Starkov V.E. Zamiiets M.

Kiev, Ukrainian Acad. of Sciences (ITP) Kharaeev D.E. Pavlenko O. Siamtomov A.I. Zinovjev G.

371 ALICE

Kosice, IEP Slovak Ac. Sci fc Safarik U. Fedorisin J. Hnatic M. Jusko A. Luptak M. Martinska G. Pastiicak B. Pavukova A. Sandor L. Suchodolinska I. Urban J. Vokal S. Vrlakova J. Legnaro Nat.Lab./INFN Ricci R.A. Lund Univ. Cailen L. El Chenawi K. Gaxpman S.I.A. Gustafsson H.A. Nilsson P. Oskaisson A. Osterman L.H.A. Otteilund I. Silvermyr D. Sodeistiom K. Stenlund E.A.

Univ. ofLyonl (IPNL) Chevallier M. Cheynis B. Grossiord J.Y. Guichard A. Guinet D. Lantesse P. Marburg Univ. Eckhardt F. Friese V. Puehlhofer F. Mexico CINVESTAV - IPN Fearnley T. Herrera Corral G.A. Mendez H.

Byelorussian State Univ. Minsk Borisevich A. Drobychev G. Kondratiev O. Lobko A. Lopatik A. Oskin A. Zouevsky R. Moscow Eng.Phys.Inst. Grigoriev V.A. Kapline V.A. Loguinov V.A. Stiikhanov M.N. Moscow ITEP Akindinov A.N. Boiarinov S.V. Grichouk I.G. Kaidalov A.B. Kats M.M. Kiselev I.T. Kisselev S.M. Kisselevitch I. Lioublev E. Martemianov A.N. Polozov P.A. Pozdniakov S.A. Serov V.S. Smirnit- ski A.V. Tchoumakov M.M. Vetlitski LA. Voloshin K.G. Vorobyev L.S. Zagreev B.V. Moscow Kurchatov Inst. Antonenko V. Beliaev S. Cherbatchev R. Doubovik I. Fokine S. Ippolitov M. Karadjev K. Lebe- dev A.L. Lebedev V. Manko V.I. Mguebrichvili G. Moukhanova T. Nianine A. Nikolaev S. Patarakine O. Peressounko D.Y. Sibiriak I. Tsvetkov A. Vasiliev A. Vinogradov A. Volkov M. Moscow, Inst. Nucl. Research (INR) Filippov S.N. Gavrilov J.K. Goloubeva M.B. Gotra M.N. Gouber F.F. Guevorkov L.D. Kar- avitcheva T.L. Kourepin A.B. Laptev V.D. Razine V.I. Rechetine A.I. Shileev K.A. Topilskaia N.S. Muenster Univ. Barlag C. Blume C. Bucher D. Peitzmann T. Santo R. Schlagheck H. Subatech, Nantes Boucham A. Bouvier S. Cussonnean J.P. Erazmus B. Giliberto S. Gutbrod H.H. Lautridou P. Lefevre F.B.M. Luquin L. Martin L. Metivier V. Rahmani A. Reposeur T.L. Roy C.S. Novosibirsk, Budker Inst.Nucl.Phys. Frolov A.R. Pestov I.N. Tiounov M.A. Oak Ridge Nat. Lab. Britton C.L. Bryan W.L. Ericson M.N. Paulus M.J. Simpson M.L. Walker J.W. Wintenberg A.L. Ohio State Univ. Hardtke D. Humanic T.O. Lisa M. Lo Curto G. Reichhold D.M. Sugarbaker E.

372 ALICE

IPN, Univ. Paris-Sud/CNRS-IN2P3, Orsay Bimbot L.G. Comets M.P. Courtat P.F. Donet R. Genolini B.C. Harroch H. Jonan D. Kharman- darian L. Le Bornec Y. Mac Cormick M. Peyre J.S. Pouthas J.A.M. Willis N.

Oslo Univ. Lovhoiden G. Skaali B. Wormald D. Padova Univ./INFN Antinori F. Brandolini F. Carrer N. Morando M. Pepato A. Scarlassara F. Segato G. Stanco F. Zanoni E. Prague, FZU-Inst. of Phys. Acad. of Sci. Mares J. Mihokova E. Nikl M. Piska K. Polai K. Zavada P. Protvino IHEP Blik A.M. Bogolyubsky M. Britvitch G. Khaoustov G.V. Kharlov I.V. Kolossov V.N. Lichin V. Poliakov V.A. Polovnikov S.A. Sadovski S.A. Samoilenko V.D. Semenov P.A. Tikhonov V. Zviagine A.

Rez, Nud. Phys. Inst. (NPI) Hrivnacova I. Kugler A. Petracek V. Sumbera M. Tlusty P. Wagner V.

Rome Univ.I/INFN Di Liberto S. Mazzoni A.M. Meddi F. Prosperi D.

Salerno Univ./INFN Grella G. Guida M. Romano G. Rosa G. Viigili T. Sarov, Russian Federal Nuclear Center Abramovitch S. Basmanov V. Fomouchkine E. Ianowski V. Dkaev R. Ilkaeva L. Khlebnikov A. Nazarenko S. Pounine V. Poutevskoi S. Savkin G. Selin I. Vinogradov I. Zhitnik A. Zykov S.

St. Petersburg, NPI Komkov B. Mylnikov V. Nikouline V. Samsonov V. Volkov S. Vorobiev A. St.Petersburg S.U.- Mendeleev Inst. Met. Abramova L.Y. Alexandrov V.S. Baratov V.M. Bolonine A.A. Braun M.A. Dobulevitch V.M. Fe- onlov G.A. Godissov O.N. Guerassimov S. Igoltine S.N. Ioudkine M.I. Kolojvari A.A. Novikov I.A. Potapov S.V. Stolyarov O.I. Toulina T.A. Tsimbal F.A. Valiev F.F. Vetchernine V.V. Vinogradov L.I. Vitouchkine L.F. Strasbourg, IReS Arnold L. Ayachi M. Baudot J. Berst J.D. Blonde J.P. Coffin J.P.M. Dulinski W. Fintz P. Guillaume G. Hebrard L.J. Higueret S. Hu Yongcai Jundt F. Kuhn C. Lutz J.R. Michalon A. RamiF. Tbilisi State Univ. Djordjadze V. Grigalashvili N. Menteshashvili Z. Nioradze M. Tabidze M. Tevzadze Y. Tbilisi, Inst.of Phys. Georgian Ac. Sci. Akhobadze K.G. Djavrishvili A.K. Grigalashvili T. Ioramashvili E.S. Kharadze A.V. Khizanishvili L. Khuskivadze T.V. Shalamberidze L.V. Shubitidze N. Trieste Univ./INFN Bonvicini V. Rachevski A. Vacchi A. Zampa N.

373 ALICE

Torino Univ./INFN Alessandro B. Bonazzola G. Botta E. Busso L. Cerello P.G. Chiavassa E. Daudo F. De Marco N. Felicidlo A. Gallio M. Giiaudo G. Giubellino P. Idaik M. Maizari-Chiesa A. Maseia M. Mazza G. Minetti B. Musso A. Nouais D. Piccotti A. Riccati L. Rivetti A. Sitta M. Tosello F. Vercellin E. Utrecht Univ. Botje M. Buys A. De Haas A.P. Kamermans R. Kuyer P.G. Van Den Brink A. Van Ejjndhoven N.

Warsaw, Soltan Inst. Nucl. Studies Czerwinski D. DeloffA. Karpio K. Kozak S. Lukaszek L. Malinowski H. Siemiaiczuk T. Sobczynski C. Stefenek G. Tykarsld L. Wilk G.

Wuhan Hua-Zhong Normal Univ. Cai Xu Hu Yuan Liu Feng Liu Lianshou Wang Haiqiao Zhou Daicui

Yerevan Phys.Inst. Atayan M. Avakian R. Danielyan V. Gavalian V. Grigorian A.A. Grigoryan S. Gulkanyan H. Hakobyan R. Kakoyan V. Margaryan A. Marikyan G. Mehrabyan S. Parlakyan L. Shahoyan R. Vardanyan H. Yeganov V.

Zagreb Rudjei Boskovic Inst. Ferenc D. Ljubicic A.T. Paic G. Tustonic T.

Spokesman: Schukraft J.

ALICE is a general-purpose heavy-ion detector designed to study the physics of strongly inter- acting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently includes more than 650 physicists and ~70 institutions in 25 countries. The detector is designed to cope with the highest particle multiplicities anticipated for Pb-Pb reactions (dN/dy « 8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and p-nucleus), which provide reference data for the nucleus-nucleus collisions. ALICE consists of a central part, which measures event-by-event hadrons, electrons and pho- tons, and a forward spectrometer to measure muons. The central part, which covers polar angles from 45° to 135° (| 77 | < 0.9) over the full azimuth, is embedded in the large L3 solenoidal mag- net. It consists of an inner tracking system (ITS) of high-resolution silicon tracking detectors, a cylindrical TPC, two particle identification arrays of time-of-flight (TOF-PID) and Cerenkov counters (HMPID) and a single-arm electromagnetic calorimeter (PHOS). The forward muon arm (2-9°, 7? = 2.5-4) consists of a complex arrangement of absorbers, a large dipole magnet, and twelve stations of tracking and triggering chambers. The set-up is completed by a set of zero-degree calorimeters (ZDCs) located far downstream in the machine tunnel, and a forward multiplicity detector (FMD) which covers a large fraction of the phase space (| 77 | < 4).

Magnet: The optimal choice for ALICE is a large solenoid with a rather weak field (about 0.2 T) allowing full tracking and particle identification inside the magnet. The available space has to be sufficiently large to accommodate the PHOS, which must be placed at a distance of « 5 m from the vertex, because of the large particle density. The magnet of the L3 experiment fulfils all these requirements. It can be left in its present position, centered 0.3 m below the

374 ALICE

LHC beam height. Inner Tracking System: The basic functions of the inner tracker - secondary vertex recon- struction of hyperon and charm decays, particle identification and tracking of low-momentum particles, and improvement of the momentum resolution - are achieved with six barrels of high- resoluton detectors. Because of the high particle density, the innermost four layers need to be truly two-dimensional devices, i.e. silicon pixel and silicon drift detectors. The outer layers at r fa 50 cm, will be equipped with double-sided silicon micro-strip detectors. Four of the layers will have analog readout for independent particle identification via dE/dx in the non-relativistic region, which will give the inner tracking system a stand-alone capability as a low p* particle spectrometer. Time Projection Chamber: The need for efficient and robust tracking of up to 12 000 charged particles within the acceptance has led to the choice of a TPC as the main tracking system. The inner radius of the TPC (r w 90 cm) is given by the maximum acceptable hit density (0.1 cm"2) the outer radius of 250 cm by the length required for a dE/dx resolution of < 7%. With this resolution the TPC can serve, in addition to tracking, as a detector for electron identification up to momenta of w 3 GeV/c. The design of the readout and of the end plates, based on ongoing developments for heavy-ion TPCs, as well as the choice of the operating gas, are optimized for good double-track resolution.

Particle Identification System: Particle identification over a large part of the phase space and for many different particles is an important design feature of ALICE. Two TOF technolo- gies, i.e. Pestov spark counters as the baseline design and parallel plate chambers (PPC) as the fall-back solution, are under study for the large area particle identification array (« 100m""2) at radius of about 3.5 m.

A second PID system (HMPID), of smaller acceptance and at larger radii, is optimized for the detection of high p* particles and will extend the accessible momentum range for inclusive particle spectra into the semi-hard region. It consists of a proximity-focussing RICH detector with liquid freon radiator, a novel solid photocathode and pad readout. Photon Spectrometer: The electromagnetic calorimeter will be located below the interaction region at 5 m from the vertex, and covers 18 m"2 with 36k channels of scintillating PbW(>4 crystals. These very dense crystals are needed to cope with the large particle density, and to have sufficient light-output to allow readout with silicon photodiodes. Forward Muon Arm: The forward muon arm is designed in order to cover the complete spectrum of heavy quark resonances, i.e. J/\P,!Jr',r',r". It will measure the decay of these resonances both in proton-proton and in heavy-ion collisions. The angular acceptance of the muon spectrometer is from 2° to 9° (7/ = 2.5-4). Its mass resolution will be better than 100 MeV at around 10 GeV, sufficient to separate all resonance states. It consists of a composite absorber, made with layers of both high- and low-Z materials, starting 90 cm from the vertex, a large dipole magnet with a 3 Tm field integral placed outside the L3 magnet, and 10 planes of thin, high-granularity tracking stations. A second absorber at the end of the spectrometer and four more detector planes are used for muon identification and triggering. The spectrometer is shielded throughout its length by a dense absorber tube, of about 60 cm outer diameter, which surrounds the beam pipe.

375 R&D

STATUS OF THE R&D PROGRAMME AS OF NOVEMBER 1997

NEXT PAGE(S) left BLANK GaAsworks RD-8

Beam: XI Approved: 07/FEB/91 16/APR/92 25/NOV/93 24/NOV/94 07/DEC/95 Status: Completed 31/JUL/97

Development of GaAs Detectors for Physics at the LHC

Aachen TH, I Phys.Inst., Bologna Univ./INFN, Florence Univ./INFN, Freiburg Univ., Glasgow Univ., Kaunas, Inst. of Tech., Lancaster Univ., Univ. ofModena, Prague Group, Rutherford Appleton Lab., Serpukhov IHEP, Sheffield Univ., Sydney ANSTO, Tomsk, S.P.T.L, Udine Univ./INFN, Vilnius, Semiconductor Phys. Inst., Vilnius Univ., Vilnius, Enterprise Venta

Aachen TH, I Phys.Inst. Alberts D. Braunschweig W. Breibach J. Chu Z. Karpinski W. Krais R. Kubidd Th. Luebelsmeyer K. Rente C. Syben O. Tenbusch F. Toporowski M. Wittmer B. Xiao W.J.

Bologna Univ./INFN Cavallini A. Cindolo F. Fiori F. Florence Univ./INFN Carraresi L. Colocci M. Nuti M. Pelfer P.G. Tartoni N. Vinattieri A. Freiburg Univ. Geppert R. Goeppert R. Haberla C. Hornung M. Irsigler R. Ludwig J. Passmore S. Rieth G. Rogalla M. Range K. Soeldner-Rembold A. Glasgow Univ. Bates R. Beaumont S.P. D'Auria S. O'Shea V. Raine C. Skillicorn I.O. Smith K.M. Kaunas, Inst. of Tech. Margelevicius J. Meshkinis Sh. Smetana S.

Lancaster Univ. Chilingarov A. Foster F. Jones B. Macpherson M. RatofF P. Santana J. Sloan T. Zdansky K. Univ. ofModena Canali C. Chiossi C. Nava F. Pavan P. Prague Group Dolezal Z. Jakubek J. Kubasta J. Mares J.Jiri. Pospisil S. Tomiak Z. Wilhelm I.

Rutherford Appleton Lab. Edwards M.

References DRDC/90-S8/P13, DRDC/9I-«/P13/Add.l, DRDC/92-12/SR, DRDC/93-37/SR, DRDC/94-32/SR, LHCC/95-57/LDRB/SR 379 GaAsworks RD-8

Serpukhov IHEP Chmill V. Chuntonov A. Tsyupa Yu. Vorobiev A.

Sheffield Univ. Booth C.N. Buttar C. Combley F.H. Dogiu M. Gray R. Hill G. Hou Y. Houston P. Manolopoulos S. Sellin P.J. Walsh S. Sydney ANSTO Alexiev D. Donnelly I. Vaivell K. Williams M.L. Tomsk, S.P.T.I. Aizenshtadt G.I. Budnitsky D.L. Gossen A.I. Khlndkov S.S. Koietskaya O.B Okaevitch L.S. Potapov A.I. Stepanov V.E. Tolbanov O.P. Tyagev A.V.

Udine Univ./INFN del Papa C. Vilnius, Semiconductor Phys. Inst. Matulionis A. Pozela J. Vilnius Univ. Kavaliauskiene G. Kazukauskas V. Kiliulis R. Rinkevicius V. Slenys S. Stotasta J.V. Vaitkus J. Vilnius, Enterprise Venta Navickas R.

Spokesman: del Papa C./Smith K.M. Contact: Smith K.M.

The aims of the collaboration are to investigate the available material options, performance and limitations of simple pad, pixel and microstrip GaAs detectors for minimum ionising particles with radiation hardness and speed which are competitive with silicon detectors. This new technology was originally developed within our university laboratories but now benefits from increasing industrial interest and collaboration in detector fabrication. Initial steps have also been taken towards the fabrication of GaAs preamplifiers to match the detectors in radiation hardness. The programme of work aims to construct a demonstration detector module for an LHC forward tracker based on GaAs.

380 SOI RD-9

Beam: Approved: 07/FEB/91 16/APR/92 15/APR/93 22/SEP/94 Status: Completed 31/DEC/96

A Demonstrator Analog Signal Processing Circuit in a Radiation Hard SOI-CMOS Technology

CERN

CERN AnghinoLfi F. Aspell P. Campbell M. Faccio F. Glasei M. Heyne E.H.M. Jarion P. Lemeilleur F. Meddeler G. Pengg F. Scharfetter L. Snoeys W.

Spokesman: Heyne Erik.H.M. Contact: Heyne Erik.H.M.

Radiation hardened SOI-CMOS (Silicon- On-Insulator, Complementary Metal-Oxide- Semiconductor planar microelectronic circuit technology) was a likely candidate technology for mixed analog-digital signal processing electronics in experiments at the future high lumi- nosity hadron colliders. We have studied the analog characteristics of circuit designs realized in the Thomson TCS radiation hard technologies HSOI3-HD. The feature size of this technology was 1.2 /zm. We have irradiated several devices up to 25 Mrad and 3.1014 neutrons cm"2. Gain, noise characteristics and speed have been measured. Irradiation introduces a degradation which in the interesting bandwidth of 0.01 MHz - 1 MHz is less than 40%. Some specific SOI phenomena have been studied in detail, like the influence on the noise spec- trum of series resistence in the thin silicon film that constitutes the body of the transistor. The technology has been discontinued by the manufacturer. Further studies on radhard technology are being conducted in the experiments RD29 and RD49. A new technology DMILL has been developed in France, also by LETI.

References DRDC/90-79/P21, DRDC/92-15/SR, DRDC/93-17/SR, DRDC/94-31/SR

381 rmai :i VMBbUfCRATB

'•I'.: !•] OPTIC AL DISTRIBUTION BACKBONE IMI1M

FRONT-END CONTROLLER OPTICAL RBRE HSTRlBUnON * 40.08 MHz dock NETWORK • Level 1 trigger accept

• Bunch crossing number hKXXJLATOR -4 ENCODER «* • Event counter reset RECEIVER JT AG — • Event number • Broadcast commands Fine and coarse • Subaddress programmable delays • Addressed parameters

TTC TRANSMITTER CRATE TTC distribution components

TTC transmitter clement*

on.il SI .ii.il M'bmiiiK luu-

Laser transmitter head module • 40.08 MHz CLOCK - DESKEWED CLOCK - LI THIG ACCEPT ANALOG TEST - BUNCH CTR RST ACCESS • EVENT CTR RST PORT - SRLADDR/DATA

• BUNCH No. STROBE C IN - - EV No. STROBE (LS) AKPUflCATKIN, AQC COUT - - EV No. STROBE (MS) CLOCKBECOVERY

: ' ' DESKEWING.. : [ , BUNCH No. I EVENT No. (LS) EVENT No. (MS)

PHASE COUNTER AH& SWiTG+f

: STRB(DSKWl) • ' • :• BUNCH COUNTER : . ;. ; : EVENT COUNTER : !i i I BCASTCMDS/DATA

STRB{DSKW2) • BCASTTESTCMD:

SUBADDRESS JTAQ TCK ~ TEST TMS ~ ACCESS TDO - ADDR/DATA STROBE PORT . PEGAJPQFP PACKAGE-(^17x f7Mm)

DATA

TTC transmitter crate ERROR 111 Kb LOCAL ADDRESS COMHQ PARAKETERS

TTCrx timing receiver ASIC

Experiment RD-12 Timing, Trigger and Control Systems for LHC Detectors

382 Beam: Approved: 04/APR/91 16/APR/92 17/JUN/93 16/JUN/94 15/JUN/95 Status: In-Progress

Timing, Trigger and Control Systems for LHC Detectors

Honeywell, Aldermaston, Birmingham Univ., CERN, Darmstadt GSI, Helsinki Univ. of Technology, Paris VI and VII Univ., Rutherford Appleton Lab., Lemo, Ecublens and Worthing, Valencia Univ.

Honeywell, Aldermaston Ashton M. Humphries J. Birmingham Univ. ViUalobos Baillie O. CERN Christiansen J. Cittolin S. Ermoline Y. Farthouat P. Jarton P. Marchioro A. Moreita P. Pollet L. Racz A. Taylor B.G. Darmstadt GSI Schmidt H.R. Helsinki Univ. of Technology Bouianov O. Paris VI and VII Univ. Genat J.-F. Rutherford Appleton Lab. HalsallR. Haynes W.J. Lemo, Ecublens and Worthing Hubert J.-C. McFarlane G. Valencia Univ. Ferrer-Prieto J.

Spokesman: Taylor B.G.

All the subdetectors of the proposed LHC experiments require quite extensive distribution systems for the transmission of timing, trigger and control (TTC) signals to large numbers of front-end electronics controllers from a single location in the vicinity of the central trigger References DRDC/90-62/P15, DRDC/91-22/P15 Add.I, DRDC/92-10/SR, DRDC/93-22/SR, DRDC/94-16/SR, LHCC/9S-26/SR, LHCC/97-29/SR

383 processor. The systems must control the detector synchronization and deliver the necessary fast signals and messages that are phased with the LHC clock, orbit or bunch structure. These include the bunch-crossing clock, level-1 trigger decisions, bunch and event numbers, as well as test signals and broadcast commands. A common solution to this TTC system require- ment is expected to result in important economies of scale and permit a rationalization of the development, operational and support efforts required.

LHCC/LEB Project RD12 is developing a multi-function optoelectronic TTC distribution sys- tem which can meet the requirements of the different subdetectors of the LHC experiments. A laser transmitter, modulator, encoder and VMEbus interface are being developed as well as a subminiature radiation-hard optical fibre connector, active device mount and photodetec- tor/preamplifier. A timing receiver ASIC is being designed which will generate the full range of decoded signals for front-end electronics controllers from a single input and a PMC receiver module is being developed to facilitate initial applications.

The system incorporates programmable coarse and fine deskew facilities to compensate for different particle flight times and detector, electronics, propagation and test generator delays. It can also transmit asynchronous slow controls and data such as individually-addressed channel enables and calibration parameters to several thousand destinations.

NEXT PA6E{S) left BLANK

384 Level 1 Address Trigger W|ite Read Pointers and Readout Control Controller

Digital —1 xl filter

Level 2 Data out and Level 3

Analog input I

Simplified block diagram of FERMI

Analog input

calorimeter linputs

control, clock, LVL 1 decision . UJ|

optical fibres |

R/O Processors FERMI system environment LVL 1 Trigger Processor

Experiment RD-16 A Digital Front-End and Readout Microsystem for Calorimetry at LHC

386 FERMI RD-16

Beam: Approved: 04/APR/91 30/JUN/92 17/JUN/93 16/JUN/94 15/JUN/95 Status: Completed

A digital Front-End and Readout Microsystem for calorimetry at LHC

CERN, Univ. ofLinkoping, Milan Ec. Poly., Pavia Univ./INFN, Royal Inst. of Tech. Stockholm, Stockholm Univ.

CERN Benetta R. Hansen M. Kurzbauer W. Lofctedt B. Petit P. Univ. ofLinkoping Bodo P. Gong S. Hentzell H. Persson S.T. Svensson C. Yuan J. Milan Ec. Poly. Alippi C. Antola A. Breveglieri L. Dadda L. Piuri V. Salice F. Sami M. Stefanelli R.

Pavia Univ./INFN Biigati S. Cattaneo P. Gatti U. Goggi V.G. Maloberti F. Polesello G. Totelli G.

Royal Inst. of Tech. Stockholm Keiek A. Lund-Jensen B. Stockholm Univ. Agnvall S. Berglund S. Bohm C. Engstroem M. Ljunggren M. Yamdagni N.

Spokesman: Lofstedt B. Contact: Lofstedt B.

Front-end signal processing for calorimetric detectors is essential in order to achieve adequate selectivity in the trigger function of an LHC experiment, with data identification and com- paction before readout being required in the harsh, high rate environment of a high luminosity hadron machine. Other crucial considerations are the extremely wide dynamic range and band- width requirements, as well as the volume of data to be transferred to following stages of the trigger and readout system. These requirements are best met by an early digitalization of the detector information, followed by integrated digital signal processing and buffering functions covering the trigger latencies. The FERMI (Front-End Readout Microsystem) is a digital implementation of the front-end and readout electronic chain for calorimeters. It is based on dynamic range compression, high

References DRDC/90-74/P19, DRDC/92-26/SR, DRDC/93-S1/SR, DRDC/94-17/SR, DRDC/94-37/M26, LHCC/95-28/SR 387 FERMI RD-16 speed A to D converters, a fully programmable pipeline/digital filter chain, local storage and trigger functions. FERMI also acts as the interface to the Trigger and DAQ systems. In the current demonstrator design six parallel acquisition channels consisting of a non-linear or switched multi-gain amplifier for 16/17 bit to 12 bit dynamic range compression. The signals are then sampled and digitised by 40 MHz, 12-bit ADCs. After linearisation and absolute cali- bration in look-up tables or add-multiply processes, the data are stored in dual port memories until the decision is taken by the first level trigger.

For the level-1 trigger, the data from all enabled channels are discriminated, added and summed over time to emulate pulse integration. The readout logic provides full time frames, up to 16 samples long, and/or digitally filtered data to the second and third level stages. An integration of FERMI into a multi-chip Silicon-on-Silicon module (MCM-D) is currently under way using the flip-chip ASIC mounting technology. This solution allows a very high level of integration of complex functions with an excellent flexibility in mixing technologies for the different functional blocks. Since FERMI is designed to be mounted in the immediate vicinity of the calorimeter, it incor- porates a high degree of fault-tolerant circuitry and programmability, as well as the possible use of a rad-hard or rad-tolerant technologies. Tests have been done together with detector prototypes for the ATLAS LAr and Tiles as well as with CMS crystal ECAL, and the results show that FERMI provides more than adequate performances for these detectors. More tests are foreseen for the coming year.

388 CRYSTAL CLEAR RD-18

Beam: X3,HY Approved: 04/APR/91 06/FEB/92 30/SEP/93 09/FEB/95 Status: In-Progress

A Study of New Fast and Radiation Hard Scintillators for Calorimetry at LHC

Aachen TH, I Phys.Inst., Ancona INFN, Annecy LAPP, Bombay TIFR, IIHE ULB-VUB, Brussels, Bucharest, Inst. for Atomic Physics, CERN, Delft Tech. Univ., Geneva Univ. Hospital, Lawrence Livermore Nat. Lab., Lund Univ., Univ. ofLyon I (LPCML), Univ. ofLyon I (IPNL), Milan Univ./INFN, LPNHE, Ecole Poly/CNRS-IN2P3, Palaiseau, CALTECH, Pasadena, Prague, FZU-Inst. ofPhys. Acad. of Sci., Rome LNFN, St. Petersburg, NPI, Saclay DAPNIA

Aachen TH, I Phys.Inst. Hillemanns H. Kirn T. Lubelsmeyei K. Schmitz D. Schwenke J. WalliaffW. Ancona INFN Majni G. Paone N. Rinaldi D. Annecy LAPP Gautheion F. Lebeau M. Schneegans M. Vialle J.P. Vivargent M. Bombay TIFR Baneijee S. Ganguli S.N. Gupta S.K. Gurtu A. Mangla S. Mazumdai K. Saikar S. Sudhakar K. IIHE ULB-VUB, Brussels Beckers T. Bruyndonckx P. Tavernier S. Xuan L. Zhang S. Bucharest, Inst. for Atomic Physics Dafinei I. Topa V. CERN Auffray E. Le Goff J.-M. Lecoq P.

Delft Tech. Univ. Dorenbos P. van Eyk C. Geneva Univ. Hospital Morel C. Lawrence Livermore Nat. Lab. Fuchs B.A. Holdener F. Loomis G. Manger G.J. Shi X. Winter N. Wuest C.R. Lund Univ. Jonsson L. Kiim M. Martinson I. Svensson G.

References DRDC/91-15/P27, DRDC/92-02/SR, DRDC/93-31/SR, DRDC/94-53/SR

389 CRYSTAL CLEAR RD-18

Univ. of Lyon I (LPCML) Belsky A. Dujaidin C. Gacon J.C. Moine B. Pedrini C.

Univ. ofLyonl(IPNL) Buiq J.P. Chemarin M. Depasse P. El Mamouni H. Fay J. Goyot M. Die B. Lebrun P. Madjar N. Martin J.P. Sahuc P. Walder J.P. Milan Univ./INFN Martini M. Meinardi F. Spinola G. Vedda A.

LPNHE, Ecole Poly/CNRS-IN2P3, Palaiseau Mine P. Vasileiadis G. CALTECH, Pasadena Gratta G. Ma D.A. Mount R. Newman H. Shevchenko S. Zhu R. Prague, FZU-Inst. of Phys. Acad. of Sci. Mares J.A. Nikl M. Polak K. Rosa J. Rome INFN Baccaro S. Barone L. Borgia B. Capone A. D'Atanasio P. De Notaristefani F. Mattioli M.

St. Petersburg, NPI Samsonov V. Seliverstov D. Yanovski V. Saclay DAPNIA Chipaux R. Geleoc M. Rebourgeard Ph.

Spokesman: Tavernier S. Contact: Schneegans M.

In the recent past, several scintillating crystals have been developed and mass-produced for large high resolution electromagnetic calorimeters, such as Nal, Csl, and BGO. In the new generation of ee and pp colliders, the very high design luminosities bring new constraints on the crystals: they must have a fast response, higher resistance to radiation, and be as dense as possible for calorimeter compactness. From our systematic studies of scintillation properties and radiation damage mechanisms in scintillators, several fluoride crystals or glasses should have the wanted properties. The purpose of this R&D program is to study these materials and the conditions of their mass production in order to find the best suited scintillator for calorimetry at future colliders.

NEXT PAGEfS} left BLANK

390 Fig. 1 Reconstruction using 7 pixel planes in the semiconductor telescope of RD19 and WA97 in the Omega spectrometer with the magnetic field off. All recorded hits in the 7 planes are shown as dots and 153 tracks from a high multiplicity Pb ion interaction have been reconstructed. Each detector plane measures 53x58mm2, and consists of 72 000 sensing elements, read out by 72 chips with in total nearly 100 000 transistors. Each element has dimensions 50 p,m x 500 \im.

Experiment RD-19 Development of Hybrid and Monolithic Silicon Micropattern Detectors

392 Beam: Approved: 27/JUN/91 06/FEB/92 ll/FEB/93 10/FEB/94 09/FEB/95 Status: In-Progress

Development of Hybrid and Monolithic Silicon Micropattern Detectors

Amsterdam NIKHEF, Athens Demokritos/NRC, Bari Univ./INFN, Bonn Univ., CERN, UC Davis, Dortmund Univ., Freiburg FhGIAF, Genoa Univ./INFN, Glasgow Univ., Karlsruhe Univ., Kosice Phys. Inst., London, Imperial College, Marseille CPPM, Milan Univ./INFN, Univ. ofModena, Padova Univ./INFN, Paris College de France, Perugia Univ./INFN, Pisa Univ./INFN, Prague Group, Rome Univ.I/INFN, Trieste Univ./INFN, Udine Univ./INFN, Warsaw Inst.Nucl.Res., Wuppertal Univ., Yerevan Phys.Inst., Zurich ETH

Amsterdam NIKHEF Buis E.J. Meddeler G.J. Van Eijk B. Athens Demokritos/NRC Charalabidis N. Loukas D. Bari Univ./INFN Catanesi M.G. Corsi F. Di Bari D. Elia D. Lenti V. Marzocca C. Minervini D. Muciaccia M.T. Saladino S. Simone S. Tomasicchio G. Bonn Univ. Andre F. Desch K. Fischer P. Keil M. Meuser S. Neeser X. Raith B. Wermes N. CERN Beker H. Campbell M. Cantatore E. Casagrande L. Chesi E. Grigoriev E. Gys T. Heijne E.H.M. Jarron P. Lemeilleur F. Lenzen G. Letheren M. Lisowski B. Martinengo P. Mikulec B. Puertolas D. Quercigh E. Ropotar I. Shahoian R. Snoeys W. Sonderegger P. UC Davis GrimG. Lander R. Mani S. Pellett D.E. Dortmund Univ. Becker C. Goessling C. Wunstorf R. Freiburg FhGIAF Geppert R. Ludwig J. Runge K. Genoa Univ./INFN Barberis D. Darbo G. Gagliardi G. Morettini P. Musico P. Osculati B. Rossi L.

References DRDC/90-81/P22, DRDC/92-S/SR, DRDC/93-6/SR, DRDC/93-54/SR, DRDC/94-51/SR 393 Glasgow Univ. Bates R. Da Via C. Manolopoulos S. O'Shea V. Pernigotti E. Smith K. Watt J. Karlsruhe Univ. De Boer W. Maehlum G. Meyer S. Kosice Phys. Inst. Luptak M. London, Imperial College Hassard J. Howard A.S. Marseille CPPM Blanquart L. Bonzom V. Clemens J.C. Delpierre P. Gaily Y. Hallewell G. Mouthuy T. Potheau R. Rozanov A. Milan Univ./INFN Perasso L. Redaelli N. Univ. of Modena Alberigi A. Canali C. Nava P. Vanni P. Padova Univ./INFN Antinori F. Grassi T. Morando M. Segato G.F. Paris College de France Boutonnet C. Jaeger J.J. Waisbard J. Perugia Univ./INFN Bilei G.M. Checcucci B. Pisa Univ./INFN Batignani G. Bottigli U. Fantacci M.E. Forti F. Messineo A. Stefanini A. Prague Group JakubekJ. LeitnerR. MasikJ. PospisilS. Ridky J. SichoP. SinorM. SopkoB. Stekll. TomasekL. VrbaV. Rome Univ.I/INFN Di Liberto S. Mazzoni A. Meddi F. Trieste Univ./INFN Bosisio L. Udine Univ./INFN D'Auria S. Del Papa C. Pauletta G. Warsaw Inst.Nucl.Res. Sobczynski C.W. Wuppertal Univ. Becks K.H. Elberich J. Gerlach P. Glitza K.W. HeuserJ.M. Kersten S. Kind H.-P. Kramer P.-H. Yerevan Phys.Inst. Danielyan V. Vardanyan H. Zurich ETH RoeserU. Viertel G.

394 Associated Companies C.de Raad Iseli, Smart Silicon Systems, Lausanne F. Krummenacher, Smart Silicon Systems, Lausanne B. Dierickx, IMEC, Leuven E. Beyne, IMEC, Leuven G. Humpston, GEC-Marconi Materials, Northamptonshire C. Brieley, GEC-Marconi Materials, Northamptonshire P. Burger, Canberra Semiconductor N.V., Olen M. Keters, Canberra Semiconductor N.V., Olen

Spokesman: Heijne Erik H.M. Contact: Heijne Erik H.M.

In a collaborative effort between institutes and microelectronics industry we are undertaking the development of true 2-dimensional semiconductor particle detectors with on-chip signal processing and information extraction: the so-called micropattern detector. This detector is able to cope in a robust way with high multiplicity events at high rates, while al- lowing for a longer detector lifetime under irradiation and a thinner sensitive depletion region. Therefore, it will be ideally suited for the complicated events in the LHC p-p collider experi- ments. Following a 'stepping stone' approach several telescopes of pixel planes, totalling now 600 cm2 with > 1 M elements have been used in the WA97, NA50 and NA57 lead ion experi- ments. This new technology has facilitated the tracking considerably (see Fig.l). Not only Si but also GaAs and possibly diamond matrices can be connected to the readout matrix. Tests with GaAs pixel detectors with the RD-19 readout have been successful. The same devices have been used to detect photons coming from a scintillating fibre bundle or in X-ray images. They have been used as the anode array in a vacuum phototube or as a light detector behind an image intensifier.

395 Optical link and readout configuration

Transmitter amplifiers Detector array 256:1 analogue pi; (4-8 ch) CLK.L1,CTL

4-8' Front End Hybrid analogue or digital = 100m Back End Readout Module

CLK,L1,CTL TTC

Receiver sparse scan array processing buffering (compression)

Investigated technologies for optical transmission a) Direct modulation Laser transmitter Receiver

b) External modulation Transceiver Modulator transmitter

Experiment RD23 Optoelectronic Analogue Signal Transfer for LHC Detectors

396 OPTOELECTRONICS RD23

Beam: Approved: 06/FEB/92 30/SEP/93 24/NOV/94 07/DEC/95 20/MAY/97 Status: In-Progress

Optoelectronic Analogue Signal Transfer for LHC Detectors

Birmingham Univ., CERN, Ecole Polytech. Fed. Lausanne (EPFL), London, Imperial College, Rutherford Appleton Lab., University of Siegen

Birmingham Univ. Dowell J.D. CERN Arbet-Engel V. Cervelli G. Gill K. Mommaert C. Stefanini G. Vasey F. Ecole Polytech. Fed. Lausanne (EPFL) Reinhart F.K. London, Imperial College Batten J. Hall G. Troska J. Rutherford Appleton Lab. Baiid A. Halsall R. Quinton S. University of Siegen Holder M.

Spokesman: Stefanini G./Vasey F. Contact: Vasey F.

The aim of the project is to develop fibreoptic links for analogue (and digital) signal transfer from the front-end electronics in tracking detectors at the LHC. The collaboration has pursued the development of reflective links in which the transmitter is an asymmetric Fabry-Perot modulator (AFPM). Prototypes of the transmitter and of an hybridized transceiver (laser diode, coupler, receiver) have been assembled and tested. An alternative approach, based on a more readily available technology, is currently being investi- gated. In this case the transmitter is an edge-emitting laser diode.

Results of long-term irradiation effects on optoelectronic components and fibres have been published. The systematic characterisation of optical links in realistic operating conditions is being pursued. Evaluation analogue and digital link prototypes are being developed.

References DRDC/91-41/P31, DRDC/93-35/SR, DRDC/94-38/SR, LHCC/9S-61/LERB/SR, LHCC/97-30/SR 397 RADSTONE/CETIA INTEL P6 SYSTEMS FORCE OLIVETTI CETXA or NEW DESIGN USING SINGLE APPLE MAC 9500 ffiMRS... PCI-VME chip (ALMA, UNIVERSE) DEC ALPHA PENTIUM

Experiment RD24 Application of the Scalable Coherent Interface to Data Acquisition at LHC

398 Beam: Approved: 06/FEB/92 17/JUN/93 16/JUN/94 16/AUG/95 29/AUG/95 Status: Completed 02/OCT/96

Application of the Scalable Coherent Interface to Data Acquisition at LHC

CERN, Lawrence Berkeley Lab., Rutherford Appleton Lab., Oslo Univ., IFIC, Valencia, Valencia, Polytechnique Univ., DEC Joint Project at CERN, Dolphin SCI Tech. A.S., Oslo

CERN Bogaerts A. Ermoline Y. Fernand.es C. Liebhart M. Muller Hans. Werner P. Lawrence Berkeley Lab. Lindenstruth V. Rutherford Appleton Lab. Middleton R.P. Wickens F.J. Oslo Univ. Kristiansen E.H. Nordstrom R. Opheim H.L. Skaali B. Wormald D. Wu B.

IFIC, Valencia Gonzalez-Millan V. Lopez-Amengual J.M. Sanchis-Peris E. Valencia, Polytechnique Univ. Ferrer-Prieto J. Mora F. Sebastia A. DEC Joint Project at CERN Guglielmi A. Dolphin SCI Tech. A.S., Oslo Kohmann H. Lochsen K.

Spokesman: Bogaerts A./Mnller Hans Contact: Bogaerts A./Muller Hans

The RD24 activities in 1996 were dominated by test and integration of PCI-SCI bridges for VME-bus and for PC's for the 1996 milestones. In spite of the dispersion of R.D24 membership into the ATLAS, ALICE and the proposed LHC-B experiments, collaboration and sharing of resources of SCI laboratories and equipment continued with excellent results and several doctoral theses. The availability of cheap PCI-SCI adapters has allowed construction of VME

References DRDC/91-45/P33, DR.DC/92-6/P33/Add.l, DRDC/92-21/P33/Add.2, DRDC/93-20/SR, DRDC/94-27/Add.3, DRDC/94-23/SR, LHCC/95-42/SR, LHCC/95-52/SR/Add.l 399 multicrate testbenches based on a variety of VME processors and work-stations. Transparent memory-to-memory accesses between remote PCI buses over SCI have been established under the Linux, Lynx-OS and Windows-NT operating systems as a proof that scalable multicrate systems are ready to be implemented with off-the-shelf products. Commercial SCI-PCI adapters are based on a PCI-SCI ASIC from Dolphin. The FPGA based PCI-SCI adapter, designed by CERN and LBL for data acquisition at LHC and STAR allows addition of DAQ functions.

The step from multicrate systems towards a scalable DAQ system is equally becoming reality with the imminent availability of scalable SCI switch fabrics which were subject of MODSIM modelling during the last years. RD24 had 4-way switches available for test in 1995 and is expecting to perform reality tests with a new rack-mountable 16-way switch fabric for the ATLAS 2nd level trigger tests. An important step in the SCI roadmap is the new generation 2 Watt CMOS chip (LC-2) from Dolphin with 500 Mbyte/s link performance and LVDS signalling. LVDS, a standard in the SCI family has been adopted by Telecom and ASIC manufacturers such as LSI Logic to re- place interconnections which were previously only possible in ECL technology. This innovation permits the same 1/2 Gbyte/s link performance as the initial 30 Watt GaAS SCI chip (which RD24 was using in 1993). Low cost, low power SCI link controllers with 8 bit wide LVDS links are equally prepared by ISS Interconnect Solutions in the USA. Desktop SMP, a trend to interconnect multiple CPU boards (such as quad Pentium-Pro) via SCI to maintain shared memory (NUMA architectures) is progressing in industry and Research Institutions. Data General uses SCI as interconnect for Intel's 4-way P6/P7 motherboards via an SCI adapter which plugs directly into the Processorbus. Sequent Computers, who will soon start shipping cache-coherent CC-NUMA architectures with direct SCI node adapters to the Pentium-Pro bus, report that access over SCI via a L3 cache are faster than accesses to local RAM. SUN Microsytem's Cluster Channel, a 100 Mybte/s Intercommunication technology is based on Dolphin's SCI technology and demonstrates the growing acceptance of SCI as a commercial standard. Digital Equipment has started an Alpha-based CPU farm project with the ATLAS experiment where subfarms are planned to be interconnected via SCI and ATM adapters. Important work is also going on on the physical SCI links in order to standardize on solutions which are adapted to SCFs high speed requirements and which allow different SCI technologies to interoperate. A spinoff of RD24 is the international ISO-IEC working group No 15 which was initiated by RD24 members in order to define a standard for harsh application environments (i.e. LHC underground area). Of particular interest are the new possibilities to replace copper cables by parallel fiber links. Both Motorola and Siemens, who have solutions for parallel fiber links which directly interface to SCI, joined the ISO-IEC working group.

Another spinoff of the RD24 PCI-SCI bridge design is the design of the RD12 Timing&Control (TTC) PCI mezzanine (PMC). This adapter card is based on the design experience gained with the PCI-SCI mezzanine card and will allow to equip standard VME processors with the common TTC fiber network foreseen for the LHC experiments. Several SCI activities and projects have started in Europe: Examples are the PASHA ECC Project on scalable computers, the SMILE project at TUM/MPI Munich and the proposed SISCI Esprit project on SCI software. ••»«,.,.«..,•.,^jr,^«arju NEXT PAGE'S) left BLANK 400 radiator

collection electrode

proximity gap

cathode mesh anode Photosensitive Charged particle Fig. 1 cathode pads

1 2 3 II -It HM BEAM

1- MICROSTRIP SILICON DETECTOR X/Y 100 micron pitch, 40x40 mm2 2- TARGET AND MULTIPLICITY TRIGGER 3- MICROSTRIP SILICON DETECTOR X/Y/U/V 100/200 micron pitch, 40x40 mm2 4- MWPC PAD READOUT 30X30 cm2 5- MVVPC PAD READ OUT 30X30 cm2 6- FAST RICH 50X50 cm2 7- MICROSTRIP SILICON DETECTOR U/V 200 micron pitch, 40x40 mm2 Fig. 2

Experiment RD26 Development of a Large Area Advanced Fast RICH Detector for Particle Identification at the Large Hadron Collider Operated with Heavy Ions.

402 CSIRICH RD26

Beam: Til Approved: 16/APR/92 30/SEP/93 09/FEB/95 Status: In-Progress

Development of a Large Area Advanced Fast RICH Detector for Particle Identification at the Large Hadron Collider Operated with Heavy Ions

Bari Univ./Polytechnic/INFN, CERN, Coimbra University/LIP, Giessen Univ., Ecole Polytech. Fed. Lausanne (EPFL), Lund Univ., Moscow, Inst. Nucl. Research (INR), Munich TU, Padova Univ./INFN, LPNHE, Ecole Poly/CNRS-IN2P3, Palaiseau, Rome Sanita/INFN, Saclay DAPNIA, Trieste Univ./INFN, Weizmann Inst. Rehovot, Zagreb Rudjer Boskovic Inst.

Bari Univ./Polytechnic/INFN Nappi E. Posa P. Scognetti T. Tomasicchio G. Valentini A. di Mauro A. CERN Braem A. Chesi E. Piuz F. Santiard J.C. Schukraft J. Sgobba S.

Coimbia University/LIP Ferreixa-Maiques R. Policarpo A. Ribeiio R.S. Giessen Univ. Hejny W. Kuehn W. Novotny R. Riess S.

Ecole Polytech. Fed. Lausanne (EPFL) Beigei H. Coluzza C. Margaritondo G. Lund Univ. Gustafsson H.A. Oskaisson A. Svensson O. Moscow, Inst. Nucl. Research (INR) Kurepin A. Munich TU Friese J. Gillitzer A. Eomolka J. Mayr P. Zeitelhack K.

Padova Univ./INFN Martinelli R. Peruzzo L. Sartori G. Sartori P. LPNHE, Ecole Poly/CNRS-IN2P3, Palaiseau Bonneaud G. Mine Ph. Vasileiadis G. Rome Sanita/INFN Garibaldi F.

References DRDC/92-3/P35, DRDC/93-36/SR, DRDC/94-49/SR 403 CSIRICH RD26

Saday DAPNIA Besson P. Bourgeois Ph.

Trieste Univ./INFN Biadamante F. Weizmann Inst. Rehovot Breskin A. Buzulutskov A. Chechik R. Zagreb Rudjer Boskovic Inst. Ljubicic A. Jr. Paic G. Tustonic T.

Spokesman: Paic G./Piuz F.

A proposal is made for R&D support to investigate the feasibility of a fast RICH detector with pad readout for low interaction rate applications (10-100 kHz). Such conditions are met specifically at the Large Hadron Collider when used in heavy ion mode as well as at a number of other applications (tau-Charm, Phi and B factories, SIS and others).

Recently a very significant development occurred when solid photocathodes with quantum efficiencies comparable to TMAE vapour, and compatible with gas counters became available. This kind of photocathode could significantly modify the RICH design and operation meaning that in the proximity mode geometry, one quartz window would be eliminated (Figure 1) and that the detector would operate at ambient temperature without the problems connected with the use of the agressive TMAE vapour at high temperature.

The main objectives are:

- to develop a complete chain of adequate techniques for deposition of photosensitive materials (Csl and similar) on pad electrodes, - to study the radiation hardness and ageing characteristics, - to optimize the detector for photon detection efficiency, noise contributions, and radiation thickness; - to develop a specific VLSI front end electronics matched to pad readout of MWPC's with a large number of channels.

Special attention will be paid to the operation of the detector in a high multiplicity environment (> 40 m~2). To achieve these multihit events studies, we shall perform tests on a 50x50 cm2 prototype at the SPS with hadron beams in the setup shown in Figure 2, equipped with a tracking facility suited to the RICH readout.

404 RD27

Beam: Approved: 30/JUN/92 30/SEP/93 09/FEB/95 Status: In-Progress

First-Level Trigger Systems for LHC Experiments

Birmingham Univ., CERN, Heidelberg Univ., Univ. of Linkoping, Munich MPI, London, Queen Mary & WestSeld College, London, Royal HoUoway and Bedford N.C., Rome Univ.I/INFN, Rome Univ.II/INFN, Rutherford Appleton Lab., Stockholm Univ., Wisconsin Univ.

Birmingham Univ. Connors A. Garvey J. Hillier S. Rees D. Staley R. Watson A. CERN Brawn I. Corre A. Ellis N. Farthouat P. Petrolo E. Schuler G. Heidelberg Univ. Hanke P. Hoelscher A. Kluge E.-E. Mass A. Meier K. Rensch B. Wunsch M. Univ. of Linkoping Bodo P. Sundblad R. Svensson C. Yuan J. Munich MPI Fent J. Oberlack H. Schacht P. London, Queen Mary & Westfield College Eisenhandler E. Land on M. Pentney M. London, Royal Holloway and Bedford N.C. Green B. Strong J.

Rome Univ.I/INFN Gennari E. Nisati A. Piccinelli G. Veneziano S. Zanello L. Rome Univ.II/INFN Cardarelli R. Di Ciaccio A. Rutherford Appleton Lab. Edwards J. Gee N. Gillman A. Hatley R. Leake J. Perera V. Shah T. Stockholm Univ. Appelquist G. Bohm C. Engstrom M. Hellman S. Holmgren S.-O. Johansson E. Prytz K. Silverstein S. Yamdagni N. Zhao X.

Wisconsin Univ. Badgett W. Dasu S. Foudas C. Jaworski M. Lackey J. Smith W.

References DRDC/92-17/P37, DRDC/92-29/M19, DRDC/92-46/M20, DRDC/93-32/SR, DRDC/94-52/SR

405 RD27

Spokesman: Ellis N. Contact: Ellis N.

We are carrying out a broad-based programme of R&D on level-1 trigger systems for LHC experiments, including subtrigger processors for muon and calorimeter triggers, the central trigger processor, and the interaction with the level-2 trigger. The R&D includes detailed design studies for the whole level-1 trigger system and prototyping of key components. Beam tests have already been made with prototype calorimeter and muon trigger processors.

NEXT PAGE(S)

406 SCHEMATICS OF A MICRO-STRIP GAS CHAMBER

IT-

— oVb

CAPABILITY FOR DIFFERENT SUBSTRATES:

D263+Lead Silicate 15 ohm/square

Moscow Glass Moscow Glass 1012 ohm cm 10' ohm cm

103 Rate (mm'2 s1)

Experiment RD28 Development of Gas Micro-Strip Chambers for Radiation Detection and Tracking at High Rates

408 GAS MICROSTRIPS RD28

Beam: T7 Approved: 30/JUN/92 30/SEP/93 09/FEB/95 Status: Completed 17/FEB/96

Development of Gas Micro-Strip Chambers for Radiation Detection and Tracking at High Rates

Aarhus Univ., Univ. of Michigan, Amsterdam NIKHEF, INP and IME ofNCSR Demokritos, Attiki, Batavia, Fermilab (FNAL), Birmingham Univ., IIHE ULB-VUB, Brussels, Bratislava, Comenius Univ., CERN, Coimbra University/LIP, Cracow, FPNT, Univ. Mining & Metallurgy, Dubna JINR, Northwestern Univ., Frascati Nat.Lab. INFN, Gran Sasso Nat. Lab./INFN, Heidelberg MPI, Kosice Phys. Inst., Legnaro Nat.Lab./INFN, Liverpool Univ., London UCL, Univ. of Lyon I (IPNL), Manchester Univ., Mons Univ.- Hainaut, Moscow ITEP, Moscow Lebedev Phys.Inst., Moscow State Univ. NPI, Novosibirsk, Budker Inst.Nucl.Phys., Ottawa, Carleton CRPP, Carleton Univ. - Ottawa, Prague, FZU-Inst. of Phys. Acad. of Sci., Weizmann Inst. Rehovot, Rutherford Appleton Lab., Saclay DAPNIA, SUNY Stony Brook, Santiago de Compostela Univ., Strasbourg CRN, Strasbourg CRN/ULP, Texas A&M Univ., Torino Univ./INFN, Vancouver, TRIUMF

Aarhus Univ. Mollet S. Sorensen G. Uggerhoj E.

Univ. of Michigan Amos N. Amsterdam NIKHEF Bos K. Dawn C. Hattjes F. Schmitz J. Udo F. INP and IME ofNCSR Demokritos, Attiki Maltese* A. Maikou A. Misiakos K. Tsoi E. Zevgolatakos E.

Batavia, Fermilab (FNAL) Peskov V. Birmingham Univ. McMahonT.J. Wilson J.A. IIHE ULB-VUB, Brussels Van Doninck W. Vander Velde C. Bratislava, Comenius Univ. Hlinka V. Holy K. Pikna M. Sitar B. Szarka I. CERN Bouclier R. Garabatos C. Meyer T. Price M. Ropelewski L. Sauli F.

References DRDC/92-30/P41, DRDC/92-34/P41/Add.l, DRDC/93-34/SR, DRDC/94-45/SR, LHCC/96-18/SR 409 GAS MICROSTRIPS RD28

Coimbia Univeisity/LIP Feireiia Marques R. Fiaga M. Leite S. Policaipo A. de Lima E. Cracow, FPNT, Univ. Mining & Metallurgy Bednaiek B. Jelen K. Kisielewska K. Kowalski T. Rulikowska-Zarebska E. Zajac J.

Dnbna JINR Bychkov V. Golutvin I. Ivanov A. Movtchan S. Pechekhonov V. Preda T. Northwestern Univ. Gobbi B. Frascati Nat.Lab. INFN Bencivenni G. Felici G. Gran Sasso Nat. Lab./INFN Gustavino C. Heidelberg MPI Brons S. Brueckner W. Godbersen M. Heidrich M. Paul S. Trombini A. Werding R. Kosice Phys. Inst. Javorek M. Kladiva E. Safarik K. Sandor L. Legnaro Nat.Lab./INFN Dalpiaz P. Delia Mea G. Rigato V.

Liverpool Univ. Biagi S.J. Booth P.S.L. Bowcock T. Jackson J.N. Jones T. Smith N.A. London UCL Bignall Ph. Bullock F. Esten M. Giddings J.

Univ. of Lyon I (IPNL) Bedjidian M. Contardo D. Descroix E. Haroutunian R. Smadja G.

Manchester Univ. Duerdoth I. Ibbotson M. Loebinger F. Snow S. Thompson R. Mons Univ.- Hainaut Daubie E. Defontaines F. Pingot O.

Moscow ITEP Chumakov M. Grishkin Yu.L. Martemyanov A.N. Pogorelko O.I. Pozdyakov S. Shishov P. Ushakov V. Moscow Lebedev Phys.Inst. Ermilova V.K. Fedorchuk R.V. Grichine V. Komar A.A. Kostin A. Merzon G.I. Paschenko G.S. Moscow State Univ. NPI Kramarenko V.A. Larichev A.A. Orfanitskiy S.V. Smirnova L.N. Zhukov V.Yu. Novosibirsk, Budkei Inst.Nucl.Phys. Bondar A.E. Groshev V.R. Minakov G.D. Onuchin A.P. Pestov Yu.N. Shekhtman L.I. Sidorov V.A. Ottawa, Carleton CRPP Dizit M.S. Oakham G.K. Carleton Univ. - Ottawa Armitage J.A. Karlen D. Stuart G. Taylor S.

410 GAS MICROSTRIPS RD28

Prague, FZU-Inst. of Phys. Acad. of Sci. Bohm J. Nemecek S. Smizanska S. Sopko B. Zavada P.

Weizmann Inst. Rehovot Breskin A. Chechik R. Pansky A. Rutherford Appleton Lab. Baines J. Connolly J. Edwards M. Payne B. Seller P. Tappern G. Thompson J.C. Saclay DAPNIA Mangeot Ph. Rebourgeard Ph.

SUNY Stony Brook Finocchiaro G. Santiago de Compostela Univ. Adeva B. Angeles Lopez M. Garcia G. Gomez F. Perez C.A. Plo M.

Strasbourg CRN Blaes R. Brom J.-M. Fang R. Kachelhoffer T. Riester J.-L.

Strasbourg CRN/ULP Grob J.J. Heisei T. Mesli A. Romero A. Schunk J.P. Stuck R. Texas A&M Univ. Barasch E.F. Mclntyre P. Pang Y. Trost H.J.

Torino Univ./INFN Alunni L. Busso L. Costa S. Fara G. Gervino G. Manfredotti C. Manzin G. Vancouver, TRIUMF Salomon M.

Spokesman: Sauli F. Contact: Ropelewski, L.

Micro-Strip Gas Chambers (GMSC) are a promising high rate, high resolution position detec- tor suited for use in high luminosity hadron collider experiments, as general purpose tracker or to improve the performances of preshower counters, transition radiation and inner muon detectors. Large GMSC arrays have been included in proposed LHC and SSC experimental setups. The operating characteristics of GMSC make their use very attractive also for detec- tors at tau/beauty/charm factories, as well as for synchrotron radiation facilities and medical applications. At the present state of the art, some problems limiting the usefulness of mi- crostrip chambers are the observed gain changes due to charging up of the support, possible long-term degradation due to ageing, limited sizes imposed by fabrication technologies and un- availability of dedicated high-speed, high-density readout electronics. Limited experience exists of operation of GMSC in real experimental conditions, and little if anything is known about performances in detecting inclined tracks and operation in strong magnetic fields. The present R&D proposal tries to address these issues, namely:

- Comparative tests of different substrata, both rigid (glass) and flexible (thin polymer foils); - Optimization of thin detectors for transition radiation detectors; 411 GAS MICROSTRIPS RD28

Measurement of the operating characteristics in a wide range of experimental conditions, including magnetic fields; Optimization of gas and construction materials to prevent ageing problems, in collaboration with RD-10; Development of a technology allowing affordable construction of large size GMSC, in collab- oration with the industry; Development of a dedicated readout electronics, based on the existing silicon microstrip cir- cuits.

412 DMILL RD29

Beam: Approved: 30/JUN/92 25/NOV/93 20/APR/95 ll/MAR/97 Status: In-Progress

A Mixed Analog-Digital Radiation Hard Technology for High Energy Physics Electronics: DMILL (Durci Mixte sur Isolant Logico-Lineaire)

CEA, DSM/DAPNIA, Saclay, CEA-DTA-LETI, Grenoble, CEA-Bruyeres-le-Chatel, Marseille, CNRS-IN2P3-CPPM, Orsay CSNSM/IN2P3-CNRS, Matra MHS

CEA, DSM/DAPNIA, Saclay Abbon P. Borgeaud P. Delagnes E. Dentan M. Fourches N. Lachartre D. Lugiez F. Paul 8. Rouger M. CEA-DTA-LETI, Grenoble Baudrant A. Blanc J.P. Bonaime J. Delevoye-Otsiei E. Faynot O. Leroux C. Pelloie J.L. Troche R. de Pontcharra J. CEA-Bruyeres-le-Chatel Flament O. Guebhard J.M. Leray J.L. Montaron J. Mussean O. Raffaelli M. Vitez A. Marseille, CNRS-IN2P3-CPPM Blanquart L. Bonzom V. Delpierre P. Potheau R. Orsay CSNSM/IN2P3-CNRS Breton D. Hrisoho A. Matra MHS Corbiere T. Dantec A. Festes G. Guennoun A. Le Mouellic C. Martinez J.

Spokesman: Dentan M. Contact: Rouger M.

Physics experiments under preparation with the future LHC (Large Hadron Collider) require a fast, low noise, very rad-hard, mixed analog-digital microelectronics VLSI technology. In particular, this technology must cope with the very high radiation level expected in the central parts of LHC particle detectors: more than 10 Mrads and more than 1014 neutrons per cm2 in 10 years of operation.

The DMILL (RD29) collaboration (a Consortium gathering CEA-Saclay, CEA-LETI, CEA Bruyeres-le-Chatel, IN2P3-CPPM-Marseille and IN2P3-LAL-Orsay) has developed during the period 1991 - 1995 the rad-hard mixed analog-digital technology DMILL for the production of electronic circuits for civil and defense applications. The features of this technology were adapted to fit the needs of High Energy Physics experiments. References DRDC/92-31/P42, DRDC/93-«/SR, LHCC/95-13/SR, LHCC/97-1S/SR 413 DMILL RD29

DMILL is a BiCMOS + JFET sub-micronic rad-hard (10 Mrad and 1014 n/cm2) mixed analog- digital technology. Its SOI substrate and its dielectric trenches strongly reduce SEU sensitivity and completely eliminate any possibility of latch-up. Its four transistors are optimized to obtain low-noise features. DMILL also integrates two types of resistors, two types of capacitors, and two anti-ESD structures for analog and for digital ports.

Between 1993 and 1997, 27 laboratories have received the DMILL design kit, and 21 of them have designed and/or tested DMILL components or circuits. Numerous circuits integrating up to 106 transitors, developed for the ATLAS and CMS trackers and calorimeters, have shown that the DMILL technology fully satisfies the various HEP circuit requirements, in terms of radiation-hardness as well as in terms of dynamic electrical performance, noise, power con- sumption and integration density. DMILL has also been requested or studied for High Energy Physics Experiments in the USA and Japan. Circuit developments with this technology have been started for space and other civilian applications.

In September 1995, TEMIC/Matra-MHS, a subsidiary of the German Daimler-Benz group and the French Lagardere Group, signed with the CEA a licensing agreement for the transfer and production of DMILL on its 6" silicon foundry at Nantes. This transfer is now completed. DMILL batches produced by MHS show electrical, radiation hardness and noise features which are similar to those obtained on batches produced by CEA. DMILL components are guaranteed by MHS to have a hardness above 10 Mrad and 1014 n/cm2. Their low-noise performances are also monitored by MHS. Since April 1997, DMILL is available for the construction of prototype circuits in the frame- work of MPWs (Multi-Project Wafers) organized by Europractice (IMEC, Belgium). Mass production is available since October 1997 directly from MHS. To guarantee that this technol- ogy will be available for several years, TEMIC is under contract with the CEA to maintain its production until at least October 2005.

NEXT PAGE(S) left BLANK

414 ATM-based event builder test system

VME VME-ATM interfaces ATM Traffic modules

ATM cells

I logic analyser I trigger generator NIT t start stop event building latency measurement

Event builder with 2 sources and 2 destinations

40.0 300.0

Event building latency (us) ^ ~ W

(Kh z 30.0 0) 200.0 2! 20.0 O) Idin g

bu i 100.0 -Q 10.0 Event building rate (Khz) •*—• CD Even t UJ

0.0 256 512 768 1024 o.o Event fragment size (bytes)

Experiment RD31 NEBULAS - A High Performance Data-Driven Event-Building Architecture based on an Asynchronous Self-Routing Packet-Switching Network

416 NEBULAS RD31

Beam: Approved: 26/NOV/92 10/FEB/94 20/APR/95 Status: Completed

NEBULAS A High Performance Data-Driven Event-Building Architecture based on an Asynchronous Self-Routing Packet-Switching Network

CERN, Tsukuba, KEK, MIT, Saclay DAPNIA, Royal Inst. of Tech. Stockholm, Uppsala Inst. ofRad. Sciences, Alcatel Bell Telephone, Antwerp, Hewlett Packard

CERN Costa M. Dufey J.-P. Letheren M. Marchioro A. Paillard C.

Tsukuba, KEK Manabe A. Nagasaka Y. Nomachi M. Sasaki O. Watase Y. MIT Sphicas P. Sumoiok S. Tether S. Saclay DAPNIA Calvet D. Djidi K. Le Du P. Mandjavidze I. Royal Inst. of Tech. Stockholm Agehed K. Hultberg S. Laziaq T. Lindblad Th. Lindsay C. Mineiskjoeld M. Tenhunen H. Uppsala Inst. of Rad. Sciences Gustafsson L. Kobylecki K. Alcatel Bell Telephone, Antwerp De Piycker M. Pauwels B. Petit G. Verhille H.

Hewlett Packard Benatd M.

Spokesman: Dufey J.-P./Letheren M. Contact: Dufey J.-P./Letheren M.

The project is evaluating a new approach to event building for level-two and level-three pro- cessor farms at high rate experiments. It is based on the use of commercial switching fab- rics to replace the traditional bus-based architectures used in most previous data acquisition sytems. Switching fabrics permit the construction of parallel, expandable, hardware-driven event builders that can deliver higher aggregate throughput than the bus-based architectures.

References DRDC/92-14/P36, DRDC/92-

A standard industrial switching fabric technology is being evaluated. It is based on Asyn- chronous Transfer Mode (ATM) packet-switching network technology. Commercial, expandable ATM switching fabrics and processor interfaces, now being developed for the future Broadband ISDN infrastructure, could form the basis of an implementation. The goals of the project are to demonstrate the viability of this approach, to evaluate the trade-offs involved in make versus buy options, to study the interfacing of the physics frontend data buffers to such a fabric, and to produce realistic global cost and performance estimates for a data acquisition system based on this approach. These goals are being pursued by com- puter simulation of the architectures and by the assembly and operation of small demonstrator systems.

418 ALICE TPC RD32

Beam: Approved: 26/NOV/92 16/JUN/94 Status: Completed ll/APR/96

Development of a Time Projection Chamber with High Two Track Resolution Capability for Experiments at Heavy Ion Colliders

Cracow Inst.Nucl.Phys., Lawrence Berkeley Lab., Brookhaven Nat.Lab., CERN, Darmstadt GSI, Frankfurt/Main Univ., Munich MPI, Utrecht Univ.

Cracow Inst.Nucl.Phys. Bartke J. Kowalski M. Rybicki A.

Lawrence Berkeley Lab. Gong W. Wieman H. Brookhaven Nat.Lab. Etkin A. Foley K. Hackenburg R. Platner E. CERN Fischer H.G. Legrand J.C. Wenig S. Darmstadt GSI Brockmann R. Sann H. Frankfurt/Main Univ. Renfordt R. Roehrich D. Stock R. Munich MPI Eckardt V. Fessler H. Konrad W. Rauch W. Schoenfelder S. Settles R. Seyerlein J. Utrecht Univ. Kuyer P.G. de Haas A.P.

Spokesman: Brockmann R. Contact: Wenig S.

Experiments at future Heavy-Ion Colliders have to deal with unprecedented high particle fluxes. In the dedicated Heavy-Ion dectector, ALICE, at the LHC pattern recognition and particle identification are performed by a Time Projection Chamber that operates in a weak magnetic field (0.2 T). A double track resolution of considerably less than 10 mm, that is a factor of 2-4 better than in existing TPC's, is needed to cope with the high track density. Improvements in the readout modules, analog electronics and longitudinal and transversal single electron diffu- sion will be investigated. The problem of data-acquisition and -reduction in the environment of a continuous data flow to the storage medium of about 1-2 Gbytes/sec needs special attention regarding further data reduction by online tracking. References I NEXT PAGE(S) DRDC/92-32/P43, DRDC/92-39/P43 Add.l, DRDC/94-25/M25, DRDC/94-10/SR • . .. _. A MM- 419 RD37

Beam: H2/H4 Approved: 10/FEB/94 09/FEB/95 Status: Completed 31/DEC/95

Very Forward Hadron Calorimetry at the LHC Using Parallel Plate Chambers

CERN, Budapest Res.Inst. of Physics (KFKI), ATOMKI Inst. Debrecen, Florence Univ./INFN, Madrid CIEMAT, Moscow ITEP, St. Petersburg, NPI, Serpukhov IHEP

CERN Dalla Santa F. Herve A. Iglesias A. Peach D. Radermacher E. Budapest Res.Inst. of Physics (KFKI) Bencze G. Sikler F. Tanko L. Vesztergombi G. ATOMKI Inst. Debrecen Dajko G. Fenyvesi A. Molnar J. Florence Univ./INFN Bizzeti A. Civinini C. D'Alessandio R. Pojidaev V. Madrid CIEMAT Aguilar-Benitez M. Burgos C. Daniel M. Ferrando A. Fouz M.C. Josa Mutuberria I. Salicio J.M. Moscow ITEP Abdullin S. Kaftanov V. Khanov A. Nikitenko A. Semenov Yu. Starodumov A. Stepanov N. Trebukhovsky Yu. St. Petersburg, NPI Besymyannykh B. Guetz S. Ivochkin V. Schegelsky V. Timonin I. Serpukhov IHEP Batalov A. Golovkin V. Kholodenko A. Misyura S. Rodnov Yu. Tsyupa Yu.

Spokesman: Ferrando A. Contact: Pojidaev V.

The RD37 Collaboration completes this year its R&D on the application of Parallel Plate Chambers (PPC) for the low angle calorimetry in LHC experiments. The PPCs are gaseous detectors working in the avalanche mode. The RD37 Collaboration designed and constructed detectors capable to work with electric fields of 30-60 kV/cm. For more than 4 years, PPCs were investigated and their performances, as single detectors, measured: time resolution, detection efficiency, radiation hardness and spark probability. Several calorimetric prototypes were built: from a simple one consisting in machined thick iron blocks with circulating gas to complicated modules built by interleaving iron plates with planes of ceramics PPCs. Final prototype was a full length hadronic module equipped with more than 1000 PPC cells and same number of readout channels. The test beam using this large prototype is now fully analyzed.

DRDC/93-43/P51, DRDC/94-3/P51.Add.l, DRDC/94-46/SR | &«EXT PACJEfS) I fef t BLANK 421 • 1 CICERO RD38

Beam: Approved: 10/FEB/94 20/APR/95 Status: Completed 31/DEC/95

CICERO: Control Information system Concepts based on Encapsulated Real-time Objects A study on Generic Control Systems for Large Scale LHC Experiments

SPACEBEL, Brussels, Bristol Univ., Budapest Res.Inst. of Physics (KFKI), CERN, USDATA, Dallas, TVO International, Helsinki, Helsinki Univ. - SEFT, Linkoping, VID, OBLOG Software, Lisbon, Madrid CIEMAT, VTT, Oulu, VALMET Automation, Tampere

SPACEBEL, Brussels Assis-Aiantes P. Bernard E. Ngo Due C. Quartier F. Bristol Univ. Harris W. Martin P. McClatchey R. Meech J. Solomonides T. Wallace C. Budapest Res.Inst. of Physics (KFKI) Futo E. Kovacs Z. Vesztergombi G. CERN Barillere R. Daneels A. Herve A. Le Goff J.-M. Myers D. von Rueden W. USDATA, Dallas Chandler M. Mangiaratti E.P. Walter M. IVO International, Helsinki Meri M. Rinta-Filppula P. Visuri M. Helsinki Univ. - SEFT Lauhakangas R. Pietarinen E. Linkoping, UID Lundberg K. OBLOG Software, Lisbon Capitao M. Gouveia J. Inacio P. Madrid CIEMAT Willmott C. VTT, Oulu Huuskonen P. Oivo M. VALMET Automation, Tampere Ervast J. Jokeniemi E. Salonen E. Vanne M.

References DRDC/93-50/P52, LHCC/95-15/SR

423 CICERO RD38

Spokesman: Le Goff J.-M. Contact: LeGoffJ.-M.

Modern High Energy Physics experiments and accelerators require sophisticated control systems to ensure their safe operation and to optimise their performance. Due to their complexity and to the large number of sensors needed for these purposes, they turn out to be difficult and costly to maintain with the present technology. The situation will seriously worsen with the LHC era. Various R&D departments of industrial companies are directly concerned with similar difficulties in power plants and complex automated systems. We propose to combine our efforts to study the various aspects of this problem. We intend to outline the main building blocks of generic control information system. As a result of this study we aim to provide technical solutions which could later be the major components of a basic turnkey system for medium to large scale HEP experiments and accelerators.

NEXT PAGE(S) iefl BLANK

424 2 pm wide microstrip (active medi 300 nm NbN 20 nm isolation 300 nm NbN ground plane 50 um Si wafer

Experiment RD39 Superconducting Microstrip Detectors Beam: M2HAL0 Approved: 10/FEB/94 07/DEC/95 Status: In-Progress

Superconducting Microstrip Detectors

CERN, Helsinki Univ. of Technology, VTT, Tech. Res. Centre, Otaniemi

CERN Niinikoski T. Semertzidis Y. Voss R. Helsinki Univ. of Technology Berglund P. Costa L. Kyynarainen J. Valtanen M. VTT, Tech. Res. Centre, Otaniemi Linna R. Salmi J. Seppa H. Suni I.

Spokesman: Niinikoski T.

The goal of the project is to develop and study superconducting NbN microstrip counters. These devices feature radiation hardness two orders of magnitude higher than conventional silicon strip detectors, spatial resolution limited only by lithographic techniques (typically 0.1 - 2 /mi), an intrinsic signal rise time of 2 ps, and signal transport over large distances without losses. This initial study aims at improved understanding of the physics of such detectors, with the purpose of establishing their large-scale feasibility. Such devices could have important applications in the inmost vertex detectors of LHC experiments operated at high luminosities.

References DRDC/93-S3/P53, LHCC/95-63/LDRB/SR 427 Experiment RD40: Development of Quartz Fiber Calorimetry

428 Beam: T9-X7 Approved: 21/APR/94 15/JUN/95 Status: Completed 31/DEC/95

Development of Quartz Fiber Calorimetry

CERN, Cornell Univ., Bologna Univ./INFN, Florida State Univ. Tallahassee, Frascati Nat.Lab. INFN, Moscow ITEP, Pavia Univ./INFN, Pisa Univ./INFN, Strasbourg CRN, PHASE, Strasbourg, Torino Univ./INFN

CERN Brozzi D. Contin A. DeSalvo R. Lacommare G. Marino M. Potier J.P. RinoLfi L. Santiard J.C. Tavlet M. Zichichi A. Cornell Univ. Lundin M. Mondardini M.R. Bologna Univ./INFN Aizaiello F. Bari G. Basile M. Bellagamba L. Boscherini D. Bruni G. Bmni P. Cara Romeo G. Chiarini M. Cindolo F. Ciialli F. Giusti P. Iacobucci G. Lauienti G. Maccairone G. Maigotti A. Massam T. Nania R. Sartoielli G. Timellini R. Florida State Univ. Tallahassee Johnson K.F. Lazic D. Fiascati Nat.Lab. INFN Anzivino G. De Pasquale S.

Moscow ITEP Bojarinov S. Chumarovsky Yi. Danilov M. Gavrilov V. Golntvin A. Isaev V. Iziaelyan V. Knleshov S. Litvintsev D. Morshnev S. Rnsinov V. Ryabushkin O. Smirnitsky A. Stolin V. Vinogradov M. Zemskov Yu. Pavia Univ./INFN Rossella M. Pisa Univ./INFN CiferelliL. Strasbourg CRN Britz J. Glassmann R. Gorodetzky P. Helleboid J.M. Jnillot P. Terrier A. PHASE, Strasbourg Fuchs C. Goltzene A. Kuznicki Z. Ponpon J.P. Regal R. Siffert P.

Torino Univ./INFN Dardo M. Dellacasa G. Gallio M. Musso A.

References DRDC/94-4/P54, LHCC/9JS-27/SR 429 Spokesman: Contin A./Gorodetzky P. Contact: DeSalvo R.

Very Forward Calorimeters (VFCs) in LHC detectors should cover the pseudorapidity range from 1} = 2.5 to at least 77 = 5 in order to compute missing transverse energy and for jet tagging. Operation at such high rapidity requires the use of a calorimetry technique that is very radiation resistant, fast and insensitive to radioactivity (especially to neutrons). This can be accomplished through the Quartz-Calorimeter (Q-Cal) concept of embedding silica core fibers, that resist to the Gigarad radiation level, into an absorber. In this calorimeter the shower particles produce light through the Cherenkov effect generating a signal less than 10 ns in duration. Unique to this new technology the visible energy of hadronic showers has a transverse dimension nearly an order of magnitude smaller than that in conventional calorimeters, enabling precise spatial resolution, sharper isolation cuts and better jet recognition against the minimum bias events background. Last but not least, most radioactive decays and neutron interactions produce particles below the Cherenkov threshold; therefore, this calorimeter is intrinsically insensitive to radio-activation background. All of these characteristics taken together allow the Q-Cal to be operated meaningfully in the extreme working conditions of a VFC at LHC. The purpose of this R&D proposal is an in depth study of the performances of different kinds of silica fibers in the presence of radiation load, a study of customized ultra-violet (UV) pho- todetectors (and especially pixelised Hybrid Photo Diodes (HPD)) and construction and beam testing of suitable calorimeter prototypes: a few small electromagnetic prototypes, and finally a hadronic prototype with all the features required for a VFC (with the exception of the trans- verse size): radiation resistance, speed, spatial resolution, transverse energy (Ey) measurement and implemenation of an (Ey) trigger. The end product of the proposed research program will be a proof of feasibility and the collection of basic information necessary for the design of a Very Forward Calorimeter at LHC.

430 MOOSE RD41

Beam: Approved: 16/JUN/94 07/DEC/95 Status: Completed ll/JUN/97

Object Oriented Approach to Software Development for LHC Experiments

Amsterdam NIKHEF, Argonne Nat. Lab., Lawrence Berkeley Lab., CERN, Edinburgh Univ., Tsukuba, KEK, NIKHEF-H/Nijmegen Univ., Orsay LAL, Oxford Univ., Rutherford Appleton Lab., SLAC, Saclay DAPNIA, INRNE, Sofia, Univ. of Washington, Seattle, Utrecht Univ., Hewlett Packard

Amsterdam NIKHEF Bos K. Hendriks P. Heubers W. Reichold A. Tummeis B. Argonne Nat. Lab. Malon D. Lawrence Berkeley Lab. Day C.

CERN Banerjee S. Barone L. Hrivnac J. Innocente V. Jank W. Marino M. Meinhard H. Onions C. Pimia M. Poppleton A. Poulard G. Qian S. Stavropoulos G. Tuura L. Edinburgh Univ. Candlin D.J. Candlin R. Tsukuba, KEK Amako K. NIKHEF-H/Nymegen Univ. Visser E. Orsay LAL Arnault C. Barrand G. Schaffer A. Oxford Univ. Loken J. Rutherford Appleton Lab. Clifft R.W. Fisher S.M. SLAC Mount R. Saclay DAPNIA Hansl-Kozanecka T. INRNE, Sofia Piperov S.

References DRDC/94-9/P55, LHCC/95-60/LCRB/SR

431 MOOSE RD41

Univ. of Washington, Seattle Burnett T. Utrecht Univ. BalkeC. Hewlett Packard Rademakers A.

Spokesman: Bos K. Contact: Onions C.

We propose to study the viability of the Object Oriented (00) approach for developing the code for LHC experiments. The authors of this proposal will learn the key issues of this approach: 00 analysis and design. Several methodologies will be studied to select the most appropriate for the High Energy Physics case. Some Computer Aided Software Engineering tools and implementation languages will be evaluated. These studies will be carried out with various well-defined prototypes, some of which have been defined in a preceding study and some of which will be defined in the course of this R&D project. We propose to also study in this project how the 00 approach enhances a different, and hopefully better, project management. Management tools will be tried and professional training will be organized.

NEXT PAGE(S) left BLANK

432 250

8000 200 sooo £> a 1S0 to o Q c 100 4000 S o IT3 " . i ... i ... i ... i ... i ... t ... i . 0 0.2 0.4 O.S O.S 1 1.2 Electric Field (V/nm)

Figure 1: Lab test of a diamond measured with Figure 2: Photo of a diamond strip detector. a 90Sr source and dot electrodes. Strips have a pitch of 50 fim.

CVD Oiomond Tracker. Transparent Pulseheight CVD Diamond Tracker, Spatial Resolution

mean =1.0943

sdev =16.5598 500

too

300

200

1OO

5 10 IS 20 2S 30 -200 -»SO -100 -SO 0 SO 100 ISO 200

Figure 3: Pulse height distribution of the sig- Figure 4: Difference distribution of the mea- nal charge on strips next to the predicted track. sured hit from the predicted track.

Experiment RD42 Development of Diamond Tracking Detectors for High Luminosity Experiments at the LHC

434 RD42

Beam: Approved: 22/SEP/94 07/DEC/95 14/MAR/97 Status: In-Progress

Development of Diamond Tracking Detectors for High Luminosity Experiments at the LHC

Amsterdam NIKHEF, Batavia, Fermilab (FNAL), Bern Univ., Bristol Univ., CERN, Darmstadt GSI, Heidelberg MPI, Florence Univ./INFN, Florence, LENS, LEPES, Grenoble, Lawrence Livermore Nat. Lab., Los Alamos Nat.Lab., Marseille CPPM, Ohio State Univ., Pavia Univ./INFN, Rutgers Univ., Saclay DAPNIA, LEPSI, Strasbourg, Toronto Univ., Oestr. Akad. Wissensch. Vienna

Amsterdam NIKHEF Hartjes F. van Eyk B.

Batavia, Fermilab (FNAL) Mishiaa M. Bern Univ. Palmieri V.G. Pretzl K. Bristol Univ. Hall-Wilton R. Roff D. Tapper R.J.

CERN Dabrowski W. Grigoriev E. Kaplon J. Meier D. Rudge A. Wedenig R. Weilhammer P. Darmstadt GSI Berdermann E. Stelzei H. Heidelberg MPI Bauer C. Knoepfle K.T.

Florence Univ./INFN Borchi E. Bruzzi M. Piiollo S. Sciortino S. Florence, LENS Bogani F. LEPES, Grenoble Deneuville A. Gheeraert E. Lawrence Livermore Nat. Lab. Kania D. Los Alamos Nat.Lab. Zioclc H.

References DRDC/94-21/P56, DRDC/94-36/PS6/Add.l, DRDC/94-43/P56/Add.2, LHCC/95-43/LDRB/SR, LHCC/9S-53/Add.l/LDRB/SR, LHCC/9S- S«/Add.2/LDRB/SR, LHCC/97-3/SR 435 RD42

Marseille CPPM Delpierre P. Fallou A. Hallewell G.

Ohio State Univ. Gan K.K. Han S. Kagan H. Kass R. Pan L.S. Trawick M.

Pavia Univ./INFN Manfiedi P.F. Re V. Speziali V.

Rutgers Univ. Conway J. Fish D. Schnetzer S. Stone R. Tesarek R. Thomson G.B. Walsh A.M.

Saclay DAPNIA Bergonzo P. Foulon F. Jany C. Marshall R.D. LEPSI, Strasbourg Colledani C. Dulinski W. Husson D. LeNoimand F. Riester G.L. Toichetta R. Toronto Univ. Trischuk W. Oestr. Akad. Wissensch. Vienna Adam W. Friedl M. Hrubec J. Kiammer M. Pernegger H. Pernicka M.

Spokesman: Weilhammer P./Kagan H.

The RD42 collaboration investigates applications of diamond radiation dectectors for experi- ments at the Large Hadron Collider. These applications rely on the signal size and radiation hardness properties of diamond. Particle tracking very close to the interaction region of the LHC falls into the class of problems that diamond detectors may address. During the past few years, RD42 has shown that diamond, grown using a chemical vapour deposition process, can be used as a particle detector. The original goals of RD42 include demonstrating that both strip and pixel geometries are feasible in diamond and that a signal to noise of 10-to-l or better is attainable with 40 MHz electronics. To reach these goals we have worked with manufacturers to obtain diamond substrates with the highest possible charge signal. Samples from manufac- turers are tested in the lab and now routinely are above 7500 e mean collected charge [Fig. 1]. Diamond strip detectors [Fig.2] with low-noise electronics (VA2) show a typical mean signal of 8000 e [Fig.3] and spatial resolution of « 16 ^m [Fig. 4]. Pixel detectors were successfully operated with such strip electronics proving the feasibility of such a geometry and encouraging work towards bump bonded readout. Diamond strip detectors were successfully operated with fast 40 MHz LHC readout electronics (SCT/DMILL). Using this electronics diamond trackers show a mean signal-to-noise of 7-to-l. This ratio will improve using diamond samples with a specific SCT diamond readout chip which has to be adapted to the low strip capacitances and negligible leakage currents in diamond. In addition diamond has been shown to be radiation hard at room temperatures to photons and electrons up to 100 MRad and to pions, protons and neutrons up to 1.7 x 10157r/cm2, 2 x 1016 p/cm2 and 0.8 x 1015 77/cm2 respectively. These tests are being continued up to fluences of 5 x 1015/cm2. Finally we have shown that diamond track- ers operate in high magnetic fields up to 3 T without losing signal and track resolution. The collaboration is working towards a realistic diamond tracking prototype for LHC experiments.

436 BHCAL RD43

Beam: H2 Approved: 22/SEP/94 Status: Completed 05/DEC/95

Proposal for Research and Development of a Hadron Calorimeter for High Magnetic Fields

Ames, Iowa State Univ., Beijing HEP Inst., Virginia Poly./Univ., Blacksburg, Bombay TIFR, CERN, Dubna JINR, Batavia, Fermilab (FNAL), Florida State Univ. Tallahassee, Iowa City, Univ. of Iowa, Kharkov State Univ. (KSU), Kharkov Inst. ofPhys. &: Tech. (KhFTI), Kharkov Inst. of Monocrystals (ISC), Purdue Univ. Lafayette, Maryland Univ., Univ. of Minnesota, Minneapolis, Minsk, BRPAPM, Minsk, NCPHEP, Moscow, Inst. Nucl. Research (INR), Moscow ITEP, Northeastern Univ., Univ. of Notre Dame, Princeton Univ., Univ. of Rochester, Serpukhov IHEP, INRNE, Sofia, Sofia Univ., Tashkent Inst.Nucl.Phys., Tbilisi State Univ., Yerevan Phys.Inst.

Ames, Iowa State Univ. Anderson E.W. Hauptman J. Wightman J. Bering HEP Inst. Li W.G. Liu N.Z. Shen B.W. Shi H.Z. Wang Y. Wei C.L. Zhang D.

Virginia Poly./Univ., Blacksburg Blankenship K. Kochocki J. Lu B. Mo L. Nunamaker T.A.

Bombay TIFR Acharya B.S. Banerjee S. Banerjee S. Chendvenkar S.R. Dugad S.R. Gupta S.K. Gurtu A. Krish- naswamy M.R. Mazumdar K. Mondal N.K. Narasimham V.S. Raghaven R. Sudhakar K. Tonwar S.C. CERN Baillon P. Delia Negra M. Hauviller C. Herve A. Lofetedt B. Radermacher E. Virdee T.S. Dubna JINR Golutvin I. Gramenizki I. Ivanchenko I. Kalagin V. Khabarov V. Kozarenko E. Mel'nichenko I. Palichik V. Petukhov Yu. Tioukov V. Volod'ko A. Vovenko V. Batavia, Fermilab (FNAL) Bambaugh A. Beretvas A. Byon-Wagner A. Churin I. Elias J. Foster G.W. Freeman J. Glass H. Gourlay S. Green D. Hanlon J. Kwan S. Lamm M. Mantsch P. Markley F. Marraffino J. Ozelis J. Para A. Pichalnikov Y. Pla-Dalmau A. Raja R. Ronzhin A. Sager T. Volk J. Wands R. Wu W. YagilA. Florida State Univ. Tallahassee Bertoldi M. Hagopian V. Johnson K. Lazic D. Thomaston J. Iowa City, Univ. of Iowa Akchurin N. Bravar A. Miller M. Onel Y. Ruth E.

References DRDC/94-22/P57

437 BHCAL RD43

Kharkov State Univ. (KSU) Cepilov G. Kluban N. Kovtun V.

Kharkov Inst. of Phys. & Tech. (KhFTI) Nemashkalo A. Popov V. Soiokin P. Zacerklyaniy A.

Kharkov Inst. of Monocrystals (ISC) Senchishin V. Purdue Univ. Lafayette Barnes V. Bujak A. Carmony D. Gutay L. Horvath J. Laasanen A. Sarakinos M. Shen Q.

Maryland Univ. Baden A. Ball A. Bard R. Chang C.Y. Eno S.C. Fong D. Garza M. Hadley N.J. Jawahery A. Kellogg R.G. Kunori S. Murbach M. Skuja A. Zorn G.T.

Univ. of Minnesota, Minneapolis Border P. Ciampa D. Cushman P. Heller K. Marshak M. Rusack R. Singh V. Timmermans C.

Minsk, BRPAPM Doroshkevich E. Roman O. Stefanovich R. Minsk, NCPHEP Baturitski M. Chehovskiy V. Emilianchik I. Kurilin A. Mosolov V. Shumeiko N. Skoromokhov A.

Moscow, Inst. Nucl. Research (INR) Bolotov V. Klimenko V. Musienko Yu. Oustiojanine V. Postoev V. Proskurjakov A. Semenov B.

Moscow ITEP Gursky I. Kaftanov V. Lukashin V. Ryskin V. Ryzhkov A. Semenov Yu. Sher A. Smolijakov A.

Northeastern Univ. Alverson G. Moromisato J. Reucroft S. Swain J. Taylor L. Yasuda T. von Goeler E.

Univ. of Notre Dame Biswas N. Ruchti R. Warchol J. Wayne M.

Princeton Univ. Denes P. Gupta V. Marlow D. Piroue P. Stickland D. Stone H. Tully C. Wixted R.

Univ. of Rochester Bodek A. Budd H. De Barbaro P. Sakamoto W. Serpukhov IHEP Abramov V. Dyshkant A. Efimov A. Evdokimov V. Goncharov P. Gurzhiev A. Korneev Yu. Kosteritskii A. Krinitsyn A. Kryshkin V. Podstavkov V. Tereschenko S. Turchanovich L. Zaitchenko A.

INRNE, Sofia Atanasov I. Dimitrov L. Genchev V. Georgiev G. Iaydjiev P. Penev V. Vankov I.

Sofia Univ. Jordanov A. Litov L. Petev P. Tsenov R. Tashkent Inst.Nucl.Phys. Aitov R. Avezov A. Gafarov A. Koblik Yu. Mirkarimov D. Pirogov V. Safarov A. Urkenbaev A. Yuldashev B. Yunusov K.

438 BHCAL RD43

Tbilisi State Univ. Amaglobely N. Chiladze B. Glonti L. Kvatadze R. Metreveli Z. Sakelashvili T. Shanidze R. Yerevan Phys.Inst. Bayatian G. Grigorian N. Margarian A. Siiunian A. Stepanian S.

Spokesman: Green D. Contact: Viidee T.S.

We intend to pursue the R&D necessary to demonstrate that a Cu-scintillator hadron calorime- ter can operate reliably and well at the LHC at large pseudorapidities (\ij\ < 2.6) and in a high magnetic field (4 T). The chosen technique consists of embedding a wavelength shifting (WLS) fibre in a scintillator plate in the form of a

NEXT PAGE(S) left BLANK

439 GEANT4 RD44

Beam: Approved: 24/NOV/94 07/DEC/95 Status: In-Progress

GEANT 4: an Object-Oriented toolkit for simulation in HEP

Aachen TH, III Phys.Inst., Univ. of Alberta, Amsterdam NIKHEF, Annecy LAPP, Austin, IBM, Bari Univ./INFN, Bath University, Bombay TIER, Budapest Res.Inst. of Physics (KFKI), CALTECH, Pasadena, Cambridge Univ., CERN, Dubna JINR, Batavia, Fermilab (FNAL), Fukui Univ., Hamburg DESY, Helsinki Univ., Hiroshima, Inst. of Tech., Tsukuba, KEK, Kyoto Univ., Lawrence Berkeley Lab., Lawrence Livermore Nat. Lab., London, Cray Systems, Manchester Univ., Montreal McGill Univ., Naruto Univ. of Education, Niigata Univ., Nippon Dental Univ., Okayama Univ., Orsay LAL, Padova Univ./INFN, Palaiseau Ecole Polytechnique, Pittsburgh Univ., Rutherford Appleton Lab., San Jose, KLA Instruments, SoSa Univ., Saclay DAPNIA, Serpukhov IHEP, Tokyo, Intern. Christian Univ., Tokyo Metropolitan Univ., Vancouver, TRIUMF, Vancouver, Univ. B.C.

Aachen TH, III Phys.Inst. Fesefeldt H. Univ. of Alberta Caron B. Davis R. Faust A. Kayal P. Pinfold J. Routenbuig P.

Amsterdam NIKHEF BosK. Annecy LAPP Make M. Ranft J. Austin, IBM BellT. Bari Univ./INFN Silvestris L. Bath University Kent P. Bombay TIFR Banerjee S.

Budapest Res.Inst. of Physics (KFKI) Urban L. CALTECH, Pasadena Kekey M.

References DRDC/S4-29/P58, LHCC/95-TO/LCRB/SR 441 GEANT4 RD44

Cambridge Univ. Ward P. CERN Apostolakis J. Bird I. Cosmo G. DeGennaioS. DeU'AcquaA. FolgerG. FuchsM. GianiS. GrichineV. Hoimyr N. Innocente V. Nessi M. Onions C. Osboine A. Prior S. Ranjaid F. Riccaidi F. Ruggier M. Saferik K. Shieis J. Stoir K. Sulkimo J. Dubna JINR Ameline N. Batavia, Feimilab (FNAL) Boehnlein A. Kallenbach J. Yatba J. Fukui Univ. TanakaS. Hamburg DESY EgliS. Helsinki Univ. Honkala M. Hiroshima, lust, of Tech. Asai M. Hayashi S. Kimuia A. Tsukuba, KEK AmakoK. Kanzaki J. Morita Y. Sasaki T. Kyoto Univ. Kurashige H. Murakami K. Sakamoto H. Lawrence Berkeley Lab. Jacobs P. Lawrence Livermore Nat. Lab. WenausT. Wright D. London, Cray Systems Faiiclough J.

Manchester Univ. Allison J. Walkden A. Montreal McGill Univ. Strahl K. Naruto Univ. of Education Kodama T. Nagamatsu M. Obana T. Uno H. Yoshida H. Niigata Univ. TakahataM. Tamura N. Nippon Dental Univ. Yamasbita Y. Okayama Univ. Nakanol. Nakao M. Umeda T. Yagi H. YamagutiT.

442 GEANT4 RD44

Oisay LAL Arnault C. Barrand G. Parrour G. Padova Univ./INFN Ballocchi G. Palaiseau Ecole Polytechnique Moia de Preitas P. Thiebaux C. Verderi M. Pittsburgh Univ. Boudreau J. Rutherford Appleton Lab. Patrick G. San Jose, KLA Instruments Breakstone A. Sofia Univ. Piperov S. Saday DAPNIA Givernaud A. Rosowsky A. Serpukhov IHEP Perevoztchikov V. Tcherniaev E. Tokyo, Intern. Christian Univ. Nakagawa Y. Yamagata T. Tokyo Metropolitan Univ. Fukunaga C. Hamatsu R. Sakai I. Vancouver, TRIUMF Armstrong J. Chuma J. Felawka L. Gumplinger P. Jones F. Kost C. Wellisch H.P. Vancouver, Univ. B.C. Axen D. Keil W.

Spokesman: Giani S. Contact: Cosmo G.

The RD44 world-wide collaboration is developing the GEANT4 detector simulation toolkit for the next generation of HEP experiments. RD44 exploits advanced software engineering techniques and Object-Oriented technology for distributed software design and development. After the development of a prototype in 95, which demonstrated a remarkable performance gain compared with GEANT3, the RD44 collaboration has released a first GEANT4 alpha- version in 97, with overall functionality comparable to GEANT3. By mid-98 RD44 will release the first GEANT4 beta-version, providing a strong increase in functionality over GEANT3 and important advantages over existing simulation packages, notably for the transparency and flexibility of the physics processes and models.

NEXT PAGE(S) left BLANK

443 RD45

Beam: Approved: 09/FEB/95 Status: In-Progress

A Persistent Object Manager for HEP

Argonne Nat. Lab., Lawrence Berkeley Lab., Bombay TIFR, Brookhaven Nat.Lab., CALTECH, Pasadena, CERN, Cracow, Inst. Phys. Nucl Tech., Hamburg DESY, Tsukuba, KEK, MIT, Orsay LAL, Stanford Univ., Venice Univ., Medford, Tufts Univ., Zurich ETH

Argonne Nat. Lab. Malon D. Lawrence Berkeley Lab. Quarrie D. Bombay TIFR Banerjee Su. Brookhaven Nat.Lab. Purschke M. CALTECB, Pasadena Bunn J. Newman H. Wilkinson R. CERN Arderiu Ribera E. Baranski A. Binko P. Couet 0. Duellmann D. Ferrero Merlino B. Folger G. Giani S. Hansroul M. Holtman K. Innocente V. Nowak M. Osborne A. Shiers J. Silvertris L. TanraL. Willers I. Cracow, Inst. Phys. Nucl. Tech. Jagielsld S.

Hamburg DESY Gasthuber M. Tsukuba, KEK Morita Y. MIT Klimentov A. Orsay LAL Schaffer A. Stanford Univ. Becla J. Cosmo G. Venice Univ. Cargnel E.

References DRDC/94-30/PS9, DRDC/94-50/PS9/Rev. 445 RD45

Medfoid, Tofts Univ. RolliS. SliwaK. Zurich ETH Hasan A.

Spokesman: Shiers J. Contact: Shieis J.

RD45 is currently investigating solutions to the problem of storing, managing and accessing the extremely large volumes of data that will be created at the LHC where, given the anticipated lifetime and data rates, a system capable of scaling to approximately 100 PB is required. The project places strong emphasis on the use of industry standard solutions wherever possible, and is currently focussing on the potential use of commercial standards-conforming Object Database Management Systems transparently coupled to Mass Storage Systems. Production use of components of what could eventually become the solution for LHC has already been made by existing experiments at CERN, and it is planned to gradually increase the amount of physics data handled by the system into the multi-TB range and beyond over the next years.

NEXT PAGE(S) left BLANK

446 Old Prototype with normal optoelectronic chain

g 40 nm

: : : : : : z ^ 1

0.2 m deeboMtic decawtMic otoctrcmtic MCJ> m IE ID n*

0.75 m capillary bundle optoelectronic chain New Prototype with EBCCD

0J2 capillary bundle optoelectronic chain

Figure 1; Conventional and EBCCD read-out chain for the tests in front of the CHORUS detector. Note the compact arrangement for the EBCCD chain compared to the conventional chain.

S1000 5.

800

• •• -v • • / i 600 i »

>•"-• ::::;':;;

•* f • • '. 400 V -\ v| • ' *r ,

200 * u >••• .•••

. • • V>

L 0 . *l *, . , 1 i ', • , . i 0 200 400 600 800 1000 H pixel 1cm Figure 2: Neutrino interaction recorded in the longitudinal position. The beam direction points out of the plane.

Experiment RD46 High Resolution Tracking Devices Based on Capillaries Filled with Liquid Sdntillator

448 RD46

Beam: T9,N1 Approved: 15/JUN/95 Status: In-Progress

High Resolution Tracking Devices Based on Capillaries Filled with Liquid Scintillator

Amsterdam NIKHEF, Berlin Humboldt Univ., USE VLB-VUB, Brussels, CERN, Dubna JINR, Haifa, Technion, Lausanne Univ., Muenster Univ., Naples Univ./INFN, Protvino IHEP, Rome Univ.I/JNFN

Amsterdam NIKHEF Konijn J. Visschers J.L. vein Dantzig R.

Berlin Humboldt Univ. Winter K. IIHE ULB-VUB, Brussels Annis P. Mommaert C. Vilain P. Wilquet G. CERN Fabre J.P. Panman J. Wong H. Dubna JINR Kozarenko E.N. Kreslo I.E. Petukhov Yu. P. Tyukov V.

Haifa, Technion Goldberg J. Hoepfher K. Lausanne Univ. Bay A. Currat C. Mnenster Univ. Bonekamper D. Frekers D. Holtz K. Rondeshagen D. Wolff T.

Naples Univ./INFN Buontempo S. Ereditato A. Garufi F. Migliozzi P.

Protvino IHEP Golovkin S.V. Medvedkov A.M. Vasil'chenko V.G. Rome Univ.I/INFN Frenkel A. Galeazzi F. Liberti B. MarteUotti G. Penso G.

Spokesman: Mattellotti G./Frekers D. Contact: Fabre J.P.

The aim of the project is to develop high resolution tracking devices based on thin glass capillary arrays filled with liquid scintillator. This technique provides high hit densities and a position

References LHCC/95-7/P60/LDRB, LHCC/95-36/P60.Add.I 449 RD46 resolution better than 20 fim. Further, their radiation hardness makes them superior to other types of tracking devices with comparable performance. Therefore, the technique is attractive for inner tracking in collider experiments, microvertex devices, or active targets for short-lived particle detection. High integration levels in the optoelectronics read-out based on the use of the Electron Bombarded CCD (EBCCD) and the possibility of optical multiplexing reduce considerably the number of output channels, and, thus, the cost for the detector. Moreover, development of good time resolution Vacuum Image Pipeline (VIP) will allow the use of this technique in high rate environments. During 1996 and 1997, while continuing taking data with the old prototype, a new large size capillary detector was installed and put in operation in front of the CHORUS detector. The optoelectronic chain is based for the first time on the newly developed megapixel EBCCD. This device compared to the conventional solutions has better spatial resolution, low noise and outstanding capability of single photo-electron detection. Moreover it allows to build a more compact readout chain as can be judged from Figure 1. A neutrino interaction taken with this prototype is show in Figure 2.

The collaboration is also working on the development of the technique of thin planar cap- illary layers, with the aim of adapting capillary detectors to the future collider experiments. Procedures of capillary assembling, cutting and filling have been studied and prototypes tested.

450 RD47

Beam: Approved: 08/FEB/96 Status: Completed 21/OCT/97

High Energy Physics Processing using Commodity components (HEP PC)

Barcelona Autonomous Univ. (IFAE), CERN, Dubna JINR, Florida State Univ. Tallahassee, Univ. Aix-Marseille II, CPPM/IN2P3, UC Santa Cruz, Univ. of Washington, Seattle

Barcelona Autonomous Univ. (IFAE) Del&ioM. PachecoA. CERN Foster D. Jarp S. Simmies A. Tang H.

Dubna JINR FaineV. Florida State Univ. Tallahassee Bumette D. Cotden M. Georgiopoulos C. Youssef S.

Univ. Aix-Marseille II, CPPM/IN2P3 Bazzoli R. Etienne F. Meessen C. Qian Z. Tisseiant S. UC Santa Cruz SchalkT. Univ. of Washington, Seattle Burnett T.

Spokesman: Delftno M. Contact: Delftno M.

Commodity computing components, such as modern personal computers and their operating systems, may be ideal building blocks for the large processor farms required by future High Energy Physics experiments, including those of the Large Hadron Collider at CERN. Driven by the multimedia and client-server business market, commodity systems today deliver 32 bit computing power, high speed interconnectivity and multi-tasking virtual memory operating systems similar to scientific workstations, at a lower cost. A research and development effort is proposed, centered about the evaluation of processor farms based on the Windows NT operating system running on a variety of hardware platforms.

NEXTPAGEfS) References I left BLANK LHCC/95-46/P61/LCRB, LHCC/96-8/LCRB/P61/Add.l • "* 451 Beam: PST7-PSAIF Approved: 13/JUN/96 Status: In-Progress

Radiation Hardening of Silicon Detectors

Bari Univ./INFN, UC Berkeley, Brookhaven Nat.Lab., Bucharest, Inst.of Nucl.Phys.& Engin., Bucharest,Inst.of Phys.Tech.of Materials, Catania Univ./INFN, CERN, Athens Demokritos/NRC, Dortmund Univ., Batavia, Fermilab (FNAL), Florence Univ./INFN, Gent State Univ., Glasgow Univ., Hamburg Univ., Karlsruhe Univ., Kiev, Inst. for Nuclear Research, Lancaster Univ., Liverpool Univ., London, Brunei Univ., London, Imperial College, London, King's College, Ljubljana Univ. Inst. Jozef Stefan, Res. Inst.of App.Phys. Problems, Minsk, Univ. ofModena, Munich MPI, Padova Univ./INFN, Perugia Univ./INFN, Pisa Univ./INFN, Prague, Charles Univ., Prague TU, Prague, FZU-Inst. ofPbys. Acad. ofScl, Royal Inst. of Tech. Stockholm, St. Petersburg Ioffe Phys. Tech. Inst., P.Scherrer Inst., VUligen, Warsaw, Inst.Elec. Mat.Tech (ITME)

Bari Univ./INFN Angarano M. Augeili V. Creanza D. De Palma M. Schiavulli L. UC Berkeley Weber E. Brookhaven NatXab. KranerH.W. LiZ. Bucharest, Inst.of Nucl.Phys.& Engin. Vasilescu A. Bucharest,Inst.of Phys.Tech.of Materials BotilaT. PetreD. Pintilie I. Pintilie L. Catania Univ./INFN Albergo S. Boemi D. Potenza R. Tricomi A. CERN Casse G. Dezillie B. Glaser M. Grigoriev E. Lemeilleur F. Leroy C. Riedler P. Roe S. Weilhammer P. ZankelK. Athens Demokritos/NRC Fanourakis G. Loukas D. Markou A. Siotis I. Tzamarias S. Vayaki A. Dortmund Univ. Becker C. WunstorfR. Batavia, Fermilab (FNAL) Anderson D. Kwan S.

References LHCC/96-23/P62/LHC/RD

453 Florence Univ./INFN Biggeri U. Borchi E. Bruzzi M. Catacchini E. Focardi E. Parrini G. Gent State Univ. Clauws P. Glasgow Univ. Bates R. Da Via C. Manalopoulos S. O'Shea V. Pickford A. Raine C. Smith K. Hamburg Univ. Feick H. Fretwurst E. Lindstroem G. Moll M. Karlsruhe Univ. De Boer W. Heising S. Knoblauch D. Kiev, Inst. for Nuclear Research Litovchenko P. Lancaster Univ. Beatty L. Brodbeck T. Chilingarov A. Hughes G. Jones B.K. McGarry S. McPherson M. Ratoff P. Sloan T. Liverpool Univ. Allport P. Hanlon M. London, Brunei Univ. Ahmed M. Holmes-Siedle A. Matheson J. Solanky M. Watts S. London, Imperial College HallG. MacEvoyB. London, King's College Davies G. Ljubljana Univ. Inst. Jozef Stefan Mikuz M. Res. Inst.of App.Phys. Problems, Minsk Kuchinski P. Univ. of Modena Ottaviani G. Munich MPI Lutz G. Richter R.H. Padova Univ./INFN Bacchetta N. Bisello D. Giraldo A. Perugia Univ./INFN Bartalini P. Bilei G.M. Ciampolini P. Passeri D. Santocchia A.

Pisa Univ./INFN Dell'OrsoR. Messineo A. Tonelli G. Verdini P. Wheadon R. Prague, Charles Univ. Wilhelm I.

454 Prague TU Pospisil S. Sopko B. Prague, FZU-Inst. of Phys. Acad. of Sd. SichoP. VrbaV. Royal Inst. of lech. Stockholm Swenson B. St. Petersburg Ioffe Phys. Tech. Inst. Eremin V. Verbitskaya E. P.Scherrer Inst., Villigen Gabathuler K. Horisberger R. Warsaw, Inst.Elec. Mat.Tech (ITME) Luczynski Z. Nossarzewska E. Zabierowski P. Associated Companies P. Burger, Canberra Semiconductor, Belgium C. Wilburn, Micron Semiconductor, UK L. Evensen, SINTEF, Norway Observers B. Johlander, European Space Agency, ESTEC, Solar System Division, Holland C. Claeys, E. Simoen, EMEC, Belgium J.-C. Bruyere, LEPES, Grenoble, France J. Kemmer, N. Meidinger, MPI, Germany

Spokesman: Lemeilleur F./Lindstroem G./Watts S. Contact: Lemeilleur F.

Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage cur- rent and charge collection losses which worsen the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term oper- ation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.

Float Zone (FZ) oxygenated and nitrogenated silicon materials were produced as well as epi- taxial silicon materials with epilayers up to 200 pan thickness. Their impurity concentrations were measured using SIMS and IR techniques. Single pad diodes were manufactured from these non-standard materials using either a planar or a mesa process. They were distributed to the ROSE collaboration institutes for electrical and energy level defect characterization before and after irradiation. This involved current-voltage, capacitance-voltage and charge collection effi- ciency measurements as well as sophisticated energy level spectroscopy analyses such as DLTS and TSC techniques.

Some results achieved are:

- Oxygenated FZ silicon manufactured using gas doping have achieved a maximum oxygen 455 concentration of ~1016 at. cm"3. No significant radiation hardness differences were found between this material and standard FZ material. However, a different FZ refining process developed by Wacker using a quartz ring on the float zone can produce silicon with a higher oxygen concentration and such a material is in production. - Nitrogenated FZ silicon degrades in a similar way to standard FZ material. The low nitrogen concentration achieved (below 1015 at. cm"3) seems to be due to nitrogen solubility limit. - Epitaxial n-type material with an oxygen concentration of ~ 5 1016 at. cm"3 and a carbon concentration below 5 1015 at. cm"3 showed a factor two improvement in its inversion fluence compared to standard FZ material. - Mesa process involving high temperature diffusion (1200 °C for several hours) of boron and phosphorus in the normal atmosphere gave more radiation hard samples. It could be due to high diffusion of oxygen in the crystal during the process. - Two defects have been correlated with reverse annealing: a bi-stable acceptor in the bot- tom half of the bandgap which could be related to the atomic impurities and the photo- luminescence W-line involving interstitials trapped at a cluster of damage. - The annealing behavior of the leakage current and effective doping concentration has been correlated with intrinsic defects, probably multi-vacancy, associated with damage clusters.

Further analyses of the silicon materials obtained will be performed aiming to a better under- standing of the role of impurities in the creation and the evolution of the radiation induced defects. The influence of the detector processing on radiation hardness has to be understood. Modeling will be adjusted to support the experimental data. Silicon materials with a high oxygen concentration and containing other impurities such as carbon and tin will be evaluated.

456 RADTOL RD49

Beam: Approved: 12/JUN/97 Status: In-Progress

Studying Radiation Tolerant ICs for LHC

Bombay, Indian Inst. of Tech., Brookhaven Nat.Lab., CERN, CEA-Bruyeres-le-Chatel, Cracow, Inst. Phys. Nucl. Tech., Hamburg DESY, Interunivers.Micro-Electr.Centre, Leuven, Lisbon LIP, Lisbon, Inst. Superior Tecnico (1ST), Madrid Univ. Complutense, Montpellier Univ., ESTEC, Noordwijk, Padova Univ./INFN, LEPSI, Strasbourg, Torino Univ./INFN, Torino Polytechnic/INFN, Toulouse, Centre Nat. d'etude (CNES)

Bombay, Indian Inst. of Tech. VasriP. Brookhaven Nat.Lab. O'Connor P. CERN Anghinolii F. Campbell M. Casas J. Faccio F. Gomes P. Heijne E.H.M. Jairon P. Kaplon J. Kloukinas K. Letheren M. Maxchioro A. Phiz F. Santiatd J.C. Snoeys W. CEA-Bruyexes-le-Chatel Flament O. Leiay J.L. Musseau 0.

Cracow, Inst. Phys. Nucl. Tech. Dabrowski W. Hamburg DESY Hansen K. Koetz U. Interunivers.Micro-Electr.Centre, Leaven Das C. De Mey B. Lisbon LIP Klannei R. Varela J. Vital J. Lisbon, Inst. Superior Tecnico (1ST) Da Franca J.E. Leme C. Madrid Univ. Complutense de Agapito Serrano J.A. Montpellier Univ. Dachs C. Gasiot J. Palau J.M. ESTEC, Noordwijk Adams L. Harboe-Sorensen R. Padova Univ./INFN Paccagnella A.

References LHCC/97-2/LEB/P63, LHCC/97-24/LEB/P63/Add.l 457 RADTOL RD49

LEPSI, Strasbourg Dulinski W. Turchetta R. Torino Univ./INFN Bonazzola G. Deremigis P. Giubellino P. Mazza G. Torino Polytechnic/INFN Civera P.L. Pasero E. Rivetti A. Toulouse, Centre Nat. d'etude (ONES) Bezerra F. Ecoffet R. Labrunee M.

Spokesman: Jarron P./Paccagnella A. Contact: Faccio F.

In the recent yeaxs, intensive work has been carried out on the development of custom ICs for the readout electronics for LHC experiments. As far as radiation hardness is concerned, attention has been focussed on high total dose applications, mainly for the tracker systems. The dose foreseen in this inner region is estimated to be higher than 1 Mrad/year. In the framework of RD projects (RD-9 and RD-20) and in the ATLAS and CMS experiments, the study of different radiation hard processes has been pursued and good contacts with the manufacturers have been established. The results of these studies have been discussed during the Microelectronics User Group (MUG) rad-hard meetings, and now some HEP groups are working to develop radiation hard ICs for the LHC experiments on some of the available rad-hard processes.

In addition, a lot of the standard commercial electronic components and ASICs which are planned to be installed near the LHC machine and in the detectors will receive total doses in the range of 10 krad to 300 krad. This is the case for the outer detector regions of ATLAS, CMS and LHC-B, such as muons, outer regions of the calorimeters and trackers, and the whole ALICE detector. Emerging commercial VLSI deep submicron CMOS processes have a very thin gate oxide of 10 nm or less, and therefore submicron devices are expected to become intrinsically hardened against charge trapping effects in the thin oxides. Preliminary studies by several teams indicate promising results for radiation tolerant applications of submicron CMOS processes. This approach has several advantages coming from the use of mainstream technology, such as high volume production and stable processes, high yield, and high device density technology. In the MUG meeting held at CERN in June 1996, the issue of radiation tolerant circuits manufactured on commercial CMOS deep submicron processes has been addressed. On this occasion, it has been suggested that the use of such processes, though promising, requires high care and often the application of special architectural and layout techniques. Failures could come not only from total dose effects, but also from Single Event Effects (SEE), and particularly from latchup that can destroy ICs completely, or render them unusable if they are not protected by an anti-latchup system. The use of Commercial Off The Shelf (COTS) parts is getting more and more popular in the Space community, where the total dose tolerance required is around 20-50 krad over a ten year mission. Though the demand in total dose is lower than that of the outer detectors of the LHC experiments, a specific design methodology for custom chips, latch-up protection and proper qualification protocols for standard CMOS parts are common needs. The Space community has been working on components and technology qualification for more than 20 years, and a 458 RADTOL RD49 standard procedure which guarantees the reliability of the ICs in the space environment has been denned and is under continuous revision. The HEP community could profit from this experience.

459 LIST OF ALL EXPERIMENTS APPROVED SINCE 1994

The complete list of experiments going back to 1974 (as appeared in earlier editions) is still available on request but has been omitted from this year's edition to save space.

NEXT PAGE(S) left BLANK List of all experiments approved (or extended) since January 1994

WA99/2 Status: Completed Spokesman: Datz S. Approval Date: 20/APR/95 Completion Date: 25/NOV/96

Charge Changing Collisions, En- Aarhus Univ. ergy Loss, and EM Nuclear Reac- CERN tions of 160 GeV A 208Pb Lund Univ. Marine Siegbahn Inst.of Phys. Stockholm Oak Ridge Nat. Lab.

WA102 Status: Completed Spokesman: Kirk A. Approval Date: 22/SEP/94 Completion Date: 31/AUG/96

A Search for Centrally Produced Annecy LAPP non-qq Mesons in Proton Proton Athens Univ. Interactions at 450 GeV/c using the Bergen Univ. CERN ft Spectrometer and GAMS- Brussels, IISN 4000 Birmingham Univ. CERN Dubna JINR Oslo Univ. Serpukhov IHEP Tsukuba, KEK

NA45/2 Status: Data-Taking Spokesman: Stachel J. Approval Date: 20/APR/95 Completion Date:

Study of Electron Pair and Photon Brookhaven Nat.Lab. Production in Lead Gold Collisions CERN Darmstadt GSI Dubna JINR Heidelberg MPI Heidelberg Univ. Rez, Nucl. Phys. Inst. (NPI) Weizmann Inst. Rehovot

NA54 Status: Data-Taking Spokesman: Nolte E. Approval Date: 20/APR/95 Completion Date:

Determination of Cross-Sections of Grenoble ILL Fast-Muon-Induced Reactions to Munich TU Cosmogenic Radionuclides Zurich ETH

NA55 Status: Completed Spokesman: Mascarenhas N. Approval Date: 08/FEB/96 Completion Date: 30/JUN/96

Investigation of Fast Neutron Pro- Univ. of Alabama, Tuscaloosa duction by 100 to 250 GeV Muon Berlin, Hahn-Meitner Inst. Interactions on Thin Targets CALTECH, Pasadena CERN Neuchatel Univ. Stanford Univ.

462 List of all experiments approved (or extended) since January 1994

NA56 Status: Completed Spokesman: Ragazzi S. Approval Date: 08/FEB/96 Completion Date: 31/MAY/96

Measurement of Pion and Kaon Aquila Univ./INFN Fluxes Below 60 GeV/c Produced Bari Univ./INFN by 450 GeV/c Protons on a Beryl- Bern Univ. lium Target. CERN The SPY Collaboration Florence INFN Frascati Nat .Lab. INFN Harvard Univ. Helsinki Univ. Louvain Cath. Univ. Melbourne Univ. Milan Univ./INFN Naples Univ./INFN Padova Univ./INFN Pavia Univ./INFN Pisa Univ./INFN Sydney Univ.

NA57 Status: Preparation Spokesman: Antinori F. Approval Date: 03/OCT/96 Completion Date:

Study of Strange and Multistrange Bari Urdv./Polytechnic/INFN Particles in Ultrarelativistic Bergen Univ. Nucleus-Nucleus Collisions Birmingham Univ. Bratislava, Comenius Univ. Catania Univ./INFN CERN Kosice, IEP Slovak Ac. Sci & Safarik U. Legnaro Nat.Lab./INFN Oslo Univ. Padova Univ./INFN Prague, FZU-Inst. of Phys. Acad. of Sci. Rome Univ.I/INFN Salerno Univ./INFN St. Petersburg, State Univ. Inst.of Phys Strasbourg CRN/ULP Univ. Utrecht and NEKHEF

463 List of all experiments approved (ot extended) since January 1994

NA58 Status: Preparation Spokesman: Bradamante F./Paul S. Approval Date: 06/FEB/97 Completion Date:

COMPASS COmmon Muon and Bielefeld Univ. Proton Apparatus for Structure Bochum, Ruhr-University and Spectroscopy Bonn Univ. Bristol Univ. Brussels, IISN CERN Chiba Univ. Dubna JINR Erlangen-Nuemberg Univ. Freiburg Univ. Heidelberg MPI Heidelberg Univ. Helsinki Univ. of Technology Mainz Univ. Miyazald Univ. Mons Univ.- Hainaut Moscow State Univ. NPI Moscow, Inst. Nucl. Research (INR) Moscow Lebedev Phys.Inst. Munich Univ. Munich TU Nagoya Univ. Osaka City Univ. Protvino IHEP Tohoku Univ. Sendai Tel-Aviv Univ. Torino Univ./INFN Trieste Univ./INFN Tsukuba, KEK Warsaw, Soltan Inst. Nucl. Studies Yamagata Univ. Zurich Univ.

464 List of all experiments approved (or extended) since January 1994

EMU19 Status: Completed Spokesman: Khan H.A. Approval Date: 22/SEP/94 Completion Date: 31/DEC/95

Nuclear Fragmentation Induced by Pak. Inst. Nud. Sci. Tech. Islamabad Relativistic Projectiles Studied in the 4ir Configuration of Plastic Track Detectors EMU20 Status: Completed Spokesman: Khan H.A. Approval Date: 20/APR/95 Completion Date: 06/NOV/95

p-Induced Fission Studies with Pak. Inst. Nucl. Sci. Tech. Islamabad Plastic Track Detectors Using 4ic- Geometry

465 List of all experiments approved (or extended) since January 1994

PS185/3 Status: Completed Spokesman: Roehrich K. Approval Date: 15/JUN/95 Completion Date: O8/DEC/96

A Measurement of Depolarization Univ. of New Mexico, Albuquerque and Spin Transfer in pp —> AA Bonn Univ. Carnegie-Mellon Univ. Erlangen-Nuernberg Univ. Freiburg Univ. Juelich IKP-KFA Uppsala Univ. Univ. of Illinois at Urbana-Champaign

PS200 Status: Completed Spokesman: Holzscheiter M.H./Nieto M Approval Date: 03/APR/86 Completion Date: 29/SEP/96

Capture, Electron-Cooling and Aarhus Univ. Compression of Antiprotons in a Genoa Univ./INFN Large Penning-Trap for Physics London UCL Experiments with an Ultra-Low Los Alamos Nat.Lab. Energy Extracted Antiproton Perm State Univ. Beam Tokyo Univ. Dept. of Physics P.Scherrer Inst., Villigen

PS209 Status: Completed Spokesman: Jastrzebski J. Approval Date: 24/NOV/94 Completion Date: 29/SEP/96

Neutron Halo and Antiproton - Nu- CERN cleus Potential from Antiprotonic Grenoble ISN X-rays Munich TU Warsaw Univ. Heavy Ion Lab. Warsaw Univ. Warsaw, Soltan Inst. Nucl. Studies

PS21O Status: Completed Spokesman: Oelert W. Approval Date: 09/FEB/95 Completion Date: 16/OCT/95

Antihydrogen Production in p Z Darmstadt GSI interaction Erlangen-Nuernberg Univ. Genoa Univ./INFN Juelich IKP-KFA

PS211 Status: Completed Spokesman: Rubbia C. Approval Date: 15/JUN/95 Completion Date: 31/AUG/97

Experimental Study of the Phe- Athens Univ. nomenology of SpaUation Neutrons Basle Univ. in a Large Lead Block CEN, Bordeaux-Gradignan CERN Genoa Univ./INFN Grenoble ISN Madrid, CEDEX Madrid, Univ. Alfonso X el Sabio Madrid Univ. Autonoma Madrid, Polytechnical Univ. Orsay IPN Padova Univ./INFN Thessaloniki Univ. Sincrotrone Trieste

466 List of all experiments approved (or extended) since January 1994

PS212 Status: Preparation Spokesman: Nemenov L. Approval Date: 08/FEB/96 Completion Date:

Lifetime Measurement of •K'^'K Basle Univ. Atoms to Test Low Energy QCD Bern Univ. Predictions Bucharest, Inst. for Atomic Physics CERN Dubna JINR Frascati Nat .Lab. INFN Kyushu Univ. Fukuoka Kyoto-Sangyo Univ. Moscow State Univ. NPI Osaka City Univ. Paris VI Univ. Prague Group Prague TU Prague, FZU-Inst. of Phys. Acad. of Sci. Protvino IHEP Rome Sanita Rome Sanita/INFN Rome Univ.II/INFN Santiago de Compostela Univ. Tokyo, Waseda Univ. Trieste Univ./INFN Tsukuba, KEK

467 List of all experiments approved (or extended) since January 1994

AD-1 Status: Preparation Spokesman: Holzscheiter M.H. Approval Date: 12/JUN/97 Completion Date:

Antihydrogen Production and Pre- Los Alamos Nat.Lab. cision Experiments The ATHENA Aarhus Univ. Collaboration Brescia Univ./INFN Budapest, Res. Inst. Part. Nucl. Phys. UC San Diego CERN Genoa Univ./INFN London UCL Naples Univ./INFN Pavia Univ./INFN Penn State Univ. Pisa Univ./INFN Univ. Fed. Rio de Janeiro (UFRJ) Rome Univ.I/INFN Stockholm Univ. Tokyo Univ. Dept. of Physics Zurich Univ.

AD-2 Status: Preparation Spokesman: Gabrielse G. Approval Date: 12/JUN/9T Completion Date:

The Production and Study of Cold Amsterdam FOM Antihydrogen Amsterdam Univ. The Antihydrogen TRAP Collabo- Bonn Univ. ration (ATRAP) Boulder, Nat.Inst. Standards Tech (NIST) Gaithersburg.Nat. Inst.of Stand. & Tech Garching, MPI Quantenoptik Harvard Univ. Juelich IKP-KFA Seoul National Univ.

AD-3 Status: Preparation Spokesman: Hayano R.S. Approval Date: 20/NOV/97 Completion Date:

Atomic Spectroscopy and Collisions Aarhus Univ. Using Slow Antiprotons ASACUSA Budapest Res.Inst. of Physics (KFKI) Collaboration Caen, Ciril-Lab. Mixte CEA-CRNS CERN Darmstadt GSI Groningen, KVI Kyoto Univ. London UCL Maynooth, St. Patrick's College Munich TU Okazaki, Inst. Molecular Sci. REKEN Institute Tokyo Univ. Dept. of Physics Tokyo Univ. Inst. of Phys. Tokyo Inst.of Tech. Tokyo Metropolitan Univ. Tokyo, Japan Soc.for Promotion of Sci. P.Scherrer Inst., Villigen

468 List of all experiments approved (or extended) since January 1994

IS3O7 Status: Data-Taking Spokesman: Horz M. Approval Date: 06/FEB/92 Completion Date:

Diffusion of Au and Pt in Amor- Stuttgart MPI f. Metallf. phous Silicon Isolde Collaboration

IS333 Status: Data-Taking Spokesman: Kratz K.-L. Approval Date: 1T/JUN/93 Completion Date:

Neutron-Rich Silver Isotopes Pro- Basle Univ. duced by a Chemically Selective CERN Laser Ion-Source: Test of the R- Leuven University Process "Waiting-Point" Concept Mainz Univ.-Inst.Nucl. Chemistry Maryland Univ. Troitzk, Inst.of Spectroscopy Isolde Collaboration

IS339 Status: Data-Taking Spokesman: Borge M.J.G. Approval Date: 10/FEB/94 Completion Date:

The Mechanism of 3-Delayed Two- Aarhus Univ. Proton Emission CERN Chalmers Univ. of Technology, Goteborg Jyvaskyla Univ. Insto.Estruct. de la Materia,CSIC Madrid Isolde Collaboration

IS340 Status: Data-Taking Spokesman: Langouche G. Approval Date: 10/FEB/94 Completion Date:

Emission Channeling Studies of the Groningen Univ. Lattice Site of Oversized Alkali Konstanz Univ. Atoms Implanted in Metals Leuven University Isolde Collaboration

IS343 Status: Data-Taking Spokesman: Hofsass H. Approval Date: 16/JUN/94 Completion Date:

Emission Channeling Investigation CERN of Implantation Defects and Impu- Berlin Humboldt Univ. rities in II-VI-Semiconductors Groningen Univ. Helsinki Univ. - SEFT Konstanz Univ. Isolde Collaboration

IS342 Status: Data-Taking Spokesman: Hofsass H. Approval Date: 16/JUN/94 Completion Date:

Emission Channeling Studies on the Groningen Univ. Behaviour of Light Alkali Atoms in Konstanz Univ. Wide-Band-Gap Semiconductors Isolde Collaboration

IS343 Status: Data-Taking Spokesman: Bennett J.R.J. Approval Date: 16/JUN/94 Completion Date:

Test of a High Power Target Design CERN Daresbury Lab. Manchester Univ. Rutherford Appleton Lab. Surrey Univ. 469 Isolde Collaboration List of all experiments approved (or extended) since January 1994

IS 344 Status: Data-Taking Spokesman: Billowes J. Approval Date: 16/JUN/94 Completion Date:

Laser Spectroscopy of Bismuth Berlin, Hahn-Meitner Inst. Isotopes CERN Mainz Univ. Manchester Univ. SUNY Stony Brook Isolde Collaboration

IS345 Status: Data-Taking Spokesman: Forkel-Wirth D. Approval Date: 22/SEP/94 Completion Date:

Nuclear Electrical and Opti- Berlin, Hahn-Meitner Inst. cal Studies of Hydrogen in Caen GANIL Semiconductors CERN Duisburg Univ. Erlangen-Nuemberg Univ. Jena, Friedrich-Schiller-Univ. Konstanz Univ. Lisbon Univ. Troitzk, Inst.of Spectroscopy Isolde Collaboration

IS346 Status: Preparation Spokesman: de Saint Simon M. Approval Date: 09/FEB/95 Completion Date:

Mass Measurement of Very Short Bucharest, Inst.of Nucl.Phys.& Engin. Half-Lived Nuclei CERN Darmstadt GSI Giessen Univ. Chalmers Univ. of Technology, Goteborg Montreal McGill Univ. Orsay CSNSM/IN2P3-CNRS IPN, Univ. Paris-Sud/CNRS-IN2P3, Orsay Isolde Collaboration

470 List of all experiments approved (or extended) since January 1994

IS347 Status: Preparation Spokesman: Habs D. Approval Date: 09/FEB/95 Completion Date:

Radioactive beam Experiments at Aarhus Univ. ISOLDE: Coulomb excitation and Brookhaven Nat.Lab. neutron transfer reactions of exotic CERN nuclei. Copenhagen Niels Bohr Inst. Daresbury Lab. Darmstadt GSI Darmstadt T.H. Dubna JINR Edinburgh Univ. Frankfurt/Main Univ. Chalmers Univ. of Technology, Goteborg Gottingen Univ. Heidelberg MPI Leuven University Liverpool Univ. Insto.Estruct. de la Materia,CSIC Madrid Mainz Univ. Munich TU Munich Univ. Paris IN2P3 St. Petersburg, IFMO Saclay LNS Manne Siegbahn Inst.of Phys. Stockholm Michigan State Univ. Royal Inst. of Tech. Stockholm CRN, CNRS-IN2P3/Univ. Strasbourg Surrey Univ. IPN, Univ. Lyon/CNRS-IN2P3, Villeurbanne Isolde Collaboration

IS348 Status: Data-Taking Spokesman: Troeger W. Approval Date: 20/APR/95 Completion Date:

Enzymatic Mercury Detoxification: Harvard Medical School, Boston The Regulatory Protein MerR Small Drug Dis. Genetics Inst. Cambridge Leipzig Univ. Isolde Collaboration

IS349 Status: Data-Taking Spokesman: Severyns N. Approval Date: 20/APR/95 Completion Date:

Meson-Exchange Enhancement of Bonn Univ. First-Forbidden Beta Transitions in Leuven University the Lead Region Louvain Cath. Univ. Rez, Nucl. Phys. Inst. (NPI) Strasbourg CRN NICOLE & ISOLDE Collaboration

IS350 Status: Data-Taking Spokesman: Kupsch H. Approval Date: 20/APR/ 95 Completion Date:

Speciation of Aquatic Heavy Leipzig Univ. Metals in Humic Substances by Isolde Collaboration lllTOCd/199mHg - TDPAC

471 List of all experiments approved (or extended) since January 1994

IS351 Status: Completed Spokesman: Jokinen A. Approval Date: 15/JUN/95 Completion Date: 31/MAY/97

Search for 73Rb and Investigation CERN of Nuclear Decay Modes Near the Jyvaskyla Univ. Z=N Line in the Border Region of Leuven University the Astrophysical RP-Process Path IPN, Univ. Lyon/CNRS-IN2P3, Villeurbanne Oslo Univ. Paris IN2P3 St. Petersburg, NPI Strasbourg CRN Isolde Collaboration

IS352 Status: Completed Spokesman: Miehe Ch. Approval Date: 15/JUN/95 Completion Date:

Search for Deformation Signature CERN in the Gamow-Teller Decay of N=Z IPN, Univ. Lyon/CNRS-IN2P3, Villeurbanne Even Even Nuclei Above A=60 Insto.Estruct. de la Materia.CSIC Madrid Paris IN2P3 Strasbourg CRN Isolde Collaboration

IS353 Status: Data-Taking Spokesman: Jokinen A. Approval Date: 05/OCT/95 Completion Date:

Beta Decay of 58Zn. A Critical CERN Test for the Charge-Exchange Re- Jyvaskyla Univ. action as a Probe for the Beta De- CRN, CNRS-IN2P3/Univ. Strasbourg cay Strength Distribution Isolde Collaboration

IS354 Status: Data-Taking Spokesman: Rykaczewski K. Approval Date: ll/APR/96 Completion Date:

Identification and Decay Studies of CERN New, Neutron-Rich Isotopes of Bis- Darmstadt GSI muth, Lead and Thallium by means Jyvaskyla Univ. of a Pulsed Release Element Selec- Leuven University tive Method Oslo Univ. Warsaw Univ. Isolde Collaboration

IS355 Status: Preparation Spokesman: Pfutzner M. Approval Date: ll/APR/96 Completion Date:

Search for Detour Transitions in the Aarhus Univ. Radiative EC Decay of 81Kr CERN Chalmers Univ. of Technology, Goteborg Darmstadt GSI Warsaw Univ. Isolde Collaboration

IS356 Status: Preparation Spokesman: Severijns N. Approval Date: 13/JUN/96 Completion Date:

Search for Physics Beyond the Bonn Univ. Standard Model via Positron Polar- CERN ization Measurements with Polar- Leuven University ized 17F. Louvain Cath. Univ. Wisconsin Univ. 472 Zurich ETH NICOLE & ISOLDE Collaboration List of all experiments approved (or extended) since January 1994

IS357 Status: Data-Taking Spokesman: Henry M. Approval Date: 13/JUN/96 Completion Date:

Gold and Platinum in Silicon - Aarhus Univ. Isolated Impurities and Impurity Amsterdam Univ. Complexes Dublin City Univ. CERN Konstanz Univ. Lisbon Univ. Isolde Collaboration

IS358 Status: Preparation Spokesman: Rikovska-Stone J. Approval Date: 06/FEB/97 Completion Date:

Magnetic Moment of 67Ni and 67Ni CERN -> 67Cu /3-Decay Chalk River Nucl. Lab. Lund, Inst. of Technology Mainz Univ.-Inst.Nucl. Chemistry Maryland Univ. Michigan State Univ. Novi Sad Univ. Oxford Univ. NICOLE & ISOLDE CoUaboration

IS359 Status: Data-Taking Spokesman: Weyer G. Approval Date: 06/FEB/97 Completion Date:

Investigations of Deep-Level Aarhus Univ. Fe-centres in Si by Mossbauer Berlin, Hahn-Meitner Inst. Spectroscopy CERN Gottingen Univ. Konstanz Univ. Troitzk, Inst.of Spectroscopy Isolde Collaboration

IS 360 Status: Preparation Spokesman: Correia J.G. Approval Date: 06/FEB/97 Completion Date:

Studies of High-Tc Supercon- Aveiro Univ. ductors Doped with Radioactive Chalmers Univ. of Technology, Goteborg Isotopes Grenoble CEN Leipzig Univ. Louvain Cath. Univ. Lisbon Univ. Porto Univ. Sacavem ITN Stockholm Univ. Warsaw Univ. Isolde Collaboration

IS361 Status: Preparation Spokesman: Tengblad O. Approval Date: 12/JUN/97 Completion Date:

Beta Decay Asymmetry in Mirror Aarhus Univ. Nuclei: A = 9 CERN Chalmers Univ. of Technology, Goteborg Insto.Estruct. de la Materia,CSIC Madrid Stockholm Univ. Isolde Collaboration

473 List of all experiments approved (or extended) since January 1994

IS362 Status: Preparation Spokesman: Mehrer H. Approval Date: 12/JUN/97 Completion Date:

Diffusion in Intrinsic and Highly Muenster Univ. Doped III-V Semiconductors Isolde Collaboration

IS363 Status: Data-Taking Spokesman: Beyer G.J. Approval Date: 12/JUN/97 Completion Date:

Use of Radioactive Ion Beams for Basle Univ., Faculty of Medicine Bio-Medical Research Geneva Univ., Faculty of Medicine Kogarah, St. George Cancer Centre Munich TU Isolde Collaboration

474 List of all experiments approved (or extended) since January 1994

ALICE Status: Preparation Spokesman: Schukraft J. Approval Date: 06/FEB/97 Completion Date:

Alessandria, Torino Univ. Fac.Science, Aligarh, Muslim Univ., Athens Demokritos/NRC, Athens Univ., Bari Polytechnic/INFN, Bari Univ./INFN, Beijing HEP Inst., Bergen Univ., Birmingham Univ., Bombay, Indian Inst. of Tech., Bratislava, Comenius Univ., Budapest Res.Inst. of Physics (KFKI), Cagliari Univ./INFN, Saha Inst. of Nucl. Phys. Calcutta, VECC Calcutta, Catania Univ./INFN, CERN, Chandigarh Panjab Univ., Clermont-Ferrand Univ., Copenhagen Niels Bohr Inst., Cracow Inst.Nucl.Phys., Darmstadt GSI, Dubna JINR, Dubna, RCANP, Frankfurt/Main Univ., Geneva Univ., Heidelberg MPI, Heidelberg Univ., Ioannina Univ., Jaipur Rajasthan Univ., Jammu Univ., Kharkov Inst. of Phys. & Tech. (KhFTI), Kharkov, Scientific Resch. Tech. Inst., Kiev, Ukrainian Acad. of Sciences (ITP), Kosice, IEP Slovak Ac. Sci & Safarik U., Legnaro Nat.Lab./INFN, Lund Univ., Univ. of Lyon I (IPNL), Marburg Univ., Mexico CINVESTAV - IPN, Byelorussian State Univ. Minsk, Moscow Eng.Phys.Inst., Moscow ITEP, Moscow Kurchatov Inst., Moscow, Inst. Nucl. Research (INR), Muenster Univ., Subatech, Nantes, Novosibirsk, Budker Inst.Nucl.Phys., Oak Ridge Nat. Lab., Ohio State Univ., IPN, Univ. Paris-Sud/CNRS-IN2P3, Orsay, Oslo Univ., Padova Univ./INFN, Prague, FZU-Inst. of Phys. Acad. of Sci., Protvino IHEP, Rez, Nucl. Phys. Inst. (NPI), Rome Univ.I/INFN, Salerno Univ./INFN, Sarov, Russian Federal Nuclear Center, St. Petersburg, NPI, St.Petersburg S.U.- Mendeleev Inst. Met., Strasbourg, IReS, Tbilisi State Univ., Tbilisi, Inst.of Phys. Georgian Ac. Sci., Trieste Univ./INFN, Torino Univ./INFN, Utrecht Univ., Warsaw, Soltan Inst. Nucl. Studies, Wuhan Hua-Zhong Normal Univ., Yerevan Phys.Inst., Zagreb Rudjer Boskovic Inst. ATLAS Status: Preparation Spokesman: Jenni P. Approval Date: 31/JAN/96 Completion Date:

Albany SUNY, Univ. of Alberta, Univ. of New Mexico, Albuquerque, Almaty HEPI, Amsterdam NIKHEF, Annecy LAPP, Argonne Nat. Lab., Arlington, Univ. of Texas, Athens Nat.Tech.Univ., Athens Univ., Baku, Azerbaijan Acad. of Sciences, Barcelona Autonomous Univ. (IFAE), Bergen Univ., Berkeley LBL and UC, Bern Univ., Birmingham Univ., Bonn Univ., Boston Univ., Bratislava U./Slovak Acad.Science Kosice, Brookhaven Nat.Lab., Bucharest, Inst. for Atomic Physics, Cambridge Univ., U. Hassan II Casablanca/Mohamed V Rabat, CERN, Chicago Univ., Clermont-Ferrand Univ., Columbia Univ., Copenhagen Niels Bohr Inst., Cosenza, Calabria Univ./INFN, Cracow Inst.Nucl.Phys., Cracow, FPNT, Univ. Mining Metallurgy, Dallas, Southern Methodist Univ., Dortmund Univ., Dubna JINR, Duke Univ., Edinburgh Univ., Frascati Nat.Lab. INFN, Freiburg Univ., Fukui Univ., Geneva Univ., Genoa Univ./INFN, Glasgow Univ., Grenoble ISN, Haifa, Technion, Hampton Univ., Harvard Univ., Heidelberg Univ., Helsinki Univ. - SEFT, Hiroshima Univ., Hiroshima, Inst. of Tech., Indiana Univ., Innsbruck Univ., UC Irvine, Istanbul, Bogazici Univ., Jena, Friedrich-Schiller-Univ., Kobe Univ., Kyoto Univ., Lancaster Univ., Lecce Univ./INFN, Lisbon LIP, Liverpool Univ., Ljubljana Univ. Inst. Jozef Stefan, London UCL, London, Queen Mary Westfield College, London, Royal Holloway and Bedford N.C., Lund Univ., Madrid Univ. Autonoma, Mainz Univ., Manchester Univ., Mannheim Univ., Marseille CPPM, Medford, Tufts Univ., Melbourne Univ., Michigan State Univ., Univ. of Michigan, Milan Univ./INFN, Minsk, IPASB, MIT, Montreal Univ., Moscow Eng.Phys.Inst., Moscow ITEP, Moscow Lebedev Phys.Inst., Moscow State Univ. NPI, Munich MPI, Munich Univ., Shinshu Univ. Nagano, Naples Univ./INFN, Naruto Univ. of Education, NEKHEF-H/Nijmegen Univ., Norfolk State Univ., Northern Illinois Univ., Novosibirsk, Budker Inst.Nucl.Phys., Oklahoma Univ., Orsay LAL, Oslo Univ., Ottawa, Carleton CRPP, Oxford Univ., Paris VI and VII Univ., Pavia Univ./INFN, Univ. of Pennsylvania, Pisa Univ./INFN, Pittsburgh Univ., Prague TU, Prague, Charles Univ., Prague, FZU-Inst. of Phys. Acad. of Sci., Protvino IHEP, Weizmann Inst. Rehovot, Univ. Fed. Rio de Janeiro (UFRJ), Univ. of Rochester, Rome Univ.I/INFN, Rome Univ.II/INFN, Rome, Terza Univ., Rutherford Appleton Lab., Saclay DAPNIA, UC Santa Cruz, Sao Paolo Univ., Univ. of Washington, Seattle, Sheffield Univ., University of Siegen, St. Petersburg, NPI, Stockholm Univ., Stockholm, Royal Inst. of Tech. (KTH), Sydney ANSTO, Sydney Univ., Tbilisi State Univ., Tbilisi, Inst.of Phys. Georgian Ac. Sci., Tel-Aviv Univ., Thessaloniki Univ., Tokyo Metropolitan Univ., Tokyo Univ. ICEPP, Tokyo Univ. of Agr. Tech., Toronto Univ., Tsukuba, KEK, Univ. of Arizona, Tucson, Udine Univ./INFN, Uppsala Univ., Univ. of Illinois at Urbana-Champaign, Valencia Univ., Vancouver, TRIUMF, Vancouver, Univ. B.C., Victoria Univ., Waltham, Brandeis Univ., Wisconsin Univ., Wuppertal Univ., Yerevan Phys.Inst.

475 List of all experiments approved (or extended) since January 1994

CMS Status: Preparation Spokesman: Delia Negra M. Approval Date: 31/JAN/96 Completion Date:

Aachen TH, I Phys.Inst., Aachen TH, III Phys.Inst., Adana, Cukurova Univ., Ames, Iowa State Univ., Ankara, Middle East Technical Univ., Annecy LAPP, Antwerp Univ., Aquila Univ./INFN, Athens Univ., INP and IME of NCSR Demokritos, Attiki, Bari Univ./INFN, Basle Univ., Beijing HEP Inst., Beijing, Peking Univ., Berlin Humboldt Univ., Bhubaneswar Inst. of Phys., Bologna Univ./INFN, Bombay BARC, Bombay TIFR, Boston Univ., Bratislava, Slovak Univ. of Tech., Bristol Univ., Brno, Inst. of Scientific Instruments, Brookhaven Nat.Lab., IIHE ULB-VUB, Brussels, Budapest Res.Inst. of Physics (KFKI), Carnegie-Mellon Univ., Catania Univ./INFN, CERN, Chandigarh Panjab Univ., Cheju Nat. Univ., Univ. of Illinois at Chicago, Chonnam National Univ., Choongbuk Nat. Univ., Texas Univ.at Dallas, UC Davis, ATOMKI Inst. Debrecen, Kossuth Lajos Univ. Debrecen, Dubna JINR, Fairfield Univ., Batavia, Fermilab (FNAL), Florence Univ./INFN, Florida State Univ. Tallahassee, Genoa Univ./INFN, Chinese Univ. Science & Tech. Hefei, Helsinki Univ., Helsinki, Inst. of Physics (HIP), Ioannina Univ., Iowa City, Univ. of Iowa, Iri, Wonkwang Univ., Quaid-I-Azam Univ. Islamabad, Johns Hopkins Univ., Jyvaskyla Univ., Kangnung National Univ., Kangwon Nat. Univ., Karlsruhe Univ., Kharkov Inst. of Monocrystals (ISC), Kharkov Inst. of Phys. & Tech. (KhFTI), Kharkov State Univ. (KSU), Kyungpook Nat. Univ., Purdue Univ. Lafayette, Lab. Instrum. e Particules, Lisbon, Lawrence Livermore Nat. Lab., London, Brunei Univ., London, Imperial College, Los Alamos Nat.Lab., UCLA, Louvain Cath. Univ., IPN, Univ. Lyon/CNRS-IN2P3, Villeurbanne, Madrid CIEMAT, Madrid Univ. Autonoma, Maryland Univ., Univ. of Minnesota, Minneapolis, Byelorussian State Univ. Minsk, Inst. of Nuclear Problems, Minsk, Minsk, NCPHEP, Res. Inst.of App.Phys. Problems, Minsk, MIT, Mons Univ.- Hainaut, Moscow ITEP, Moscow Lebedev Phys.Inst., Moscow State Univ. NPI, Moscow, Inst. Nucl. Research (INR), Naju, Dongshin Univ., Univ. of Delhi South Campus, New Delhi, Univ. of Cyprus, Nicosia, Northeastern Univ., Northwestern Univ., Univ. of Notre Dame, Novosibirsk, Budker Inst.Nucl.Phys., Ohio State Univ., Univ. of Oulu, Padova Univ./INFN, LPNHE, Ecole Poly/CNRS-IN2P3, Palaiseau, CALTECH, Pasadena, Pavia Univ./INFN, Perugia Univ./INFN, Pisa Univ./INFN, Pohang Univ. of Sci. & Tech., Prague TU, Prague, Charles Univ., Prague, Inst. of Computing Machines, Princeton Univ., Protvino IHEP, Rez, Nucl. Phys. Inst. (NPI), Rice University, Inst.of Electronics & Computer Sci.Riga, UC Riverside, Univ. of Rochester, Rome Univ.I/INFN, Rutgers Univ., Rutherford Appleton Lab., Saclay DAPNIA, UC San Diego, Santander Univ., Seo Nam Univ., Kon-Kuk Univ. Seoul, Seoul National Univ., Seoul, Korea Univ., ESTRNE, Sofia, Sofia Univ., Technical Univ. of Split, Univ. of Split, St. Petersburg, NPI, SUNY Stony Brook, CRN, CNRS-IN2P3/Univ. Strasbourg, Tallinn, Inst. of Chem. Phys. & Biophys, Tampere Univ. of Technology, Tashkent Inst.Nucl.Phys., Tbilisi, High Energy Phys. Inst., Tbilisi, Inst.of Phys. Georgian Ac. Sci., Texas Tech. Univ., Torino Univ./INFN, Univ. of Alabama, Tuscaloosa, Univ. of Florida, Gainesville, Univ. of Mississippi, Univ. of Nebraska, Lincoln, Vienna HEPHY, P.Scherrer Inst., Villigen, Virginia Poly./Univ., Blacksburg, Warsaw Univ., Warsaw, Soltan Inst. Nucl. Studies, Wisconsin Univ., Yerevan Phys.Inst., Inst. of Computing Machines, Zilina, Zurich ETH, Zurich Univ.

476 List of all experiments approved (or extended) since January 1994

RD-2 Status: Completed Spokesman: Clark A.G./Goessling C. Approval Date: 20/SEP/90 Completion Date: 31/DEC/95

Study of a Tracking/Preshower De- Bern Univ. tector for the LHC CERN Dortmund Univ. Geneva Univ. Hamburg Univ. Melbourne Univ. Moscow State Univ. NPI Oxford Univ. Rutherford Appleton Lab.

RD-5 Status: Completed Spokesman: Delia Negra/Radermacher Approval Date: OT/FEB/91 Completion Date: 31/DEC/94

Study of Muon Triggers and Mo- Aachen TH, III Phys.Inst. mentum Reconstruction in a Strong Amsterdam NIKHEF Magnetic Field for a Muon Detector Boston Univ. at LHC Brookhaven Nat .Lab. Budapest Res.Inst. of Physics (KFKI) CERN Dubna JINR Florence Univ./INFN Helsinki Univ. - SEFT Helsinki Univ. Louisiana State Univ. Madrid Univ. Autonoma Madrid CIEMAT Moscow ITEP NIKHEF-H/Nijmegen Univ. Padova Univ./INFN Rome Univ.I/INFN Rome Univ.II/INFN SUNY Stony Brook Abo Academy, Turku UCLA UC Riverside Vienna HEPHY Warsaw Inst.Nucl.Studies Warsaw Univ. Zurich ETH

477 List of all experiments approved (or extended) since January 1994

RD-8 Status: Completed Spokesman: del Papa C./Smith K.M. Approval Date: OY/FEB/91 Completion Date: 31/JUL/97

Development of GaAs Detectors for Aachen TH, I Phys.Inst. Physics at the LHC Bologna Univ./INFN Florence Univ./INFN Freiburg Univ. Glasgow Univ. Kaunas, Inst. of Tech. Lancaster Univ. Univ. of Modena Prague Group Rutherford Appleton Lab. Serpukhov IHEP Sheffield Univ. Sydney ANSTO Tomsk, S.P.T.I. Udine Univ./INFN Vilnius, Semiconductor Phys. Inst. Vilnius Univ. Vilnius, Enterprise Venta

RD-9 Status: Completed Spokesman: Heijne Erik.E.M. Approval Date: 07/FEB/91 Completion Date: 31/DEC/96

A Demonstrator Analog Signal Pro- CERN cessing Circuit in a Radiation Hard SOI-CMOS Technology RD-10 Status: Completed Spokesman: Sauli F. Approval Date: 04/APR/91 Completion Date: 31/JAN/94

CERN Tokyo Univ. ICEPP Inst. Cant. d'Ecotoxicologie, Geneva Lisbon LIP

RD-11 Status: Completed Spokesman: Bock R.K. Approval Date: 04/APR/91 Completion Date: 05/OCT/95

Embedded Architectures for Amsterdam NDKHEF Second-level Triggering in LEC Bucharest, Inst. for Atomic Physics Experiments (EAST) Budapest Res.Inst. of Physics (KFKI) CERN Copenhagen Niels Bohr Inst. Cracow Inst.Nucl.Phys. Rutherford Appleton Lab. Dubna JINR Jena, Friedrich-Schiller-Univ. Lisbon LIP London, Royal Holloway and Bedford N.C. London UCL Manchester Univ. Mannheim Univ. Inst. of Computer & Infor. Sci. Prague Weizmann Inst. Rehovot Univ. Fed. Rio de Janeiro (UFRJ) Utrecht Univ. DESY-Zeuthen IHEP

478 List of all experiments approved (or extended) since January 1994

RD-12 Status: In-Progress Spokesman: Taylor B.G. Approval Date: 04/APR/91 Completion Date:

Timing, Trigger and Control Sys- Honeywell, Aldermaston tems for LHC Detectors Birmingham Univ. CERN Darmstadt GSI Helsinki Univ. of Technology Paris VI and VII Univ. Rutherford Appleton Lab. Lemo, Ecublens and Worthing Valencia Univ.

RD-13 Status: Completed Spokesman: Mapelli L. Approval Date: 04/APR/91 Completion Date: 05/OCT/95

A Scalable Data Taking System CERN at a Test Beam for LHC Marseille IN2P3 Novosibirsk, Budker Inst.Nucl.Phys. Oxford Univ. Pavia Univ./INFN

RD-16 Status: Completed Spokesman: Lofstedt B. Approval Date: 04/APR/91 Completion Date:

A digital Front-End and Read- CERN out Microsystem for calorimetry at Univ. of Linkoping LHC Milan Ec. Poly. Pavia Univ./INFN Royal Inst. of Tech. Stockholm Stockholm Univ.

RD-17 Status: Completed Spokesman: Kuroda K. Approval Date: 04/APR/91 Completion Date: 31/DEC/94

Ultrafast Readout of Scintillating Annecy LAPP Fibres Using Upgraded Position- CERN Sensitive Photomultipliers Dubna JINR Geneva Univ. Iowa City, Univ. of Iowa Kyoto-Sangyo Univ. UCLA Messina Univ./INFN Osaka City Univ. Pisa Univ./INFN Prague, Charles Univ. CRN, CNRS-IN2P3/Univ. Strasbourg Trieste Univ./INFN Serpukhov IHEP

479 List of all experiments approved (or extended) since January 1994

RD-18 Status: In-Progress Spokesman: Tavemier S. Approval Date: 04/APR/91 Completion Date:

A Study of New Fast and Radiation Aachen TH, I Phys.Inst. Hard Scintillatois for Calorimetry Ancona INFN at LHC Annecy LAPP Bombay TIFR IEEE ULB-VUB, Brussels Bucharest, Inst. for Atomic Physics CERN Delft Tech. Univ. Geneva Univ. Hospital Lawrence Livermore Nat. Lab. Lund Univ. Univ. of Lyon I (LPCML) Univ. of Lyon I (DPNL) Milan Univ./INFN LPNHE, Ecole Poly/CNRS-IN2P3, Palaiseau CALTECH, Pasadena Prague, FZU-Inst. of Phys. Acad. of Sd. Rome INFN St. Petersburg, NPI Saclay DAPNIA

RD-19 Status: In-Progress Spokesman: Heijne Erik H.M. Approval Date: 27/JUN/91 Completion Date:

Development of Hybrid and Amsterdam NIKHEF Monolithic Silicon Micropattern Athens Demokritos/NRC Detectors Ban Univ./INFN Bonn Univ. CERN UC Davis Dortmund Univ. Freiburg FhGIAF Genoa Univ./INFN Glasgow Univ. Karlsruhe Univ. Kosice Phys. Inst. London, Imperial College Marseille CPPM Milan Univ./INFN Univ. of Modena Padova Univ./INFN Paris College de France Perugia Univ./INFN Pisa Univ./INFN Prague Group Rome Univ.I/INFN Trieste Univ./ENFN Udine Univ./INFN Warsaw Inst .Nucl.Res. Wuppertal Univ. Yerevan Phys.Inst. Zurich ETH

480 List of all experiments approved (or extended) since January 1994

RD-20 Status: Completed Spokesman: Weilhammer P./Hall G. Approval Date: 27/JUN/91 Completion Date: 31/DEC/95

Development of High Resolution Si INP and IME of NCSR Demokxitos, Attiki Strip Detectors for Experiments at Bonn Univ. High Luminosity at the LHC Bratislava, Comenius Univ. CERN Cracow Inst.Nucl.Phys. Cracow, Inst. Phys. Nucl. Tech. Heidelberg MPI Liverpool Univ. London, Brunei Univ. London, Imperial College Marseille CPPM Oslo Univ. Central Inst. for Industrial Res. Oslo Padova Univ./INFN Rome Sanita/INFN Rutherford Appleton Lab. Strasbourg CRN Torino Univ./INFN Uppsala Univ. Vienna HEPHY PSI Wuerenlingen

RD22 Status: Completed Spokesman: Carboni G. Approval Date: 28/NOV/91 Completion Date: 31/DEC/94

Test of Beam Extraction by Crys- Aarhus Univ. tal Channeling at the SPS: A First CERN Step towards a LHC Extracted Frascati Nat.Lab. INFN Beam Lecce Univ./INFN Pisa Univ./INFN Rome Urdv.I/INFN Strasbourg CRN Torino Univ./INFN Trieste Univ./INFN

RD23 Status: In-Progress Spokesman: Stefanini G./Vasey F. Approval Date: 06/FEB/92 Completion Date:

Optoelectronic Analogue Sig- Birmingham Univ. nal Transfer for LHC Detectors CERN Ecole Polytech. Fed. Lausanne (EPFL) London, Imperial College Rutherford Appleton Lab. University of Siegen

RD24 Status: Completed Spokesman: Bogaerts A./Muller Hans Approval Date: 06/FEB/92 Completion Date: 02/OCT/96

Application of the Scalable Coher- CERN ent Interface to Data Acquisition at Lawrence Berkeley Lab. LHC Rutherford Appleton Lab. Oslo Univ. IFIC, Valencia Valencia, Poly technique Univ. DEC Joint Project at CERN Dolphin SCI Tech. A.S., Oslo

481 List of all experiments approved (or extended) since January 1994

RD26 Status: In-Progress Spokesman: Paic G./Piuz F. Approval Date: 16/APR/92 Completion Date:

Development of a Large Area Ad- Bari Univ./Polytechnic/INFN vanced Fast RICH Detector for CERN Particle Identification at the Large Coimbra University/LIP Hadron Collider Operated with Giessen Univ. Heavy Ions Ecole Polytech. Fed. Lausanne (EPFL) Lund Univ. Moscow, Inst. Nucl. Research (INR) Munich TU Padova Univ./INFN LPNHE, Ecole Poly/CNRS-IN2P3, Palaiseau Rome Sanita/INFN Saclay DAPNIA Trieste Univ./INFN Weizmann Inst. Rehovot Zagreb Rudjer Boskovic Inst.

RD27 Status: In-Progress Spokesman: Ellis N. Approval Date: 30/JUN/92 Completion Date:

First-Level Trigger Systems for Birmingham Univ. LHC Experiments CERN Heidelberg Univ. Univ. of Linkoping Munich MPI London, Queen Mary & Westfield College London, Royal Holloway and Bedford N.C. Rome Univ.I/INFN Rome Univ.II/INFN Rutherford Appleton Lab. Stockholm Univ. Wisconsin Univ.

482 List of all experiments approved (or extended) since January 1994

RD28 Status: Completed Spokesman: Sauli F. Approval Date: 30/JUN/92 Completion Date: 17/FEB/96

Development of Gas Micro-Strip Aarhus Univ. Chambers for Radiation Detection Univ. of Michigan and Tracking at High Rates Amsterdam NIKHEF INP and IME of NCSR Demokritos, Attiki Batavia, Fermilab (FNAL) Birmingham Univ. IEEE ULB-VUB, Brussels Bratislava, Comenius Univ. CERN Coimbra University/LIP Cracow, FPNT, Univ. Mining & Metallurgy Dubna JINR Northwestern Univ. Frascati Nat.Lab. INFN Gran Sasso Nat. Lab./INFN Heidelberg MPI Kosice Phys. Inst. Legnaro Nat.Lab./INFN Liverpool Univ. London UCL Univ. of Lyon I (IPNL) Manchester Univ. Mons Univ.- Hainaut Moscow ITEP Moscow Lebedev Phys.Inst. Moscow State Univ. NPI Novosibirsk, Budker Inst.Nucl.Phys. Ottawa, Carleton CRPP Carleton Univ. - Ottawa Prague, FZU-Inst. of Phys. Acad. of Sci. Weizmann Inst. Rehovot Rutherford Appleton Lab. Saclay DAPNIA SUNY Stony Brook Santiago de Compostela Univ. Strasbourg CRN Strasbourg CRN/ULP Texas A&M Univ. Torino Univ./INFN Vancouver, TRIUMF

RD29 Status: In-Progress Spokesman: Dentan M. Approval Date: 30/JUN/92 Completion Date:

A Mixed Analog-Digital Ra- CEA, DSM/DAPNIA, Saclay diation Hard Technology for CEA-DTA-LETI, Grenoble High Energy Physics Electronics: CEA-Bruyeres-le-Chatel DMILL (Durci Mixte sur Isolant Logico- Marseille, CNRS-IN2P3-CPPM Lineaire) Orsay CSNSM/IN2P3-CNRS Matra MHS

RD30 Status: Completed Spokesman: Giomataris Y. Approval Date: 26/NOV/92 Completion Date: 31/DEC/94

Study of an Impact-Parameter Op- CERN tical Discriminator to be used Lausanne Univ. for Beauty Search in Fixed-Target Saclay DAPNIA Mode at the LHC 483 List of all experiments approved (or extended) since January 1994

RD31 Status: Completed Spokesman: Dufey J.-P./Letheren M. Approval Date: 26/NOV/92 Completion Date:

NEBULAS CERN A High Performance Data-Driven Tsukuba, KEK Event-Building Architecture based MIT on an Asynchronous Self-Routing Saclay DAPNIA Packet-Switching Network Royal Inst. of Tech. Stockholm Uppsala Inst. of Rad. Sciences Alcatel Bell Telephone, Antwerp Hewlett Packard

RD32 Status: Completed Spokesman: Brockmann R. Approval Date: 26/NOV/92 Completion Date: ll/APR/96

Development of a Time Projection Cracow Inst.Nucl.Phys. Chamber with High Two Track Lawrence Berkeley Lab. Resolution Capability for Experi- Brookhaven Nat.Lab. ments at Heavy Ion Colliders CERN Darmstadt GSI Frankfurt /Main Univ. Munich MPI Utrecht Univ.

RD33 Status: Completed Spokesman: Oberlack H. Approval Date: ll/FEB/93 Completion Date: 31/DEC/94

Study of a Novel Concept for a Liq- Aachen TH, I Phys.Inst. uid Argon Calorimeter - The ' Thin CERN Gap Turbine ' (TGT) - Dubna JINR Heidelberg Univ. Kosice Phys. Inst. Munich MPI Serpukhov IHEP

RD34 Status: Completed Spokesman: Cavalli-Sforza M/Nessi M. Approval Date: 15/APR/93 Completion Date: 05/OCT/95

Construction and Performance Argonne Nat. Lab. of an Iron-Scintillator Hadron Arlington, Univ. of Texas Calorimeter with Longitudinal Tile Barcelona Autonomous Univ. (IFAE) Configuration Bucharest, Inst. for Atomic Physics Chicago Univ. Clermont-Ferrand Univ. CERN Dubna JINR Univ. of Illinois at Urbana-Champaign Lisbon LIP Michigan State Univ. Pisa Univ./INFN Prague, FZU-Inst. of Phys. Acad. of Sci. Prague, Charles Univ. Univ. Fed. Rio de Janeiro (UFRJ) Serpukhov IHEP Stockholm Univ. IFIC, Valencia Yerevan Phys.Inst.

484 List of all experiments approved (or extended) since January 1994

RD37 Status: Completed Spokesman: Ferrando A. Approval Date: 10/FEB/94 Completion Date: 31/DEC/95

Very Forward Hadron Calorimetry CERN at the LHC Using Parallel Plate Budapest Res.Inst. of Physics (KFKI) Chambers ATOMKI Inst. Debrecen Florence Univ./INFN Madrid CBEMAT Moscow ITEP St. Petersburg, NPI Serpukhov IHEP

RD38 Status: Completed Spokesman: Le Goff J.-M. Approval Date: 10/FEB/94 Completion Date: 31/DEC/95

CICERO: Control Information sys- SPACEBEL, Brussels tem Concepts based Bristol Univ. on Encapsulated Real-time Objects Budapest Res.Inst. of Physics (KFKI) A study on Generic Control CERN Systems for Large Scale LHC USDATA, Dallas Experiments IVO International, Helsinki Helsinki Univ. - SEFT Linkoping, UID OBLOG Software, Lisbon Madrid CIEMAT VTT, Oulu VALMET Automation, Tampere

RD39 Status: In-Progress Spokesman: Niinikoski T. Approval Date: 10/FEB/94 Completion Date:

Superconducting Microstrip CERN Detectors Helsinki Univ. of Technology VTT, Tech. Res. Centre, Otaniemi

RD40 Status: Completed Spokesman: Contin A./Gorodetzky P. Approval Date: 21/APR/94 Completion Date: 31/DEC/95

Development of Quartz Fiber CERN Calorimetry Cornell Univ. Bologna Univ./INFN Florida State Univ. Tallahassee Frascati Nat .Lab. INFN Moscow ITEP Pavia Univ./INFN Pisa Univ./INFN Strasbourg CRN PHASE, Strasbourg Torino Univ./INFN

485 List of all experiments approved (or extended) since January 1994

RD41 Status: Completed Spokesman: Bos K. Approval Date: 16/JUN/94 Completion Date: ll/JUN/97

Object Oriented Approach to Amsterdam NIKHEF Software Development for LHC Argonne Nat. Lab. Experiments Lawrence Berkeley Lab. CERN Edinburgh Univ. Tsukuba, KEK NIKHEF-H/Nijmegen Univ. Orsay LAL Oxford Univ. Rutherford Appleton Lab. SLAC Saclay DAPNIA INRNE, Sofia Univ. of Washington, Seattle Utrecht Univ. Hewlett Packard

RD42 Status: In-Progress Spokesman: Weilhammer P./Kagan H. Approval Date: 22/SEP/94 Completion Date:

Development of Diamond Tracking Amsterdam NIKHEF Detectors for High Luminosity Ex- Batavia, Fermilab (FNAL) periments at the LHC Bern Univ. Bristol Univ. CERN Darmstadt GSI Heidelberg MPI Florence Univ./INFN Florence, LENS LEPES, Grenoble Lawrence Livermore Nat. Lab. Los Alamos Nat .Lab. Marseille CPPM Ohio State Univ. Pavia Univ./INFN Rutgers Univ. Saclay DAPNIA LEPSI, Strasbourg Toronto Univ. Oestr. Akad. Wissensch. Vienna

486 List of all experiments approved (or extended) since January 1994

RD43 Status: Completed Spokesman: Green D. Approval Date: 22/SEP/94 Completion Date: 05/DEC/95

Proposal for Research and Develop- Ames, Iowa State Univ. ment of a Eadron Calorimeter for Beijing HEP Inst. High Magnetic Fields Virginia Poly./Univ., Blacksburg Bombay TIFR CERN Dubna JINR Batavia, Fermilab (FNAL) Florida State Univ. Tallahassee Iowa City, Univ. of Iowa Kharkov State Univ. (KSU) Kharkov Inst. of Phys. & Tech. (KhFTI) Kharkov List, of Monocrystals (ISC) Purdue Univ. Lafayette Maryland Univ. Univ. of Minnesota, Minneapolis Minsk, BRPAPM Minsk, NCPHEP Moscow, Inst. Nucl. Research (INR) Moscow ITEP Northeastern Univ. Univ. of Notre Dame Princeton Univ. Univ. of Rochester Serpukhov IHEP INRNE, Sofia Sofia Univ. Tashkent Inst.Nucl.Phys. Tbilisi State Univ. Yerevan Phys.Inst.

487 List of all experiments approved (or extended) since January 1994

RD44 Status: In-Progress Spokesman: Giani S. Approval Date: 24/NOV/94 Completion Date:

GEANT 4: an Object-Oriented Aachen TH, III Phys.Inst. toolkit foi simulation in HEP Univ. of Alberta Amsterdam NIKHEF Annecy LAPP Austin, IBM Bari Univ./INFN Bath University Bombay TIFR Budapest Res.Inst. of Physics (KFKI) CALTECH, Pasadena Cambridge Univ. CER.N Dubna JINR Batavia, Fermilab (FNAL) Fukui Univ. Hamburg DESY Helsinki Univ. Hiroshima, Inst. of Tech. Tsukuba, KEK Kyoto Univ. Lawrence Berkeley Lab. Lawrence Livermore Nat. Lab. London, Cray Systems Manchester Univ. Montreal McGill Univ. Naruto Univ. of Education Niigata Univ. Nippon Dental Univ. Okayama Univ. Orsay LAL Padova Univ./INFN Palaiseau Ecole Polytechnique Pittsburgh Univ. Rutherford Appleton Lab. San Jose, KLA Instruments Sofia Univ. Saclay DAPNIA Serpukhov IHEP Tokyo, Intern. Christian Univ. Tokyo Metropolitan Univ. Vancouver, TRIUMF Vancouver, Univ. B.C.

488 List of all experiments approved (or extended) since January 1994

RD45 Status: In-Progress Spokesman: Shiers J. Approval Date: O9/FEB/95 Completion Date:

A Persistent Object Manager for Argonne Nat. Lab. HEP Lawrence Berkeley Lab. Bombay TIFR Brookhaven Nat.Lab. CALTECH, Pasadena CERN Cracow, Inst. Phys. Nucl. Tech. Hamburg DESY Tsukuba, KEK MIT Orsay LAL Stanford Univ. Venice Univ. Medford, Tufts Univ. Zurich ETH

RD46 Status: In-Progress Spokesman: Martellotti G./Frekers D. Approval Date: 15/JUN/95 Completion Date:

High Resolution Tracking Devices Amsterdam NEKHEF Based on Capillaries Filled with Berlin Humboldt Univ. Liquid Scintillator IIHE ULB-VUB, Brussels CERN Dubna JINR Haifa, Technion Lausanne Univ. Muenster Univ. Naples Univ./INFN Protvino IHEP Rome Univ.I/INFN

RD47 Status: Completed Spokesman: Delftno M. Approval Date: 08/FEB/96 Completion Date: 21/OCT/97

High Energy Physics Processing us- Barcelona Autonomous Univ. (IFAE) ing Commodity components (HEP CERN PC) Dubna JINR Florida State Univ. Tallahassee Univ. Aix-Marseffle II, CPPM/IN2P3 UC Santa Cruz Univ. of Washington, Seattle

489 List of all experiments approved (or extended) since January 1994

RD48 Status: In-Progress Spokesman: Lemeilleur F./Lindstroem G./Watts S. Approval Date: 13/JUN/96 Completion Date:

Radiation Hardening of Silicon Bari Univ./INFN Detectors UC Berkeley Brookhaven Nat.Lab. Bucharest, Inst.of Nucl.Phys.& Engin. Bucharest,Inst.of Phys.Tech.of Materials Catania Univ./INFN CERN Athens Demokritos/NRC Dortmund Univ. Batavia, Fermilab (FNAL) Florence Univ./INFN Gent State Univ. Glasgow Univ. Hamburg Univ. Karlsruhe Univ. Kiev, Inst. for Nuclear Research Lancaster Univ. Liverpool Univ. London, Brunei Univ. London, Imperial College London, King's College Ljubljana Univ. Inst. Jozef Stefan Res. Inst.of App.Phys. Problems, Minsk Univ. of Modena Munich MPI Padova Univ./INFN Perugia Univ./INFN Pisa Univ./INFN Prague, Charles Univ. Prague TU Prague, FZU-Inst. of Phys. Acad. of Sci. Royal Inst. of Tech. Stockholm St. Petersburg Ioffe Phys. Tech. Inst. P.Scherrer Inst., Villigen Warsaw, Inst.Elec. Mat.Tech (ITME)

RD49 Status: In-Progress Spokesman: Jarron P./Paccagnella A. Approval Date: 12/JUN/97 Completion Date:

Studying Radiation Tolerant ICs Bombay, Indian Inst. of Tech. for LHC Brookhaven Nat.Lab. CERN CEA-Bruyeres-le-Chatel Cracow, Inst. Phys. Nucl. Tech. Hamburg DESY Interunivers.Micro-Electr.Centre, Leuven Lisbon LEP Lisbon, Inst. Superior Tecnico (1ST) Madrid Univ. Complutense Montpellier Univ. ESTEC, Noordwijk Padova Univ./INFN LEPSI, Strasbourg Torino Univ./INFN Torino Polytechnic/INFN Toulouse, Centre Nat. d'etude (CNES)

490 LIST OF ALL UNIVERSITIES, RESEARCH INSTITUTES AND INDUSTRIAL FIRMS PARTICIPATING IN THE CERN EXPERIMENTAL PROGRAMME SINCE 1974 LIST OF UNIVERSITIES, RESEARCH INSTITUTES AND INDUSTRIAL FIRMS

The two tables which follow list the Universities, Research Institutes and Industrial Firms which have participated in the CERN experimental program since 1974. In the first they are listed in alphabetical order by town and in the second they have been grouped first by country. A certain amount of duplication is present in these tables since the same institute has sometimes been given a slightly different name by the spokespersons of the different experiments. We have only made a small number of changes to the original information to take into account, for example, the reunification of Germany. The complete addresses of these institutes can usually be found from either the CERN Directory of Research Institutes in High Energy Physics or from the SLAC SPIRES - HEP Database, both of which are available on the World Wide Web.

492 TABLE 1 esearch Institutes Firms Participating in Experiments/R&D Projects since 1974

Aachen TH, I. Phys.Inst. DEU Attiki, INP & IME of NCSR Demokritos GRC Aachen TH, III. Phys.Inst. DEU Austin (TX), Univ. of Texas USA Aachen, TH DEU Aveiro Univ. PRT Aarhus Univ. DNK Baku, Azerbaijan Academy of Sciences AZE Adana, Cukurova Univ. TUR Banaras Univ. IND Ahmedabad, PRL IND Barcelona, Autonomous Univ. (IFAE) ESP Aichi Educational Univ. JPN Bari Univ. ITA Ain-Oussura, Haute Comm. Recher. DZA Bari Univ./INFN ITA Aix-Marseille II Univ. CPPM/IN2P3 FRA Bari, Polytechnic/INFN ITA Albany (NY), SUNY USA Basle Univ. CHE Alburquerque (NM), Univ. of New Mexico USA Basle Univ., Faculty of Medicine CHE Alessandria, Torino Univ. (Faculty of Science) ITA Batavia (IL), Fermilab USA Algiers, LPC, Ecole Nat. Polytech. DZA Baton Rouge (LA), Louisiana State Univ. USA Aligarh Muslim Univ. IND Beijing, HEP Inst. CHN Almaty, HEPI KAZ Beijing, Peking Univ. CHN Ames (IA), Iowa State Univ. USA Belgium, DELPHI BEL Amherst (MA), Univ. of Massachusetts USA Belgium, FNRS BEL Amsterdam, IKO NLD Belgium, IISN BEL Amsterdam Univ. NLD Bergen Univ. NOR Amsterdam, FOM NLD Berkeley (CA), Lawrence Berkeley Lab. USA Amsterdam, NIKHEF NLD Berkeley (CA), UC Berkeley USA Amsterdam, Vrije Univ. NLD Berlin, Humboldt Univ. DEU Ancona INFN ITA Berlin, Fraunhofer Inst. DEU Ankara, Middle East Technical Univ. (METU) TUR Berlin, IHEP DEU Ankara, YEFAM (Adana, Ankara, Istanbul) TUR Berlin, Freie Univ. DEU Ann Arbor (MI), Univ. of Michigan USA Berlin, Hahn-Meitner Inst. DEU Annecy-le-Vieux, LAPP FRA Berlin, Technical Univ. DEU Antwerp, Alcatel Bell Telephone BEL Bern Univ. CHE Antwerp Univ. BEL Bhubaneswar Inst. of Phys. IND Argonne (ID, Argonne Nat. Lab. USA Bielefeld Univ. DEU Ashtabula (OH), Kent State Univ. USA Birmingham Univ. GBR Assergi, Gran Sasso Nat. Lab./INFN ITA Blacksburg (VA), Poly. Inst. and State Univ. USA Athens Univ. GRC Bloomington (IN), Indiana Univ. USA Athens Univ. Nuclear Physics Lab. GRC Bochum, Ruhr-University DEU Athens, Demokritos/NCSR GRC Bologna Univ./INFN ITA Athens, Nat. Tech. Univ. GRC Bologna, CNAF ITA Atlanta (GA), Atlanta Inst. of Tech. USA Bologna, INFN ITA TABLE 1 List of All Universities/Research Institutes Finns Participating in Experiments/R&P Projects since 1974

Bombay Univ. IND Caen, Univ. FRA Bombay, BARC IND Caen, Ciril-Lab. Mixte CEA-CRNS FRA Bombay, TIFR IND Cagliari Univ./INFN ITA Bombay, Indian Institute of Technology (IIT) IND Cairo, HEP Lab. EGY Bonn, DFG DEU Cairo Univ. EGY Boston (MA), Boston Univ. USA Calcutta, Saha Inst. of Nucl. Phys. IND Boston, (MA) Harvard Medical School USA Calcutta, VECC IND Boston (MA), MIT USA Camberra Semiconductor BEL Boston (MA), Northeastern Univ. USA Cambridge Univ. GBR Boulder (CO), Univ. of Colorado USA Cambridge (MA), Harvard Univ. USA Boulder (CO), National Inst. Standards Tech. (NIST) USA Cambridge (MA) Institute of Technology USA Bratislava, Comenius Univ. SVK Cambridge (MA) Small Drug Dis. Genetics Inst. USA Bratislava, Slovak Univ . of Technology SV K Casablanca, Univ. Hassan II MAR Bratislava Univ./Slovak Academy of Science Kosice SVK Univ. Hassan II Casablanca/Mohamed V Rabat MAR Brescia Univ./INFN IT A Catania Univ./INFN ITA Bristol Univ. GBR Chalk River Nucl. Lab. CDN Brno, Inst. of Scientific Instruments CSK Chandigarh, Panjab Univ. IND Brunswick, PTB DEU Changsha, Hunan Education Inst. CHN Brunswick, TU DEU Changwon National Univ. KOR Brussels, Ec. Poly. BEL Chapel Hill (NC), Univ. of North Carolina USA Brussels, IIHE ULB-VUB BEL Charlottsville (VA), Univ. of Virginia USA Brussels, SPACEBEL, BEL Cheju National Univ. KOR Brussels, USDATA BEL Chiba Univ. JPN Bruyeres-le-Chatel, CEA FRA Chiba, Toho Univ. JPN Bucharest, Atomic Phys. & Polytech. Inst. ROM Chicago (IL), Univ. of Chicago USA Bucharest, Inst. for Atomic Physics ROM Chicago (IL) Univ. of Illinois USA Bucharest, Inst. of Nuclear Physics and Engineering ROM Choongbuk National Univ. KOR Bucharest. Inst. of Physics and Technology of Materials ROM Chung-Li, Nat. Central Univ., High Energy Physics Group TWN Bucharest, Lab. of Space Research ROM Clermont-Ferrand Univ, LPC/CNRS-IN2P3 FRA Bucharest Univ. ROM Clermont-Ferrand Univ. FRA Budapest Res. Inst. of Physics (KFKI) HUN Cleveland (OH), Case Western Reserve Univ. USA Budapest, Research Institute Part. Nuclear Physics HUN Coimbra University/LIP PRT Buenos Aires Univ. ARG College Park (MD), Univ. of Maryland USA Buffalo (NY), SUNY USA College Station (TX), Texas A&M Univ. USA Bunkyo-ku, Tokyo Univ. ICEPP JPN Cologne Univ. DEU Burnaby, Simon Fraser Univ. CDN Colombus (OH), Ohio State Univ. USA Caen, GANIL FRA Copenhagen Univ., Niels Bohr Inst. DNK TABLE 1 List of All Universities/Research Institutes Firms Participating in Experiments/R&D Projects since 1974

Copenhagen, Nordita DNK Fairfax (VA), George Mason Univ. USA Corvallis (OR), Oregon State Univ. USA Fairfield Univ. (CT) USA Corvallis (OR), Oregon Univ. USA Ferrara Univ./INFN ITA Cosenza, Calabria Univ./INFN ITA Florence INFN ITA Cracow,Inst. Nucl. Phys. POL Florence Univ./INFN ITA Cracow, Inst. Phys. Nucl. Tech. POL Florence, European Lab. for non Linear Spectroscopy (LENS) ITA Cracow, FPNT, Univ. of Mining & Metallurgy POL Fogelsville (PA), Penn State Univ. USA Cracow, Jag. Univ. POL Fortaleza, Escola Tecnica Federal do Ceara BRA Cupertino (CA), Apple Computer, Inc. USA Frankfurt/Main Univ. DEU Dallas, (TX) Southern Methodist Univ. USA Frascati Nat. Lab. INFN ITA Dallas, Superconducting Super Collider Lab. (SSC) USA Freiburg,FhGIAF Dallas, USDATA USA (Fraunhofer Inst. Appl. Solid State Phys.) DEU Daresbury Lab. GBR Freiburg Univ. DEU Darmstadt, GSI DEU Fribourg Univ. CHE Darmstadt, TH DEU Fukui Univ. JPN Davis (CA), Univ. of California USA Fukuoka, Kyushu Univ. JPN Debrecen, Atomki Inst. HUN Gainesville (FL) University of Florida USA Debrecen, Kossuth Lajos Univ. HUN Gaithersburg (MD) Nat. Inst. of Standards and Technology USA DeKalb (IL) Northern Illinois Univ. USA Garching, Max Planck Inst. Quantenoptik DEU Delft, Tech. Univ. NLD Geesthacht(W), GKSS DEU Didcot, Rutherford Appleton Lab. GBR Geneva, CERN CHE Dortmund Univ. DEU Geneva Univ. CHE Dublin, City Univ. IRL Geneva Univ. Hospital CHE Dublin, hist, for Advanced Studies IRL Geneva Univ., Faculty of Medicine CHE Dublin, Univ. College IRL Geneva, Creative Equipment Corp. (CES) CHE Duisburg Univ. DEU Geneva, DEC Joint Project at CERN CHE Dubna, JINR CIS Geneva, Inst. Cantonal d'Ecotoxicologie CHE Dubna, RCANP (Research Center for Applied Nucl. Phys.) CIS Genoa, Ansaldo Richerche spa ITA Durham (NO, Duke Univ. USA Genoa Univ./INFN ITA Durham Univ GBR Gent State Univ. BEL East Lansing (MI), Michigan State Univ. USA Giessen Univ. DEU Edinburgh Univ. GBR Gifu Univ. JPN Edmonton, Univ. of Alberta CDN Glasgow Univ. GBR Eindhoven, TU NLD Goteborg, Chalmers Univ. of Technology SWE Erice, Ettore Majorana CSC ITA Goteborg Univ. SWE Erlangen-Nurnberg Univ. DEU Gottingen Univ. DEU Evanston (IL), Northwestern Univ. USA Gradignan, Bordeaux Univ. FRA TABLE 1 List of All Universities/Research Institutes Firms Participating in Experiments/R&D Proiects since 1974

Granada Univ. ESP Islamabad, Pakistan Inst. Nuclear Sci. Tech. (PINSTECH) PAK Grenoble, CEA-DTA-LETI FRA Istanbul, Bogazici Univ. TUR Grenoble, CEN FRA Istanbul, Tech. Univ. TUR Grenoble, ILL FRA Ithaca (NY), Cornell Univ. USA Grenoble, ISN FRA Jadavpur Univ. IND Grenoble, LEPES FRA Jaipur Rajasthan Univ. IND Grenoble, Thomson TMS FRA Jammu Univ. IND Groningen Univ. NLD Japan, U.G. JPN Groningen KVI NLD Jena Univ. DEU Haifa, Technion ISR Jinju, Gyeongsang Nat. Univ. KOR Hamburg Univ. DEU Johannesburg, Univ. of Witwatersrand ZAF Hamburg, DESY DEU Jiilich, IFF-KFA DEU Hamilton, McMaster Univ. CDN Jiilich, IKP-KFA DEU Hampton Univ. (VA) USA Julich, IRE-KFA DEU Hanover, (NH) Dartmouth College USA Jyvaskyla Univ. FIN Hefei, China Science and Tech. Univ. CHN Kaunas, Inst. of Technology LIT Heidelberg Univ. DEU Kangnung National Univ. KOR Heidelberg, MPI DEU Kangwon, National Univ. KOR Helsinki, IVO International FIN Karlsruhe Univ. DEU Helsinki, Institute of Physics (HIP) FIN Karlsruhe, IEKP DEU Helsinki Univ. FIN Karlsruhe, KfK DEU Helsinki, Res. Inst. for HEP, SEFT FIN Karlsruhe, Univ./KfK DEU Helsinki, SEFT-Univ. FIN Kassel, GHS DEU Helsinki, Univ. of Technology FIN Kiel Univ. DEU Hiroshima Univ. JPN Kharkov State Univ. (KSU) UKR Honolulu (HI), Univ. of Hawaii USA Kharkov, Inst. of Phys. & Tech. (KhFTI) UKR Houston (TX), Rice University USA Kharkov, Inst. of Monocrystals (ISC) UKR Houston (TX), Univ. of Houston USA Kharkov, Scientific Resch. Tech. Inst. UKR Huntsville (AL), NASA - Marshall Space Flight Center Kiev, Inst. for Nuclear Research UKR (MSFC) USA Kiev, Ukrainian Acad. of Sciences (ITP) UKR Huntsville (AL), Univ. of Alabama USA Kingston, Queens Univ. CDN Innsbruck Univ. AUT Knoxville (TN), Univ. of Tennessee USA Ioannina Univ. GRC Kobe Univ. JPN Iowa City (IA), Univ. of Iowa USA Kogarah NSW, St. George Cancer Centre AUS Iri, Wonkwang Univ. KOR Konstanz Univ. DEU Irvine (CA), UC Irvine USA Kosice, Slovak Academy of Science SVK Islamabad, Quaid-I-Azam Univ. PAK Kosice Phys. Inst. SVK TABLE 1 titiiteis Firms Participating in Experiments/R&D Projects since 1974

Kosice, Safarik Univ. SVK London, Brunei Univ. GBR Kosice, Inst. of Exp. Phys. (IEP) Slovak Ac. Sci. London, ICL GBR & Safarik Univ. SVK London, King's College GBR Kouchi Institute for Technology JPN London, Queen Mary &Westfield College GBR Kuwait Inst. Sci. Res. KWT London, Royal Holloway & Bedford N.C. GBR Kwangju, Chonnam National Univ. KOR London, UCL GBR Kyoto Univ. JPN London, Westfield College GBR Kyoto-Sangyo Univ. JPN Los Alamos (NM), Los Alamos Nat.Lab. USA L'Aquila Univ./INFN ITA Los Angeles (CA), UCLA USA La Jolla (CA), UC San Diego USA Louvain Cath.Univ. BEL Lancaster Univ. GBR Lubbock (TX), Texas Tech. Univ. USA Lausanne Univ. CHE Lund Univ. SWE Lausanne, Ecole Polytech. Fed. (EPFL) CHE Lund, Inst. of Technology SWE Lausanne, Smart Si Systems CHE Lyon I Univ. (IPNL) FRA Lausanne, World Laboratory CHE Lyon I Univ. (LPCML) FRA Lecce Univ./INFN ITA Lyon Univ. (SIM) FRA Legnaro Nat. Lab. INFN ITA Lyon, LASIM FRA Leicester Univ. GBR Madison (WI), Univ. of Wisconsin USA Leipzig Univ. DEU Madrid Univ. Complutense ESP •vl Leuven University BEL Madrid Univ. Autonoma ESP Leuven, Interunivers. Micro-Electr. Centre BEL Madrid Univ. ESP Lincoln (NE) University of Nebraska-Lincoln USA Madrid, CIEMAT ESP Lingfen, Shanxi Normal Univ. CHN Madrid, Insto. Estruct. de la Materia, CSIC ESP Linkoping Univ. SWE Mainz Univ. DEU Linkoping, UID (User Interface Design) SWE Mainz Univ., Faculty of Medicine DEU Lisbon, INIC PRT Mainz Univ., Inst. of Nucl. Chemistry DEU Lisbon, LIP PRT Mainz Univ., Inst. of Nuclear Physics DEU Lisbon, Lab. Instrum. e Particules PRT Mainz Univ., Inst. of Physics DEU Lisbon, OBLOG PRT Mainz, MPI DEU Lisbon 1ST, Instituto Superior Tecnico PRT Manchester Univ. GBR Lisbon Univ. PRT Mannheim Univ. DEU Livermore (CA), Lawrence Livermore Lab. USA Marburg Univ. DEU Liverpool Univ. GBR Marseille, CPPM FRA Ljubljana Univ./IJS SVN Marseille, IN2P3 FRA Lodz Univ. POL Marseille, CNRS-IN2P3-CPPM FRA London, Bedford College GBR Martinsried, Max-Planck-Inst. DEU London, Birkbeck College GBR Matsumoto, Shinshu Univ. JPN TABLE 1 titutesi Firms Participating in Experiments/R&D Projects since 1974

Maynooth, St. Patrick's College IRL Moscow State Univ. Nucl. Phys. Inst. (NPI) SAN Medford, (MA), Tufts Univ. USA Miinster Univ. DEU Melbourne Univ. AUS Mulhouse, ISEA FRA Messina Univ./INFN ITA Munich Univ. DEU Meyrin, Lecroy S.A. CHE Munich, MPI DEU Mexico CINVESTAV (IPN) MEX Munich, TU DEU Micron Semiconductor GBR Nagasaki, Inst. Applied Science (NIAS) JPN Milan Univ./Consorzio Milano Ricerche ITA Nagoya Univ. JPN Milan Univ./INFN ITA Naju, Dongshin Univ. KOR Milan, Ec. Poly. ITA Nantes, Matra MHS FRA Milan, SGS-THOMSON, Castelletto ITA Nantes, SUBATECH FRA Milton-Keynes Open Univ. GBR Naruto Univ. of Education JPN Minneapolis (MN), Univ. of Minnesota USA Nashville (TN), Vanderbilt Univ. USA Minsk, Byelorussian State Univ. BLR Nanjing Univ. CHN Minsk, Byelorussian Res. & Prod. Ass. Powder Metall. Naples Univ./INFN ITA (BRPAM) BLR Neuchatel Univ. CHE Minsk, Nat.Scien.&Ed. Centre Particle &High Energy Phys. New Brunswick (NJ), Rutgers Univ. USA (NCPHEP) BLR New Delhi, Univ. of Delhi South Campus IND ID Minsk, Inst. of Phys. Byelorussian Acd. of Sciences (IPASB) BLR New Haven (CT), Yale Univ. USA oo Minsk, Inst. of Nuclear Problems BLR New York (NY), City College of New York USA Minsk, Research Inst. of Applied Physical Problems BLR New York (NY), City Univ. New York (CUNY) USA Minsk, Byelorussian Academy of Sciences BLR New York (NY), Columbia Univ. USA Miyazaki Univ. JPN New York (NY), LeCroy Corporation USA Modena Univ. ITA New York (NY), Rockefeller Univ. USA Moffett Field (CA), NASA Ames Research Center USA Newport News (VA), CEBAF USA Montpellier Univ. FRA Nicosia, Univ. of Cyprus CYP Mons Poly. BEL Nice Univ. Lab. de Radiochimie FRA Mons Univ.- Hainaut BEL Niigata Univ. JPN Montreal Univ. CDN Nijmegen Univ., NIKHEF-H NLD Montreal, McGill Univ. CDN Nijmegen, Cath. Univ. NLD Moscow, Eng. Phys. Inst. CIS Nippon Dental Univ. JPN Moscow, Inst. Nucl. Research CIS Noordwijk, ESTEC Moscow, Inst. Physical Problems CIS (Europan Space Research Technical Centre) NLD Moscow, ITEP CIS Norfolk (VA) Norfolk State Univ. USA Moscow, Kurchatov Inst. CIS Notre Dame Univ. (IN) USA Moscow, Lebedev Phys. Inst. CIS Novi Sad Univ. YUG Moscow, Russ. Acad. Sciences CIS Novosibirsk, Inst. Nucl. Phys. CIS TABLE 1 List of All Universities/Research Institutes Firms Participating in Experiments/R&D Projects since 1974

Nykoping, Studsvik Sci. Res. Lab. SWE Paris, LPNHE, P. et M. Curie Univ. FRA Oak Ridge (TN), Oak Ridge Nat. Lab. USA Parma Univ. ITA Okayama Univ. JPN Pasadena (CA), CALTECH USA Okazaki, Inst. Molecular Sci. JPN Pavia Univ./INFN ITA Omaha (NB), Creighton Univ. USA Perugia Univ./INFN ITA Orsay, Aime Cotton Lab. FRA Philadelphia (PA), Temple Univ. USA Orsay, CNRS FRA Philadelphia (PA), Univ. of Pennsylvania USA Orsay, CSNS/IN2P3-CRNS FRA Pisa Univ./INFN ITA Orsay, IPN FRA Pisa Univ./Scuola Normale Superiore/INFN ITA Orsay, IPN, Univ. Paris-Sud/CNRS-IN2P3 FRA Pisa, Scuola Norm. ITA Orsay, LAL FRA Piscataway (NJ), Rutgers Univ. ITA Orsay, Tech.Inst. FRA Pittsburgh (PA), Carnegie-Mellon Univ. USA Orsay, Thomson-TCS FRA Pittsburgh (PA), Pittsburgh Univ. USA Osaka City Univ. JPN Pohang Univ. of Science and Technology KOR Osaka, Kinki Univ. JPN Portland (OR), Lewis & Clark Coll. USA Osaka, Science Education Inst. JPN Porto University PRT Oslo Univ. NOR Prague, Academy of Sciences CSK Oslo, Central Inst. for Industrial Res. NOR Prague, TU CSK Oslo, Dolphin SCI Technology A.S. NOR Prague, Charles Univ. CSK Otaniemi, VTT, Tech. Res. Centre FIN Prague, Inst. of Computer & Infor. Sci. CSK Ottawa Univ. CDN Prague, Inst. of Computing Machines CSK Ottawa, Carleton Univ. CDN Prague, FZU-Inst. of Phys. Acad. of Sci. CSK Ottawa, Carleton CRPP CDN Prague Group (Tech. Univ., Charles Univ., Inst of Phys.) CSK Ottawa, NRC Canada CDN Princeton (NJ), Inst. Adv. Studies USA Oulu, VTT, Tech. Res. Centre FIN Princeton (NJ), Princeton Univ. USA Oulu Univ. FIN Protvino IHEP CIS Oxford Univ. GBR Providence (RI), Brown Univ. USA Padova Univ./INFN ITA Quebec, Laval Univ. CDN Palaiseau, Ecole Polytechnique FRA Rabat, Univ. Mohammed V MAR Palaiseau, LPNHE, Ecole Poly./CNRS-IN2P3 FRA Rehovot, Weizmann Inst. ISR Parma & Milan INFN-MTI/MASPEC ITA Rez, Nucl. Phys. Inst. (NPI) CSK Paris VI and VII Univ. FRA Riken Institute JPN Paris VI Univ. FRA Riga, Institute of Electronics and Computer Science LVA Paris, VI Univ. and IN2P3-CRNS FRA Rio de Janeiro, Cent. Bras. Pesq. BRA Paris, CNAM FRA Rio de Janeiro, Phys. Res. Center BRA Paris, College de France FRA Rio de Janeiro, Pont. Univ. Catolica BRA Paris, IN2P3 FRA Rio de Janeiro, Univ. Fed. BRA TABLE 1 List of All Universities/Research Institutes Firms Participating in Experiments/R&D Proiects since 1974

Rio de Janeiro, LAFEX/CBPF-PUC BRA Seoul, Korea Adv. Inst. of Sci. & Tech. (KAIST) KOR Riverside (CA), UC Riverside USA Serpukhov, IHEP CIS Rome Univ./INFN ITA Shandong Univ. CHN Rome Univ.I/INFN ITA Shanghai, Shanghai Inst. Ceramics (SIC) CHN Rome Univ.II/INFN ITA Sheffield Univ. GBR Rome, CNEN ITA Shrivenham, Royal Military College (RMCS) GBR Rome, INFN ITA SINTEF NOR Rome, Sanita ITA Siegen Univ. DEU Rome, Sanita/INFN ITA Sofia CLANP BGR Rome, Terza Univ. ITA Sofia Univ. BGR Roskilde Tandem Accelerator DNK Sofia, INRNE, (Inst. for Nucl. Res. & Nucl. Energy) BUL Rossendorf, ZfK DEU Southampton Univ. GBR Saarbriicken, Saarland Univ. DEU Split Univ. (FESB) HRV Sacavem, ITN (Inst. for Nuclear Technology) PRT Split, Technical University HRV Saclay, CEA FRA St. Petersburg, (Leningrad) Joffe Physical-Technical Inst. CIS Saclay, CEA, DAPNIA/Service de Physique des Particules FRA St. Petersburg Univ. Lab. Part. Phys. CIS Saclay, CEN DPhN FRA St. Petersburg (Leningrad), NPI CIS Saclay, CEN DPhPE FRA St. Petersburg, Inst. of Fine Mechanics & Optics (IFMO) CIS Saclay, DAPNIA FRA St. Petersburg (Leningrad), V.G. Khlopin Radium Inst. CIS Saclay, LNS FRA St. Petersburg State Univ. and Mendeleev Inst. for Metrology CIS Saclay, CEA, DSM/DAPNIA FRA St. Petersburg State Univ. Inst. of Science CIS Saga Univ. JPN Stanford (CA), SLAC USA Sakuyo College JPN Stanford (CA), Stanford Univ. USA Salerno Univ./INFN ITA Stanmore, Marconi Defence Systems GBR San Francisco (CA), San Francisco State Univ. USA Stillwater (OK), Oklahoma State Univ. USA Santa Barbara (CA), UC Santa Barbara USA Stockholm Univ. SWE Santa Cruz (CA), UC Santa Cruz USA Stockholm, Manne Siegbahn Instof Phys. SWE Santander Univ. ESP Stockholm, MSI SWE Santiago de Compostela Univ. ESP Stockholm, Royal Inst. of Tech. (KTH) SWE Sao Paolo Univ. BRA Stony Brook (NY), SUNY Stony Brook USA Sarov, Russian Federal Nuclear Center CIS Strasbourg; IReS (Institut de Recherches Subatomiques) FRA Schenectady (NY), Union College USA Strasbourg Univ. FRA Seattle (WA), Univ. of Washington USA Strasbourg Univ., CRN, CNRS-IN2P3 FRA Sendai, Tohoku Univ. JPN Strasbourg, CRN FRA Seo Nam Univ. KOR Strasbourg, CRN/ULP FRA Seoul, Korea Univ. KOR Strasbourg, PHASE Seoul National Univ. KOR (PHysique et Applications des SEmi-Conductor) FRA TABLE 1 titutes Firm*! Participating in Experiments/R&D Projects since 1974

Strasbourg, LEPSI Trieste Univ./INFN ITA (Lab. d'Electronique Phys. et Syst. Instrum.) FRA Troitzk Inst.of Spectroscopy CIS Stuttgart, MPI f. Metallf. DEU Torino Univ. ITA Surrey Univ. GBR Torino Univ./INFN ITA Swierk, Soltan Inst. Nucl. Res. POL Torino, Polytechnic/INFN ITA Sydney, ANSTO (Australian Nucl. Sci. & Tech. Org.) AUS Trondheim Univ. NOR Sydney Univ. AUS Turku, Abo Univ. FIN Syracuse (NY), Syracuse Univ. USA Turku Univ. FIN Taegu, Kyungpook Nat. Univ. KOR Tuscaloosa (AL), Univ. of Alabama USA Tallahassee (FL), Florida State Univ. USA Tsukuba, KEK JPN Tallinn, Inst. of Chemical Physics and Biophysics EST Tsukuba,Tsukuba Univ. JPN Tampere Univ. of Technology FIN Udine Univ./INFN ITA Tampere, VALMET Automation FIN University (MS), Univ. of Mississippi USA Tanashi, Tokyo Univ.INS JPN Univ. of Urbino, Urbino & INFN Florence ITA Tashkent Inst., Nucl. Phys. UZB Uppsala Univ. SWE Tashkent, LHEP Phys. Tech. Inst. UZB Uppsala, Inst. of Rad. Sciences SWE Tbilisi State Univ. GEO Uppsala, The Svedberg Lab. SWE Tbilisi, Inst. of Physics Georgian Academy of Sciences GEO Upton (NY), Brookhaven Nat.Lab. USA Tbilisi, High Energy Physics Institute GEO Urbana (IL), Univ. of Illinois at Urbana-Champaign USA Tel-Aviv Univ. ISR Utrecht Univ. NLD Thessaloniki Univ. GRC Utrecht, FOM NLD Tokyo Inst. of Tech. JPN Utsunomiya Univ. JPN Tokyo, Kuraray Co JPN Valencia, IFIC ESP Tokyo Univ. JPN Valencia Univ. ESP Tokyo Univ. of Agriculture and Tech. JPN Vancouver, TRIUMF CDN Tokyo Univ. of Mercantile Marine JPN Vancouver, Univ. of B.C. CDN Tokyo Univ. Res. Cent, for Nucl. Sci. & Tech. JPN Venice Univ. ITA Tokyo, Kuraray Co., JPN Victoria Univ. CDN Tokyo, International Christian Univ. JPN Vienna, Inst. Radiumforschung + Kernphysik AUT Tokyo, Japan Society for the Promotion of Science JPN Vienna, Oestr. Akad. Wissensch., HEPHI AUT Tokyo Univ. Institute of Physics JPN Vienna, Oestr. Akad. Wissensch., IMEP AUT Tokyo, Waseda Univ. JPN Villeurbanne, IPN/CNRS-IN2P3 FRA Toronto Univ. CDN Villigen, P.Scherrer Inst. (PSI) CHE Toulouse, Lab. Genie Electrique, CRNS FRA Vilnius Inst. Physics LIT Toulouse, Centre National d'etude Spatiale Department Vilnius, Semiconductor Phys. Inst. LIT Composants Electronique (CNES) FRA Vilnius Univ. LIT Towcester, Radstone Technology GBR Vilnius, Enterprise 'Venta' LIT TABLE 1 List of All Universities/Research Institutes Firms Partici

Waltham (MA), Brandeis Univ. USA Warsaw Univ. POL Warsaw Univ. Heavy Ion Lab. POL Warsaw, Inst. Nucl. Res. POL Warsaw, Inst. Nucl. Studies POL Warsaw, Insitute of Electrical Materials Technology (ITME) POL Washington (DC), George Washington Univ. USA West Lafayette (IN), Purdue Univ. USA Williamsburg (VA), Coll. of William and Mary USA Winnipeg, Manitoba Univ. CDN Wuhan, Hua-Zhong Normal Univ. CHN Wuppertal Univ. DEU Yamagata Univ. JPN Yokohama National Univ. JPN York Univ. GBR Yerevan Phys. Inst. CIS Zagreb Rudjer Boskovic Inst. HRV Zagreb Univ. HRV Zelenograd, Research & Prod. Assoc. ELMA CIS Zelenograd, Research & Prod. Comp. SIAPS CIS Zeuthen, IHEP DEU Zeuthen, DESY-IHEP DEU Zurich Univ. CHE Zurich, ETH CHE TABLE 2 List of All Universities/Research Institutes/Industrial Firms Participating in Exoeriments/R&P Protects since 1974

Algeria (DZA) Belarus. CIS (BLR)

Ain-Oussura, Haute Comm. Recher. Minsk, Byelorussian State Univ. Algiers, LPC, Ecole Nat. Polytech. Minsk, Byelorussian Res. & Production Ass. Powder Metallurgy (BRPAM) Minsk, Nat. Scien. & Ed. Centre of Particle and High Energy Phys. Argentina (ARG) (NCPHEP) Minsk, Inst. of Phys. Acd. of Sciences (IPASB) Buenos Aires Univ. Minsk, Inst. of Nuclear Problems Minsk, Research Inst. of Applied Physical Problems Minsk, Byelorussian Academy of Sciences Armenia (CIS)

Yerevan Phys. Inst. Belgium (BEL)

Antwerp, Alcatel Bell Telephone Australia (AUS) Antwerp Univ. Belgium, DELPHI o Kogarah NSW, St. George Cancer Centre Belgium, FNRS ui Melbourne Univ. Belgium, IISN Sydney ANSTO (Australian Nucl. Sci. and Tech. Org.) Brussels, Ec. Poly. Sydney Univ. Brussels, IIHE ULB-VUB Brussels, SPACEBEL Brussels, USDATA Austria (AUT) Camberra Semiconductor Gent State Univ. Innsbruck Univ. Leuven Univ. Vienna, Inst. Radiumforschung + Kernphysik Leuven, Interunivers. Micro-Electr. Centre Vienna, Oestr. Akad. Wissensch., HEPHY Louvain, Cath.Univ. Vienna, Oestr. Akad. Wissensch., IMEP Mons Poly. Mons Univ.-Hainaut

Azerbaijan (AZE) Brazil (BRA) Baku, Azerbaijan Academy of Sciences Fortaleza, Escola Tecnica Federal do Ceara Rio de Janeiro, Cent. Bras. Pesq. Rio de Janeiro, Phys. Res. Center Rio de Janeiro, Pont. Univ. Catolica TABLE2 List of All Universities/Research Institutes/Industrial Firms Participating in Exoeriments/R&D Proiects since 1974

Rio de Janeiro, Univ. Fed. Nanjing Univ. Rio de Janeiro, LAFEX/CBPF-PUC Shandong Univ. Sao Paolo Univ. Shanghai, Shanghai Inst. Ceramics (SIC) Lingfen, Shanxi Normal Univ. Wuhan, Hua-Zhong Normal Univ. Bulgaria (BGR)

Sofia Univ. Russian Federation - (CIS) Sofia, CLANP Sofia, INRNE, (Inst. for Nucl. Res. & Nucl. Energy) DubnaJINR Dubna, RCANP (Research Center for Applied Nucl. Phys.) Moscow, Eng. Phys. Inst. Canada (CDN) Moscow, ITEP Moscow, Kurchatov Inst. Burnaby, Simon Fraser Univ. Moscow, Lebedev Phys. Inst. Chalk River Nucl. Lab. Moscow, Inst. Nucl. Research (INR) Edmonton, Univ. of Alberta Moscow, Inst. for Physical Problems Hamilton, McMaster Univ. Moscow, Russian Academy of Sciences o Kingston, Queens Univ. Moscow State Univ., Nucl. Phys. Inst. (NPI) Montreal, McGill Univ. Novosibirsk, Inst. Nucl. Phys. Montreal Univ. Protvino IHEP Ottawa Univ. Sarov, Russian Federal Nuclear Center Ottawa, Carleton Univ. Serpukhov, IHEP Ottawa, Carleton CRPP St. Petersburg, (Leningrad) Joffe Physical-Technical Inst. Ottawa, NRC Canada St. Petersburg (Leningrad), V.G. Khlopin Radium Inst. Quebec, Laval Univ. St. Petersburg (Leningrad), NPI Toronto Univ. St. Petersburg, Inst. of Fine Mechanics & Optics (IFMO) Vancouver, TRIUMF St. Petersburg Univ. Lab. Part. Phys. Vancouver, Univ. of B.C. St. Petersburg State Univ. and Mendeleev Inst. for Metrology Victoria Univ. St. Petersburg State Univ. Inst. of Physics Winnipeg, Manitoba Univ. Troitzk Inst. of Spectroscopy Zelenograd, Research & Prod. Assoc. ELMA Zelenograd, Research & Prod. Comp. SIAPS China, People's Republic of (CHN)

Beijing, HEP Inst. Beijing, Peking Univ. Changsha, Hunan Education Inst. Hefei, China Science & Tech. Univ. TABLE2 List of All Universities/Research Institutes/Industrial Finns Participating in Experiments/R&D Proiects since 1974

(HRV) Estonia (EST)

Split Univ. (FESB) Tallinn, Inst. of Chemical Physics and Biophysics Split, Technical University Zagreb Rudjer Boskovic Inst. Zagreb Univ. Finland (FIN)

Helsinki Univ. Cyprus (CYP) Helsinki, IVO International Helsinki, Institute of Physics (HIP) Univ. of Cyprus, Nicosia Helsinki, Univ. of Technology Helsinki, Res. Inst. for HEP, SEFT Helsinki, SEFT-Univ. Czech Republic (CSK) Jyvaskyla Univ. Otaniemi, VTT, Tech. Res. Centre Brno, Inst. of Scientific Instruments Oulu, VTT, Tech. Res. Centre Prague, TU Oulu Univ. Prague, Academy of Sciences Tampere, Univ. of Technology o Prague, Charles Univ. Tampere, VALMET Automation Prague, Inst. of Computer & Infor. Sci. Prague Turku, Abo Academy Prague, FZU-Inst. of Phys. Acad. of Sci. Turku Univ. Prague Group (Tech. Univ., Charles Univ., Inst of Phys.) Rez, Nucl. Phys. Inst. (NPI) fiance. (FRA)

Denmark (DNK) Annecy LAPP Aix-Marseille II Univ. CPPM/IN2P3 Aarhus Univ. Bruyeres-le-Chatel, CEA Copenhagen Univ., Niels Bohr Inst. Caen, GANIL Copenhagen, Nordita Caen, Univ. Roskilde Tandem Accelerator Caen, Ciril-Lab. Mixte CEA-CRNS Clermont-Ferrand Univ. LPC/CNRS-IN2P3 Clermont-Ferrand Univ. Egypt (EGY) Gradignan, Bordeaux Univ. Grenoble, CEN Cairo, HEP Lab. Grenoble, ILL Cairo Univ. Grenoble, ISN Grenoble, CEA-DTA-LETI Grenoble, LEPES TABLE 2 List of All Universities/Research Institutes/Industrial Firms Participating in Experiments/R&D Projects since 1974

Grenoble, Thomson TMS Strasbourg; IReS (Institut de Recherches Subatomiques) Lyon Univ., (SIM) Strasbourg, LEPSI (Lab. d'Electronique Phys. et Syst. Instrum.) Lyon I Univ., (LPCML) Strasbourg, PHASE (PHysique et Applications des SEmi-Conductor) Lyon I Univ., (IPNL) Strasbourg, Univ. Lyon, LASIM Strasbourg, Univ. CRN, CNRS-IN2P3 Marseille, CPPM Toulouse, Lab. Genie Electrique, CNRS Marseille, IN2P3 Toulouse, Centre National d'etude Spatiale Department Composants Marseille, CNRS-IN2P3-CPPM Electronique (CNES) Montpellier Univ. Villeurbanne, IPN/CNRS-IN2P3 Mulhouse, ISEA Nantes, Matra MHS Nantes, SUBATECH Georgia (GEO) Nice Univ. Lab. de Radiochimie Orsay, Aime Cotton Lab. Tbilisi State Univ. Orsay, CNRS Tbilisi, Inst. of Physics Georgian Academy of Sciences Orsay, CSNSM/IN2P3-CNRS Tbilisi, High Energy Physics Institute Orsay, IPN Orsay, IPN, Univ. Paris-Sud/CNRS-IN2P3 Orsay, LAL Germany (DEU) Orsay, Tech. Inst. Orsay, Thomson-TCS Aachen TH Palaiseau, LPNHE, Ecole Poly./CNRS-IN2P3 Aachen TH, I. Phys. Inst. Palaiseau, Ecole Polytechnique Aachen TH, III. Phys. Inst. Paris, College de France Berlin, Humboldt Univ. Paris, IN2P3 Berlin, Fraunhofer Inst. Paris, LPNHE, P. et M. Curie Univ. Berlin, IHEP Paris, VI Univ. Berlin, Freie Univ. Paris, VI Univ. and IN2P3-CNRS Berlin, Hahn-Meitner Inst. Paris, VI and VII Univ. Berlin, Technical Univ. Paris, CNAM Bielefeld Univ. Saclay, CEN DPhN Bochum, Ruhr-Univ. Saclay, CEN DPhPE Bonn, DFG Saclay, DAPNIA Bonn Univ. Saclay, CEA, DAPNIA /Service de Physique des Particules Brunswick, PTB Saclay, LNS Brunswick, TU Saclay, CEA Cologne Univ. Saclay, CEA, DSM/DAPNIA Darmstadt, GSI Strasbourg, CRN Darmstadt, TH Strasbourg, CRN/ULP Dortmund Univ. TABLE 2 List of All Universities/Research Institutes/Industrial Firms Participating in Experiments/R&P Projects since 1974

Duisburg Univ. Saarbriicken, Saarland Univ. Erlangen-Niirnberg Univ. Siegen Univ. Frankfurt/Main Univ. Stuttgart, MPI f. Metallf. Freiburg, FhGIAF (Fraunhofer Inst. for Applied Solid State Physics) Wuppertal Univ. Freiburg Univ. Zeuthen, IHEP Garching, Max Planck Inst. Quantenoptik Zeuthen, DESY-IHEP Geesthacht, GKSS Giessen Univ. Gottingen Univ. (GRC) Hamburg, DESY Hamburg Univ. Athens, Demokritos/NCSR Heidelberg, MPI Athens, Nat. Tech. Univ. Heidelberg Univ. Athens, Univ. Jena Univ. Athens Univ. Nuclear Physics Lab. Julich, IFF-KFA Atriki, Demokritos/INP & IME of NCSR Jiilich, IKP-KFA Ioannina Univ. Julich, IRE-KFA Thessaloniki Univ. Karlsruhe, IEKP o Karlsruhe, KfK Karlsruhe, Univ./KfK Hungary (HUN) Karlsruhe, Univ. Kassel, GHS Budapest, Atomki Inst. Kiel Univ. Budapest, Res. Inst. of Phys. (KFKI) Konstanz Univ. Budapest, Research Institute Part. Nuclear Physics Leipzig Univ. Debrecen, Atomki Inst. Mainz, MPI Debrecen, Kossuth Lajos Univ. Mainz Univ. Mainz Univ., Faculty of Medicine Mainz Univ., Inst. of Nucl. Chemistry India (IND) Mainz Univ., Inst. of Nuclear Phys. Mainz Univ., Inst. of Phys. Ahmedabad, PRL Mannheim Univ. Aligarh Muslim Univ. Marburg Univ. Banaras Univ. Martinsried, Max-Planck-Inst. Bhubaneswar Inst. of Phys. Miinster Univ. Bombay, BARC Munich, MPI Bombay, TIFR Munich, TU Bombay, Indian Institute of Technology (I1T) Munich Univ. Bombay Univ. Rossendorf ZfK Calcutta, Saha Inst. of Nucl. Phys. TABLE 2 List of All Universities/Research Institutes/Industrial Firms Participating in Experiments/R&D Froiects since 1974

Calcutta, VECC Ferrara Univ./INFN Chandigarh, Panjab Univ. Florence INFN Jadavpur Univ. Florence Univ./INFN Jaipur, Rajasthan Univ. Florence, European Lab. for non Linear Spectroscopy (LENS) Jammu Univ. Frascati Nat. Lab. INFN New Delhi, Univ. of Delhi South Campus Genoa, Ansaldo Richerche spa Genoa Univ./INFN L'Aquila Univ./INFN Ireland (IRD Lecce Univ./INFN Legnaro Nat.Lab. INFN Dublin, City Univ. Messina Univ./INFN Dublin, Inst. for Advanced Studies Milan, Ec. Poly. Dublin, Univ. College Milan Univ./Consorzio Milano Ricerche Maynooth, St. Patrick's College Milan Univ./INFN Milan, SGS-THOMSON, Castelletto Modena Univ. Israel (ISR) Naples Univ./INFN Padova Univ./INFN U1 o Haifa, Technion Parma Univ. 00 Rehovot, Weizmann Inst. Parma & Milan INFN-MTI/MASPEC Tel-Aviv Univ. Pavia Univ./INFN Perugia Univ./INFN Pisa, Scuola Norm. Italy. (ITA) Pisa Univ./INFN Pisa Univ./Scuola Normale Superiore/INFN Ancona INFN Rome, CNEN Alessandria, Torino Univ. (Faculty of Science) Rome, INFN Assergi, Gran Sasso Nat. Lab./INFN Rome, Sanita Bari, Polytechnic/INFN Rome, Sanita/INFN Bari Univ. Rome, Terza Univ. Bari Univ./INFN Rome Univ./INFN Bologna, CNAF Rome Univ.I/INFN Bologna, INFN Rome Univ.II/INFN Bologna Univ./INFN Salerno Univ./INFN Brescia Univ./INFN Trieste Univ./INFN Cagliari Univ./INFN Torino, Polytechnic/INFN Catania Univ./INFN Torino Univ. Cosenza, Calabria Univ./INFN Torino Univ./INFN Erice, Ettore Majorana CSC Udine Univ./INFN TABLE 2 List of All Universities/Research Institutes/Industrial Firms Participating in Experiments/R&P Projects since 1974

Univ. of Urbino, Urbino & INFN Florence Tokyo Univ. Res. Cent, for Nucl. Sci. & Tech. Venice Univ. Tokyo, Inst. of Tech. Tokyo, International Christian Univ. Tokyo, Japan Society for the Promotion of Science Japan (JPN) Tokyo Univ. Institute of Physics Tokyo, Kuraray Co. Aichi Educational Univ. Tokyo, Waseda Univ. Bunkyo-ku, Tokyo Univ. ICEPP Tsukuba, KEK Chiba Univ. Tsukuba/Tsukuba Univ. Chiba, Toho Univ. Utsunomiya Univ. Fukui Univ. Yamagata Univ. Fukuoka, Kyushu Univ. Yokohama National Univ. Gifu Univ. Hiroshima Univ. Japan, U.G. Kazakhstan (KAZ) Kobe Univ. Kouchi Institute for Technology Almaty HEPI Kyoto Univ. Kyoto-Sangyo Univ. 8 Matsumoto, Shinshu Univ. Koisa (KOR) Miyazaki Univ. Nagasaki, Inst. Applied Science (NIAS) Changwon National Univ. Nagoya Univ. Choongbuk National Univ. Naruto Univ. of Education Cheju National Univ. Niigata Univ. Iri, Wonkwang Univ. Nippon Dental Univ. Jinju, Gyeongsang Nat. Univ. Okayama Univ. Kangnung National Univ. Osaka City Univ. Kangwon, National Univ. Osaka, Kinki Univ. Kwangju, Chonnam National Univ. Osaka, Science Education Inst. Pohang Univ. of Science and Technology Okazaki, Inst. Molecular Sci. Naju, Dongshin Univ. Riken Institute Seo Nam Univ. Saga Univ. Seoul, Korea Univ. Sakuyo College Seoul National Univ. Sendai, Tohoku Univ. Seoul, Korea Adv. Inst. of Sci. & Tech. (KAIST) Tanashi, Tokyo Univ. INS Taegu, Kyungpook Nat. Univ. Tokyo Univ. Tokyo Univ. of Agriculture and Tech. Tokyo Univ. of Mercantile Marine TABLE 2 List of All Universities/Research Institutes/Industrial Firms Participating in Experiments/R&D Proiects since 1974

Kuwait (KWT) Delft, Tech. Univ. Eindhoven, TU Kuwait Inst. Sci. Res. Groningen Univ. Groningen, KVI Nijmegen Cath. Univ. LaiyiaJLVA) Nijmegen Univ./NIKHEF-H Noordwijk, ESTEC (Europan Space Research Technical Centre) Riga, Institute of Electronics and Computer Science Utrecht, FOM Utrecht Univ.

Lithuania (LIT) Norway (NOR) Kaunas, Inst. of Technology Vilnius, Inst. Phys. Bergen Univ. Vilnius, Semiconductor Phys. Inst. Oslo Univ. Vilnius Univ. Oslo, Central Inst. for Industrial Res. Vilnius, Enterprise 'Venta' Oslo, Dolphin SCI Technology A.S. SINTEF Trondheim Univ. Mexico (MEX)

Mexico CINVESTAV (IPN) Pakistan (PAK) Islamabad, Quaid-I-Azam Univ. Islamabad, Pakistan Inst. Nuclear Sci. Tech. (PINSTECH) Morocco (MAR) Poland (POL) Casablanca, Univ. Hassan II Rabat, Univ. Mohammed V Cracow, Inst. Nucl. Phys. Univ. Hassan II Casablanca/Mohamed V Rabat Cracow, Inst. Phys. Nucl. Tech. Cracow, Jag. Univ. Cracow, FPNT, Univ. of Mining & Metallurgy Netherlands (NLD) Lodz Univ. Swierk, Soltan Inst. Nucl. Studies Amsterdam, FOM Warsaw, Inst. Nucl. Res. Amsterdam, IKO Warsaw, Inst. Nucl. Studies Amsterdam, NIKHEF Warsaw, Insitute of Electrical Materials Technology (ITME) Amsterdam Univ. Warsaw Univ. Amsterdam, Vrije Univ. Warsaw Univ. Heavy Ion Lab. TABLE 2 List of All Universities/Research Institutes/Industrial Firms Participating in Experiments/R&D Projects since 1974

Portugal (PRT) South Africa (ZAF)

Aveiro Univ. Johannesburg, Univ. of Witwatersrand Coimbra Univ./LIP Lisbon, INIC Lisbon, OBLOG Software Spain (ESP) Lisbon, LIP Lisbon, Lab. Instrum. e Particules Barcelona Autonomous Univ. (IFAE) Lisbon 1ST, Institute Superior Tecnico Granada Univ. Lisbon Univ. Madrid, CIEMAT Porto University Madrid Univ. Complutense Sacavem, ITN (Inst. for Nuclear Technology) Madrid Univ. Autonoma Madrid, Insto. Estruct. de la Materia, CSIC Santander Univ. Romania (ROM) Santiago de Compostela Univ. Valencia, IFIC Bucharest, Atomic Phys. & Polytech. Inst. Valencia Univ. Bucharest, Inst. for Atomic Physics Bucharest, Inst. of Nuclear Physics and Engineering Bucharest. Inst. of Physics and Technology of Materials Sweden (SWE) Bucharest, Lab. of Space Research Bucharest Univ. Goteborg, Chalmers Univ. of Technology Goteborg Univ. Linkoping Univ. Slovakia (SVK) Linkoping, UID (User Interface Design) Lund Univ. Bratislava, Comenius Univ. Lund, Inst. of Technology Bratislava, Slovak Univ . of Technology Nykoping, Studsvik Sci. Res. Lab. Bratislava Univ./Slovak Academy of Science Kosice Stockholm Univ. Kosice, Slovak Academy of Science Stockholm, Manne Siegbahn Inst. of Phys. Kosice Phys. Inst. Stockholm, Royal Inst. of Tech. (KTH) Kosice, Safarik Univ. Uppsala, Inst. of Rad. Sciences Kosice, Inst. of Exp. Phys. (IEP) Slovak Ac. Sci. & Safarik Univ. Uppsala, The Svedberg Lab. Zilina, Institute of Computing Machines Uppsala Univ. Slovenia (SVN)

Ljubljana Univ./Inst. Jozef Stefan TABLE 2 List of All Universities/Research Institutes/Industrial Firms Participating in Experiments/R&D Projects since 1974

Switzerland (CHE) Ukraine (UKR)

Basle Univ. Kharkov State Univ. (KSU) Basle Univ., Faculty of Medicine Kharkov, Inst. of Phys. & Tech. (KhFTI) Bern Univ. Kharkov, Inst. of Monocrystals (ISC) Fribourg Univ. Kharkov, Scientific Resch. Tech. Inst. Geneva, CERN Kiev, Inst. for Nuclear Research Geneva Univ. Kiev, Ukrainian Acad. of Sciences (ITP) Geneva Univ. Hospital Geneva Univ., Faculty of Medicine Geneva, Creative Equipment Corp. (CES) United Kingdom (GBR) Geneva, DEC Joint Project at CERN Geneva, Inst. Cantonal d'Ecotoxicologie Birmingham Univ. Lausanne Univ. Bristol Univ. Lausanne, Ecole Polytech. Fed. (EPFL) Cambridge Univ. Lausanne, Smart Si Systems Daresbury Lab. Lausanne, World Laboratory Didcot, Rutherford Appleton Lab. Meyrin, Lecroy S.A. Durham Univ. Neuchatel Univ. Edinburgh Univ. Villigen, P. Scherrer Inst. (PSI) Glasgow Univ. Zurich, ETH Lancaster Univ. Zurich Univ. Leicester Univ. Liverpool Univ. London, Bedford College (TWN) London, Birkbeck College London, Brunei Univ. Chung-Li, National Central Univ. High Energy Physics Group London, ICL London, King's College London, Queen Mary & Westfield College Turkey (TUR) London, Royal Holloway & Bedford N.C. London, UCL Adana, Cukurova Univ. London, Westfield College Ankara, Middle East Technical Univ. (METU) Manchester Univ. Ankara, YEFAM (Adana, Ankara, Istanbul) Micron Semiconductor Istanbul, Bogazici Univ. Milton-Keynes Open Univ. Istanbul, Tech. Univ. Oxford Univ. Sheffield Univ. Shrivenham, Royal Military College (RMCS) Southampton Univ. TABLE 2 List of AH Universities/Research Institutes/Industrial Firms Particioatine in Experiments/R&D Proiects since 1974

Stanmore, Marconi Defence Systems College Park (MD), Univ. of Maryland Surrey Univ. College Station (TX), Texas A&M Univ. Towcester, Radstone Technology Colombus (OH), Ohio State Univ. Yprk Univ. Corvallis (OR), Oregon State Univ. Corvallis (OR), Oregon Univ. Cupertino (CA), Apple Computer, Inc. United States (USA) Dallas, (TX) Southern Methodist Univ. Dallas, (TX) Superconducting Super Collider Lab. (SSC) Albany (NY), SUNY Dallas, (TX) USDATA Alburquerque (NM), Univ. of New Mexico Dallas (TX) Texas University Ames (IA), Iowa State Univ. Davis (CA), Univ. of California Amherst (MA), Univ. of Massachusetts DeKalb, Northern Illinois Univ. Ann Arbor (MI), Univ. of Michigan Durham (NC), Duke Univ. Argonne (IL), Argonne Nat. Lab. East Lansing (MI), Michigan State Univ. Ashtabula (OH), Kent State Univ. Evanston (IL), Northwestern Univ. Atlanta (GA), Atlanta Inst. of Tech. Fairfax (VA), George Mason Univ. Austin (TX), Univ. of Texas Fairfield Univ. (CT) Baltimore (MD), Johns Hopkins Univ. Fogelsville (PA), Penn State Univ. Ln Batavia (IL), Fermilab Gainesville (FL) University of Florida UJ Baton Rouge (LA), Louisiana State Univ. Gaithersburg (MD) Nat. Inst. of Standards and Technology Berkeley (CA), Lawrence Berkeley Lab. Hampton Univ. (VA) Berkeley (CA), UC Berkeley Hanover, Dartmouth College Blacksburg (VA) Poly. Inst. and State Univ. Honolulu (HI), Univ. of Hawaii Bloomington (IN), Indiana Univ. Houston (TX), Rice University Boston (MA), Boston Univ. Houston (TX), Univ. of Houston Boston, (MA) Harvard Medical School Huntsville (AL), NASA - Marshall Space Flight Center (MSFC) Boston (MA), MIT Huntsville (AL), Univ. of Alabama Boston (MA), Northeastern Univ. Iowa City (IA), Univ. of Iowa Boulder (CO), Univ. of Colorado Irvine (CA), UC Irvine Boulder (CO), National Inst. Standards Tech. (NIST) Ithaca (NY), Cornell Univ. Buffalo (NY), SUNY Knoxville (TN), Univ. of Tennessee Cambridge (MA), Harvard Univ. La Jolla (CA), UC San Diego Cambridge (MA) Institute of Technology Lincoln (NE) University of Nebraska-Lincoln Cambridge (MA) Small Drug Dis. Genetics Inst. Livermore (CA), Lawrence Livermore Lab. Chapel Hill (NC), Univ. of North Carolina Los Alamos (NM), Los Alamos Nat. Lab. Charlottsville (VA), Univ. of Virginia Los Angeles (CA), UCLA Chicago (IL), Univ. of Chicago Lubbock (TX), Texas Tech. Univ. Chicago (IL) Univ. of Illinois Madison (WI), Univ. of Wisconsin Cleveland (OH), Case Western Reserve Univ. Medford, (MA), Tufts Univ. TABLE 2 List of All Universities/Research Institutes/Industrial Firms Participating in Experiments/R&D Projects since 1974

Minneapolis (MN), Univ. of Minnesota University (MS), Univ. of Mississippi Moffett Field (CA), NASA Ames Research Center Upton (NY), Brookhaven Nat. Lab. Nashville (IN), Vanderbilt Univ. Urbana (IL), Univ. of Illinois at Urbana-Champaign New Brunswick (NJ), Rutgers Univ. Waltham (MA), Brandeis Univ. New Haven (CT), Yale Univ. Washington (DC), George Washington Univ. New York (NY), City College of New York West Lafayette (IN), Purdue Univ. New York (NY), City Univ. New York (CUNY) Williamsburg (VA), Coll. of William and Mary New York (NY), Columbia Univ. New York (NY), LeCroy Corporation New York (NY), Rockefeller Univ. Uzbekistan (UZB) Newport News (VA), CEBAF Norfolk (VA) Norfolk State Univ. Tashkent, Inst. Nucl.Phys. Notre Dame Univ. (IN) Tashkent, LHEP Phys. Tech. Inst. Oak Ridge (TN), Oak Ridge Nat. Lab. Omaha (NB), Creighton Univ. Pasadena (CA), CALTECH Yugoslavia (VUG) Philadelphia (PA), Temple Univ. Philadelphia (PA), Univ. of Pennsylvania Novi Sad Univ. in Piscataway (NJ), Rutgers Univ. Pittsburgh (PA), Carnegie-Mellon Univ. Pittsburgh (PA), Univ. of Pittsburgh Portland (OR), Lewis & Clark Coll. Princeton (NJ), Inst. Adv. Studies Princeton (NJ), Princeton Univ. Providence (RI), Brown Univ. Riverside (CA), UC Riverside Rochester Univ. (NY) San Francisco (CA), San Francisco State Univ. Santa Barbara (CA), UC Santa Barbara Santa Cruz (CA), UC Santa Cruz Schenectady (NY), Union College Seattle (WA), Univ. of Washington Stanford (CA), SLAC Stanford (CA), Stanford Univ. Stillwater (OK), Oklahoma State Univ. Stony Brook (NY), SUNY Stony Brook Syracuse (NY), Syracuse Univ. Tallahassee (FL), Florida State Univ. Tuscaloosa (AL), Univ. of Alabama