Hadron Physics
Total Page:16
File Type:pdf, Size:1020Kb
Hadron Physics at Lars Schmitt, GSI Hadron 2011, Munich, June 17 2011 FAIR and PANDA Hadron Spectroscopy Hadron Structure Outlook: Beyond PANDA Facility for Antiproton and Ion Research FAIR and PANDA L. Schmitt, GSI Facility for Antiproton and Ion Research HESR 100 m PANDA FAIR and PANDA L. Schmitt, GSI Characteristics of FAIR Physics pillars: Primary beams Nuclear structure, HI physics, atomic & plasma U up to 35 AGeV physics, material science and bio physics, Protons up to 30 GeV/c hadron physics with p 100-1000x more Secondary beams Broad range of rare isotopes, 10000x more p: 0-15 GeV/c Existing Storage and cooler rings Radioactive beams e-- A (or p - A) collider Antiprotons New FAIR and PANDA L. Schmitt, GSI Characteristics of FAIR Physics pillars: Nuclear structure, HI physics, atomic & plasma physics, material science and bio physics, hadron physics with p Primary beams U up to 35 AGeV Existing 2012: Ground breaking Protons up to 30 GeV/c 2018: First Beams 100-1000x more Secondary beams Broad range of rare isotopes, 10000x more FAIR and PANDA p: 0-15 GeV/c Storage and cooler rings Radioactive beams - New e - A (or Antiprotonsp - A) collider L. Schmitt, GSI High Energy Storage Ring HESR Parameters HESR Storage ring for internal target Initially also used for accumulation Electron Injection of p at 3.7 GeV/c cooler Slow synchrotron (1.5-15 GeV/c) PANDA Luminosity up to L~ 2x1032 cm-2s-1 Cooling (stochastic & electrons) Energy resolution ~50 keV Injection FAIR and PANDA L. Schmitt, GSI Physics Goals of PANDA HadronHadron SpectroscopySpectroscopy PC Observables: masses, widths & quantum numbers J of resonances Charm Hadrons: charmonia, D-mesons, charm baryons ➔ Understand new XYZ states, Ds(2317) and others Exotic QCD States: glueballs, hybrids, multi-quarks Spectroscopy with Antiprotons: Production of states of all quantum numbers Resonance scanning with high resolution FAIR and PANDA L. Schmitt, GSI Physics Goals of PANDA HadronHadron SpectroscopySpectroscopy PC Observables: masses, widths & quantum numbers J of resonances Charm Hadrons: charmonia, D-mesons, charm baryons ➔ Understand new XYZ states, Ds(2317) and others Exotic QCD States: glueballs, hybrids, multi-quarks Spectroscopy with Antiprotons: Production of states of all quantum numbers Resonance scanning with high resolution HadronHadron StructureStructure Generalized Parton Distributions ➔ Formfactors and structure functions, Lq Timelike Nucleon Formfactors Drell-Yan Process FAIR and PANDA L. Schmitt, GSI Physics Goals of PANDA HadronHadron SpectroscopySpectroscopy PC Observables: masses, widths & quantum numbers J of resonances Charm Hadrons: charmonia, D-mesons, charm baryons ➔ Understand new XYZ states, Ds(2317) and others Exotic QCD States: glueballs, hybrids, multi-quarks Spectroscopy with Antiprotons: Production of states of all quantum numbers Resonance scanning with high resolution HadronHadron StructureStructure Generalized Parton Distributions ➔ Formfactors and structure functions, Lq Timelike Nucleon Formfactors Drell-Yan Process NuclearNuclear PhysicsPhysics Hypernuclei: Production of double Λ-hypernuclei ➔ γ-spectroscopy of hypernuclei, YY interaction Hadrons in Nuclear Medium FAIR and PANDA L. Schmitt, GSI The PANDA Experiment FAIR and PANDA L. Schmitt, GSI The PANDA Experiment Detector requirements: 4π acceptance High rate capability: 2x107 s-1 interactions Efficient event selection ➔ Continuous acquisition Momentum resolution ~1% 0 Vertex info for D, K S, Y (cτ = 317 µm for D±) ➔ Good tracking Good PID (γ, e, µ, π, K, p) ➔ Cherenkov, ToF, dE/dx γ-detection 1 MeV – 10 GeV ➔ Crystal Calorimeter FAIR and PANDA L. Schmitt, GSI The PANDA Experiment TARGET SPECTROMETER FORWARD SPECTROMETER Solenoid Target Dipole p-Beam FAIR and PANDA L. Schmitt, GSI The PANDA Experiment TARGET SPECTROMETER FORWARD SPECTROMETER Central GEM Micro Vertex Tracker Tracker Straw Chambers FAIR and PANDA L. Schmitt, GSI The PANDA Experiment TARGET SPECTROMETER FORWARD SPECTROMETER Disc DIRC Muon ID RICH Muon PWO Crystal Forward Range Barrel DIRC Barrel ToF Calorimeters ToF System FAIR and PANDA L. Schmitt, GSI Hadron Spectroscopy L. Schmitt, GSI Aims of Spectroscopy Experiment: Systematic determination of particle properties Mass Lifetime or width of resonance Quantum number JPC Theory: Calculation of spectra Knowing interaction allows prediction Tuning accounting for experimental data Final aim: Understand composition and dynamics of matter In QCD we are still far away from precision of QED Hadron Spectroscopy L. Schmitt, GSI Spectroscopy with Antiprotons Spectroscopy with antiprotons V 100 CBall pp machine allows ΔE ~ 50 keV (beam) e E835 M + − vs. ΔE ~5 MeV in e e (detector) 2 χ / c1 1000 . + − PC −− v e e e directly produces only J = 1 (γ) b l l p a / . others via ISR and other higher orders B v l e a t 5 pp accesses all states s 3 y 8 r C E Resolution with antiprotons 3500 3510 3520 MeV E Resonance scan: CM Energy resolution ~50 keV Tune ECM to probe resonance ECM Get precise mass and width Hadron Spectroscopy L. Schmitt, GSI Quarkonia and Confinement C 1 fm C Properties of Quarkonia Mass gaps much smaller than mQ Q ➔ Non-relativistic bound systems due to the large mass of Q R Multiple scales: Q 2 m >> mv~1/R >> mv v ~ΛQCD (v small) Quarkonium Spectroscopy At zero T: probe non-perturbative, perturbative and transition region Quarkonia in matter At finite T: color screening in QGP ➔ Tool to understand confinement Hadron Spectroscopy L. Schmitt, GSI Charmonium Spectroscopy C 1 fm C Charmonium Status below DD threshold Positronium of QCD: JPC=1-- well measured Potential of cc calculable Low resolution on JPC=0-+ states ➔ Prediction of states ηc' was rediscovered 40 MeV higher Low statistics on hc ) 2 c / V e M ( m Hadron Spectroscopy L. Schmitt, GSI New Charmonium States C 1 fm C Renaissance in Charmonium Spectroscopy: Belle, BaBar, CLEO, CDF and D0 find new states above DD Many of these states are problematic: mass not predicted, width too small, decay pattern unusual Challenge for better understanding and high precision data State Experiments Nature/Remarks X(3872) Belle, BaBar, CDF, D0 D0D0* molecule, 4-quark state X(3943) Belle maybe η‘‘c 23 Y(3940) Belle maybe P1 Z(3930) Belle maybe χ‘c2 Y(4260) BaBar, Belle, CLEO-c Hybrid, ωχc1 -molecule, 4q state Y(4350) BaBar, Belle ? Z±(4430) Belle No charged cc, molecule or 4q state Y(4660) Belle ? Hadron Spectroscopy L. Schmitt, GSI D-Meson Spectroscopy Heavy mesons like H-atom: Heavy quark surrounded by light quark ordered by property of light quark approximate j degeneracy ➔ Spectroscopic predictions ➔ Works fairly well in c(u/d) system Hadron Spectroscopy L. Schmitt, GSI D-Meson Spectroscopy ] 2 c / j=L+sL V e G J=j+s [ H m Ds1 D*K }j=3/2 D * s2 }j=1/2 Heavy mesons like H-atom: DsJ Heavy quark surrounded by light quark (2460) D0K D * * sJ ordered by property of light quark Ds (2317) approximate j degeneracy Ds ➔ Spectroscopic predictions ➔ Works fairly well in c(u/d) system 0− 1− 0+ 1+ 2+ 3− D mesons surprise JP s D (2317) → D + π0, but not D + π+ π– Recent narrow D (2317) and D (2460) s0 s s s0 s1 D (2460) in D + π0γ, D +γ , D + π+π– do not fit theoretical calculations. s1 s s s Quantum numbers for the newest states Experimentally well established Nature unclear: 4q states, molecules? DsJ(2700) and DsJ (2880) open Hadron Spectroscopy L. Schmitt, GSI Baryon Spectroscopy Baryon Spectroscopy in PANDA Large cross section, no extra mesons 4π acceptance for charged and neutral Displaced vertex tagging N and Δ Baryons N* spectrum not understood Missing resonances Strange Baryons Little known about Ξ and Ω resonances Hardly any progress since 20 years Charmed Baryons Narrow widths of resonances Rich spectrum of states JPC not yet all measured Testing ground for HQET Hadron Spectroscopy L. Schmitt, GSI Exotic Hadrons Exotic Hadrons Normal hadrons: (qq) or (qqq) Gluonic degrees of freedom: Hybrid mesons (qqg) Glueballs Multi-quark states Molecules Exotic mesons can have exotic quantum numbers Mesons, Baryons Multi-quarks Hybrids Glueballs Hadron Spectroscopy L. Schmitt, GSI Exotic Hadrons Exotic Hadrons Charm Spectroscopy Charm quark: m >> m Normal hadrons: (qq) or (qqq) c u,d,s Gluonic degrees of freedom: ➔ Perturbative to strong coupling Hybrid mesons (qqg) Charm Hybrids Glueballs c-states narrow, understood Multi-quark states Little interference of ccg & cc-states Molecules Mass 4–4.5 GeV, c c g narrow, Exotic mesons can have exotic quantum numbers ~ σ( p p → c c) Mesons, Baryons Multi-quarks Hybrids Glueballs Hadron Spectroscopy L. Schmitt, GSI Hadron Structure L. Schmitt, GSI Nucleon Spin Structure Basics of nucleon structure studies: Bjorken scaling: At high Q2 dependence only on x: scatter on partons Parton distributions: ● Valence quarks ● Sea: quarks and antiquarks ● Gluons Structure Functions: ● Unpolarized F1 and F2 ● Polarized g1 (and g2) ● Transverse polarized h1 Proton spin status: <sz>=½ =½ (Δu+Δd+Δs)+Lq+ΔG+LG Expt. Quark contribution: ΔΣ=(Δu+Δd+Δs) ≈ 0.3 Gluon polarisation: |ΔG/G| < 0.3 Other contributions: orbital angular momentum Hadron Structure L. Schmitt, GSI Generalized Parton Distributions WhatWhat GPDsGPDs are:are: Handbag Diagram A fractional momentum ξ is taken out GPDs: 4 functions H(x,ξ,t), E(x,ξ,t), ~ ~ H(x,ξ,t), E(x,ξ,t) (polarized) x+ξ x-ξ GPD Quark distribution q(x), -q(-x) PropertiesProperties ofof GPDs:GPDs: GPDs carry information on longitudinallongitudinal and transverse distribution of partons GPDs contain also information on quark (orbital) angular momentum H(x,0,0) = q(x) structure functions of DIS M. Vanderhaeghen ∫H(x,0,t) dx = F(t) nucleon formfactor Hadron Structure L. Schmitt, GSI GPDs in PANDA p p Generalized Parton Distributions Meson Deeply virtual Compton scattering Hard exclusive meson production GDAs GDAs Crossed channels with p p p Wide angle Compton scattering Hard exclusive meson production Simulation Signal: pp→γγ Backgrounds: pp→γπ0, pp→π0 π0 Hadron Structure L.