Analysis of Facial Skeletal Morphology: Nasal Bone, Maxilla, and Mandible

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Facial Skeletal Morphology: Nasal Bone, Maxilla, and Mandible Hindawi BioMed Research International Volume 2021, Article ID 5599949, 9 pages https://doi.org/10.1155/2021/5599949 Research Article Analysis of Facial Skeletal Morphology: Nasal Bone, Maxilla, and Mandible Han-Sheng Chen ,1 Szu-Yu Hsiao ,2,3 and Kun-Tsung Lee 4,5 1Dental Department, Kaohsiung Municipal Siao-gang Hospital, Kaohsiung, Taiwan 2School of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan 3Department of Dentistry for Child and Special Needs, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 4Division of Clinical Dentistry, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 5Department of Oral Hygiene, College of Dental Science, Kaohsiung Medical University, Kaohsiung, Taiwan Correspondence should be addressed to Kun-Tsung Lee; [email protected] Received 12 February 2021; Revised 29 March 2021; Accepted 4 May 2021; Published 25 May 2021 Academic Editor: Michael YC Chen Copyright © 2021 Han-Sheng Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The growth and development of facial bones are closely related to each other. The present study investigated the differences in the nasomaxillary and mandibular morphology among different skeletal patterns. Cephalograms of 240 participants were divided into 3 groups based on the skeletal pattern (Class I, Class II, and Class III). The dimensions of nasomaxilla (nasal bone length, nasal ridge length, nasal depth, palatal length, and maxillary height) and mandible (condylar length, ramus length, body length, symphysis length, and entire mandibular length) were measured. One-way analysis of variance and Pearson’s correlation test were used for statistical analysis. No significant differences were observed among the skeletal patterns in terms of nasal bone length, palatal length, maxillary height, or condylar length. Class II had a significantly shorter ramus, mandibular body, and entire mandibular length compared with those of Class I and Class III. Nasal ridge length exhibited a significant moderate correlated with nasal bone length (correlation coefficient: 0.433) and maxillary height (correlation coefficient: 0.535). The entire mandibular length exhibited a significant moderate correlated with ramus length (correlation coefficient: 0.485) and body length (correlation coefficient: 0.536). In conclusion, nasal and maxillary dimensions exhibited no significant difference among the 3 skeletal patterns. Mandibular body and entire mandibular lengths were significantly positively correlations with Class III skeletal patterns. 1. Introduction of the nose is supported by the nasal bones that articulate with the frontal bone at the superior border and with the Craniofacial development is regulated by dynamic and com- frontal process of the maxilla at the lateral border. The lower plex mechanisms that involve various signaling cascades and two-thirds of the nose is supported by the lateral nasal carti- gene regulation pathways [1]. Manlove et al. [2] concluded lage [3]. In addition, bone resorption at the inner surface of that the development of the craniofacial skeleton occurs as the nasomaxillary complex enlarges the maxillary sinus. a result of a sequence of normal developmental events in Thus, nasomaxillary growth and development occur by bone the brain, the optic pathway, speech and swallowing func- apposition, bone resorption, and remodeling. [4–6] tion, the pharyngeal airway, muscles, and teeth. The growth Growth centers of the mandible include the mandibular and development of facial bones are closely related processes. body, mandibular angle, condylar process, coronoid process, The nasomaxillary complex comprises numerous bones that symphysis, and alveolar process. Growth of the condylar pro- articulate with each other at sutures. The frontal bone and cess takes place from its tip to the mandibular canal and fora- ethmoid bone meet the maxilla on both sides and protrude men and is affected by the position of the petrous portion of from the upper-middle portion of the face. The upper third the temporal bone. Growth of the mandibular condylar 2 BioMed Research International cartilage increases the mandibular ramus length, entire among the variables in each group. We describe the correla- mandible length, and the bilateral condylar distance. Addi- tion strength for the absolute value of the ratio as follows: tionally, the development of dentition and alveolar bone very weak (0-0.19), weak (0.20-0.39), moderate (0.40-0.59), growth also increases the mandibular body length. Enlow strong (0.60-0.79), and very strong (0.80-1.0). A P value < [5] noted that the forward-downward growth of the max- 0.05 was considered statistically significant. This retrospec- illa and mandible has an expanding V configuration and tive study was approved by a human investigation review defined such growth pattern as relocation. The extent committee (KMUHIRB-E(II)-20180200). and direction of bone growth varies among individuals. Changes in the pattern and rate of bone growth can lead 3. Results to abnormal bone morphology and malocclusion. The present study investigated the parameters of nasomaxillary Table 1 presents the results of the analysis of the 3 skeletal and mandibular bone morphologies and their correlations. patterns (Class I, Class II, and Class III). Intergroup compar- The null hypothesis was that no difference exists in the ison revealed no significant correlation between age and skel- nasal, maxillary, or mandibular dimensions among differ- etal pattern (P = :216). Furthermore, no significant difference ent skeletal patterns. in nasal bone length, nasal ridge length, nasal depth, palatal length, or maxillary height was noted among the skeletal 2. Materials and Methods patterns. Intergroup comparisons of condylar length and symphysis length among the 3 skeletal patterns revealed no Cephalograms of 240 individuals (120 male and 120 female) significant differences. However, the patients in Class II had were obtained for this study. Participants were selected on a significantly shorter ramus length (52.8 mm), mandibular the basis of the availability of cephalograms and whether they body length (59.8 mm), and entire mandibular length were 18 to 39 years old. The cephalograms were divided into (117.9 mm) than those of the patients in Class I (55.7, 62.4, 3 groups according to the skeletal pattern based on the A and 125.1 mm, respectively) and Class III (55.8, 66.1, and point–nasion–B point (ANB) angle as follows: Class I maloc- 131.7 mm, respectively). Therefore, the null hypothesis was ° ° ° clusion (0 < ANB < 4 ), Class II malocclusion (ANB ≥ 4 ), accepted for the nasal and maxillary morphology and ° and Class III malocclusion (ANB < 0 ). Each group consisted rejected for the mandibular morphology. of 80 participants (40 males and 40 females). The following As indicated in Table 2, no significant intergroup differ- participants were excluded from the study: (1) those with a ences were observed in the nasomaxillary, condylar, or sym- pathologic disease in the facial bone, (2) those that had physis lengths among male patients. However, among the undergone craniofacial surgery, and (3) those with a history male patients, those in Class II had significantly shorter man- of maxillofacial trauma. dibular ramus, body, and entire lengths than those in Class We followed the methods proposed by Hsiao et al. [7] in III. Among the female patients, those in Class II had greater 2020. The following landmarks (Figure 1) were identified on maxillary lengths than those in Class III (Table 3). Analysis the cephalogram: nasion (N); orbitale (Or); porion (Po); rhi- of all skeletal patterns revealed no significant difference nion (R); the most anterior and inferior point on the tip of among female patients in terms of condylar and symphysis the nasal bone; frontomaxillary nasal suture (MS); the lengths. However, female patients in Class II had a signifi- superior-most point of the suture where the maxilla articu- cantly shorter ramus length than those in Class I and a signif- lates with the frontal and nasal bone; pronasale (Prn); ante- icantly shorter mandibular body and entire mandible length rior nasal spine (ANS); point A; posterior nasal spine than those in Class III. (PNS); prosthion (Pr); infradentale (Id); point B; condylion Table 4 lists the nasomaxillary and mandibular lengths (Cd); antegonial notch (Ag); sigmoid notch (SIG); and men- for each skeletal classification compared using Pearson’s cor- ton (Me). Nasal dimensions were calculated according to the relation coefficient. Age exhibited no significant correlation nasal bone length (N to R), nasal ridge length (N to Prn), and with maxillary or mandibular lengths. The mandibular body nasal depth (Prn vertical to the MS-Pr line). Maxillary length (correlation coefficient: 0.279) and entire length (cor- dimensions were calculated according to the palatal length relation coefficient: 0.236) exhibited a significant positive (ANS to PNS) and maxillary height (MS to Pr). Mandibular correlation with skeletal classification; for example, an indi- dimensions were calculated according to the condylar length vidual with a Class III skeletal pattern had a longer mandib- (the longest distance from Cd to a line parallel to Or-Po line ular body and entire lengths. A significant negative through SIG), ramus length (SIG to Ag), body length (Ag to correlation was noted between variations
Recommended publications
  • Nasal Morphology and Its Correlation to Craniofacial Morphology in Lateral Cephalometric Analysis
    International Journal of Environmental Research and Public Health Article Nasal Morphology and Its Correlation to Craniofacial Morphology in Lateral Cephalometric Analysis Agnieszka Jankowska 1 , Joanna Janiszewska-Olszowska 2,* and Katarzyna Grocholewicz 2 1 Private Practice “Dental Clinic Jankowscy”, 68-200 Zary,˙ Poland; [email protected] 2 Department of Interdisciplinary Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-91-466-1690 Abstract: Nose shape, size, and inclination influence facial appearance, but few studies concern the relationship between the nasal profile and craniofacial structures. The objective of this study was to analyze association of nasal cephalometric variables with skeletal structures, age, and sex. Cephalometric and nasal analysis was performed in 386 Polish orthodontic patients (aged 9–25 years). Student t-test and Mann–Whitney test were used to compare quantitative variables and Pearson’s or Spearman’s correlation coefficients—to find correlations. Soft tissue facial convexity angle corre- lates to Holdaway ratio, ANB (A-Nasion-B), and Wits appraisal. Nasal dorsum axis, nose length, nose depth (1) and nose depth (2), nose hump, lower dorsum convexity, and columella convexity increase with age. Nasal base angle, nasolabial angle, nasomental angle, soft tissue facial convex- ity and nasal bone angle decrease with age. Nasal base angle and nasomental angle are smaller in females. Thus, a relationship exists between nasal morphology and sagittal jaw configuration. Nasal parameters significantly change with age. Sexual dimorphism characterizes nasal bone angle Citation: Jankowska, A.; and nasomental angle. Janiszewska-Olszowska, J.; Grocholewicz, K. Nasal Morphology Keywords: nose; nose profile; cephalometry; orthodontics and Its Correlation to Craniofacial Morphology in Lateral Cephalometric Analysis.
    [Show full text]
  • Variations in Mandibular Coronoid Process-A Morphometric Treatise
    Journal of Dental Specialities 2020;8(1):9–12 Content available at: https://www.ipinnovative.com/open-access-journals Journal of Dental Specialities Journal homepage: www.ipinnovative.com Original Research Article Variations in mandibular coronoid process-A morphometric treatise Sukhman Kahlon1, Gaurav Agnihotri1,* 1Dept. of Anatomy, Government Medical College, Amritsar, Punjab, India ARTICLEINFO ABSTRACT Article history: Introduction: The Coronoid process is a triangular upward projection from antero-superior part of ramus Received 08-08-2020 of mandible giving attachment to two important muscles of mastication. Accepted 27-09-2020 Aims: The aim of our study was to observe the variations in shape and size of coronoid process and Available online 23-11-2020 establish the morphometric profile in Indian population. Materials and Methods: The material for this study comprised of 500 adult human mandibles. The shape of coronoid process was observed and its height and length were measured. Keywords: Results: Three variants of coronoid process were observed (round, triangular and hook) with incidence Mandible percentage 46, 42 and 12 respectively. The mean value of height and length of coronoid process came out Coronoid process to be 60.62 mm and 12.53 mm respectively. Rounded Conclusions: This morphometric treatise provides valuable inputs relevant for anthropological Triangular comparisons, forensic investigations and reconstructive procedures. Hook. © This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 1. Introduction 2. Materials and Methods Coronoid process in Greek means “like a crown”.
    [Show full text]
  • Facial Bones
    skull Facial bones There are 14 Facial bones: • 2 Maxillary bones • 2 zygomatic Bone • 2 Lacrimal bones • 2 Nasal bones • 2 Inferior nasal conchae • 2 palatine bones • 1 Vomer • 1 Mandible (lower jaw) 14 Total Maxillae Maxillae Frontal process Zygomatic process Body Alveolar process Palatine process Submentovertical view Palatine process of maxilla Caldwell view PA with angle Alveolar process of maxilla Lateral Alveolar process of maxilllae Palatine Bones Palatine Bones Zygomatic bone waters view Frontal process of zygomatic Body of zygoma Temporal process of zygomatic bone Lacrimal Nasal bone Nasion Inferior nasal conchae( turbinates) Inferior nasal conchae PA Inferior nasal conche Vomer Vomer Submentovertical view Vomer Vomer nasal septum Perpendicular plate of Ethmoid PA Caldwell view PA with angle nasal septum Mandible Mandibular notch Coronoid Process Condoyle(head) Neck Alveolar process Mentum Ramus Angle[gonion] Mentum Mandible TMJ Mandibular notch Coronoid Process Condoyle(head) Neck Alveolar process Condyle or head Mentum Ramus Alveolar neck Angle[gonion] process of angle body Ramus of mandible mandible Caldwell view PA with angle Alveolar process of mandible Ramus Angle[gonion] Submentovertical view Ramus Mandibular condyle (head) Sinuses Lateral frontal sinuse ethmoid sinuse Sphinoid sinuse Maxillary sinuse Review Lateral sinuses TMJ frontal ethmoid Sphinoid sinuse maxillary angle body Sinuses waters view Mastoid air cells Maxillary sinus Waters view facial bones Frontal process of zygomatic Frontal sinuses Ethmoid sinus Body
    [Show full text]
  • Dissertation on an OBSERVATIONAL STUDY COMPARING the EFFECT of SPHENOPALATINE ARTERY BLOCK on BLEEDING in ENDOSCOPIC SINUS SURGE
    Dissertation On AN OBSERVATIONAL STUDY COMPARING THE EFFECT OF SPHENOPALATINE ARTERY BLOCK ON BLEEDING IN ENDOSCOPIC SINUS SURGERY Dissertation submitted to TAMIL NADU DR. M.G.R. MEDICAL UNIVERSITY CHENNAI For M.S.BRANCH IV (OTORHINOLARYNGOLOGY) Under the guidance of DR. F ANTHONY IRUDHAYARAJAN, M.S., D.L.O Professor & HOD, Department of ENT & Head and Neck Surgery, Govt. Stanley Medical College, Chennai. GOVERNMENT STANLEY MEDICAL COLLEGE THE TAMILNADU DR. M.G.R. MEDICAL UNIVERSITY, CHENNAI-32, TAMILNADU APRIL 2017 CERTIFICATE This is to certify that this dissertation titled AN OBSERVATIONAL STUDY COMPARING THE EFFECT OF SPHENOPALATINE ARTERY BLOCK ON BLEEDING IN ENDOSCOPIC SINUS SURGERY is the original and bonafide work done by Dr. NIGIL SREEDHARAN under the guidance of Prof Dr F ANTHONY IRUDHAYARAJAN, M.S., DLO Professor & HOD, Department of ENT & Head and Neck Surgery at the Government Stanley Medical College & Hospital, Chennai – 600 001, during the tenure of his course in M.S. ENT from July-2014 to April- 2017 held under the regulation of the Tamilnadu Dr. M.G.R Medical University, Guindy, Chennai – 600 032. Prof Dr F Anthony Irudhayarajan, M.S., DLO Place : Chennai Professor & HOD, Date : .10.2016 Department of ENT & Head and Neck Surgery Government Stanley Medical College & Hospital, Chennai – 600 001. Dr. Isaac Christian Moses M.D, FICP, FACP Place: Chennai Dean, Date : .10.2016 Govt.Stanley Medical College, Chennai – 600 001. CERTIFICATE BY THE GUIDE This is to certify that this dissertation titled “AN OBSERVATIONAL STUDY COMPARING THE EFFECT OF SPHENOPALATINE ARTERY BLOCK ON BLEEDING IN ENDOSCOPIC SINUS SURGERY” is the original and bonafide work done by Dr NIGIL SREEDHARAN under my guidance and supervision at the Government Stanley Medical College & Hospital, Chennai – 600001, during the tenure of his course in M.S.
    [Show full text]
  • Atlas of the Facial Nerve and Related Structures
    Rhoton Yoshioka Atlas of the Facial Nerve Unique Atlas Opens Window and Related Structures Into Facial Nerve Anatomy… Atlas of the Facial Nerve and Related Structures and Related Nerve Facial of the Atlas “His meticulous methods of anatomical dissection and microsurgical techniques helped transform the primitive specialty of neurosurgery into the magnificent surgical discipline that it is today.”— Nobutaka Yoshioka American Association of Neurological Surgeons. Albert L. Rhoton, Jr. Nobutaka Yoshioka, MD, PhD and Albert L. Rhoton, Jr., MD have created an anatomical atlas of astounding precision. An unparalleled teaching tool, this atlas opens a unique window into the anatomical intricacies of complex facial nerves and related structures. An internationally renowned author, educator, brain anatomist, and neurosurgeon, Dr. Rhoton is regarded by colleagues as one of the fathers of modern microscopic neurosurgery. Dr. Yoshioka, an esteemed craniofacial reconstructive surgeon in Japan, mastered this precise dissection technique while undertaking a fellowship at Dr. Rhoton’s microanatomy lab, writing in the preface that within such precision images lies potential for surgical innovation. Special Features • Exquisite color photographs, prepared from carefully dissected latex injected cadavers, reveal anatomy layer by layer with remarkable detail and clarity • An added highlight, 3-D versions of these extraordinary images, are available online in the Thieme MediaCenter • Major sections include intracranial region and skull, upper facial and midfacial region, and lower facial and posterolateral neck region Organized by region, each layered dissection elucidates specific nerves and structures with pinpoint accuracy, providing the clinician with in-depth anatomical insights. Precise clinical explanations accompany each photograph. In tandem, the images and text provide an excellent foundation for understanding the nerves and structures impacted by neurosurgical-related pathologies as well as other conditions and injuries.
    [Show full text]
  • The Ratio of Biparietal Diameter to Nasal Bone Length
    Perinatal Journal • Vol: 18, Issue: 3/December 2010 79 e-Address: http://www.perinataljournal.com/20100183003 The Ratio of Biparietal Diameter to Nasal Bone Length Resul Ar›soy1, Nida Ergin2, Murat Yayla2, Gökhan Göynümer3 1Sa¤l›k Bakanl›¤› Okmeydan› E¤itim Araflt›rma Hastanesi, Kad›n Hastal›klar› ve Do¤um Klini¤i, ‹stanbul, TR 2‹nternational Hospital, Kad›n Hastal›klar› ve Do¤um Klini¤i, ‹stanbul, TR 3Sa¤l›k Bakanl›¤› Göztepe E¤itim Araflt›rma Hastanesi, Kad›n Hastal›klar› ve Do¤um Klini¤i, ‹stanbul, TR Abstract Objective: The aim of this study was to determine the relationship between the ratio of biparietal diameter to nasal bone length and gestational weeks at the second trimester of pregnancy. Methods: We evaluated consecutively fetuses referred to our facility between 15 and 22 weeks’ gestation for perinatal sonography and amniocentesis because of an increased risk of aneuploidy. Anatomically normal and euploid 505 fetuses were included in the study. A detailed structural survey, biometric measurements, and measurement of the nasal bone were obtained before the amnio- centesis procedure. The distribution of fetal nasal bone length between 15-22 gestational weeks was established and their percentiles were calculated. The ratio of biparietal diameter to nasal bone length was calculated for each case. Results: The mean nasal bone length for 15 to 22 week`s gestation was 3.21±0.41, 3.45±0.52, 3.81±0.58, 4.17±0.68, 4.42±0.66, 4.89±0.89, 5.35±0.90 and 5.84±1.02 mm respectively.
    [Show full text]
  • Osteometric and Radiological Study of the Mandibular Notch
    Int. J. Morphol., 37(2):491-497, 2019. Osteometric and Radiological Study of the Mandibular Notch Estudio Osteométrico y Radiológico de la Incisura Mandibular Ishwarkumar, S.1; Pillay, P.2; De Gama, B. Z.2 & Satyapal, K. S.2 ISHWARKUMAR, S.; PILLAY, P.; DE GAMA, B. Z. & SATYAPAL, K. S. Osteometric and radiological study of the mandibular notch. Int. J. Morphol., 37(2):491-497, 2019. SUMMARY: The mandibular notch is located on the superior margin, between two prominent processes of the mandibular ramus, the coronoid and condylar processes. The mandibular notch permits the entry of the masseteric artery, vein and nerve to the deep surface the masseteric muscle. Literary reports documented variations in both, the shape and size of the mandibular notch. Therefore, this study aimed to document the morphology and morphometry of the mandibular notch in the South African Black and Indian population groups and to determine their relationship to sex, age and race (if any). The morphometric and morphological parameters of the mandibular notch were measured and assessed in 149 digital panoramic radiographs and 51 dry mandible specimens (n=400) belonging to the South African Black African and Indian population groups. A combination of classification schemes by Mohammad et al. (2012) and Shakya et al. (2013) were adopted to assess the morphology of the mandibular notch. The morphometric parameter was measured using the Dicom x-ray viewer and a digital vernier caliper. Each of the morphometric and morphological parameters were statistically analyzed using SPSS, to determine if a relationship existed between the afore-mentioned parameters and sex, age and race.
    [Show full text]
  • Asian Rhinoplasty
    Asian Rhinoplasty Dean M. Toriumi, MDa,*, Colin D. Pero, MDb,c KEYWORDS Asian rhinoplasty Revision rhinoplasty Augmentation rhinoplasty Cosmetic rhinoplasty in the Asian patient popula- Characteristics of the Asian nose include: low tion differs from traditional rhinoplasty approaches nasal dorsum with caudally placed nasal starting in many aspects, including preoperative analysis, point, thick, sebaceous skin overlying the nasal patient expectations, nasal anatomy, and surgical tip and supratip, weak lower lateral cartilages, techniques used. Platyrrhine nasal characteristics small amount of cartilaginous septum, foreshort- are common, with low dorsum, weak lower lateral ened nose, retracted columella, and thickened cartilages, and thick sebaceous skin often noted. alar lobules (Fig. 1). Typically, patients seek augmentation of these ex- Each patient’s desire to balance augmenting isting structures rather than reductive procedures. their Asian nasal features with maintenance of Patient desires and expectations are unique to this the appearance of an Asian nose is unique for population, with patients often seeking improve- each individual and should be elucidated during ment and refinement of their Asian features, not the initial consultation and preoperative visits. radical changes toward more characteristic White Demonstration of the proposed changes to the features. Use of alloplastic or autologous materials patient with a computer-imaging program can is necessary to achieve the desired results; the use aid communication between patient and surgeon of each material carries inherent risks and benefits of the proposed changes (Fig. 2A, C). Fulfillment that should be discussed with the patient. Autolo- of the patient’s stated wishes may produce a modi- gous cartilage, in particular use of costal cartilage, fication of the patient’s ethnic identity, and has shown to be a reliable, low-risk technique, computer imaging helps the patient to better which, when executed properly, produces excel- understand the possible outcome.
    [Show full text]
  • Fetal Nasal Bone Lenght Nomogram
    Perinatal Journal• Vol: 14, Issue: 2/June 2006 77 Fetal Nasal Bone Lenght Nomogram Murat Yayla1, Gökhan Göynümer2, Ömer Uysal3 1Clinics of Gynecology and Obstetrics, Haseki Hospital, ‹stanbul 2Clinics of Gynecology and Obstetrics, Göztepe Training and Research Hospital, ‹stanbul 3Department of Statistics, Cerrahpafla Medical Faculty, ‹stanbul University Abstratct Objective: To obtain the nasal bone length nomogram throughout normal gestation with known prognosis, and to compare it with some other growth measurements. Methods: Nasal bone lengths of 540 consecutive cases ranging between 11-39 weeks of pregnancy were measured by ultrasonography prospectively. Biparietal diameter (BPD) and femur lengths (FL) were obtained in the meanwhile. Nasal bone length nomograms of the 276 term fetuses, which were born alive and without malformation were obtained according to, BPD, FL, and gestational week. The correlation between variables was assessed by regression analysis. Results: A linear growth pattern of the nasal bone length was obtained throughout gestation. (Nasal bone length= Gestational week x 0.42- 2.81) (r2 = 0.94). A positive correlation was found between the growth of nasal bone length and the growth of other bone measurements. Conclusion: Measurement of the nasal bone length during gestation shows a linear growth pattern according to gestational week, BPD and FL. Keywords: Fetus, nasal bone, ultrasonography, nomogram Fetal burun kemi¤i uzunluk nomogram› Amaç: Prognozu bilinen normal gebeliklerde fetusun burun kemi¤i uzunlu¤u nomogram›n›n elde edilmesi ve di¤er büyüme ölçümleri ile karfl›- laflt›r›lmas›. Yöntem: Gebeli¤in 11-39 haftalar› aras›nda 540 olguda fetusun burun kemik uzunlu¤u prospektif olarak ultrasonografi ile ölçüldü.
    [Show full text]
  • Nasal Septum Deviation and Inferior Nasal Concha Bone Hypertrophy in Class III Facial Deformity
    Int. J. Morphol., 38(6):1544-1548, 2020. Nasal Septum Deviation and Inferior Nasal Concha Bone Hypertrophy in Class III Facial Deformity Desviación del Septum Nasal e Hipertrofia de la Concha Nasal Inferior en Deformidad Facial Clase III Javier Villa1; Leonardo Brito2,3; Marcelo Parra2,4; Pablo Navarro3; Márcio de Moraes6 & Sergio Olate2,4 VILLA, J.; BRITO, L.; PARRA, M.; NACARRO, P.; DE MORAES, M.; OLATE, S. Nasal septum deviation and inferior nasal concha bone hypertrophy in Class III facial deformity. Int. J. Morphol., 38(6):1544-1548, 2020. SUMMARY: The aim of this research was to analyze the morphology of the nasal septum and inferior nasal concha bone in class III facial deformities prior to orthodontic treatment in orthognathic surgery candidates. 40 subjects were included in this research. The inclusion criteria were an Angle class III, negative overjet and SNA angle less than 80º. Patients with facial asymmetry, facial trauma or who had undergone maxillofacial or ENT procedures were excluded. CBCT images were obtained for all the patients and the nasal septum deviation, morphology of inferior nasal concha bone and ostium of the maxillary sinus were analyzed and related to the complexity of the facial deformity expressed by the ANB angle and dental relations. The measurement was standardized by ICC and the data was analyzed using a chi square test and Spearman’s coefficient with a p value < 0.005 for statistical significance. Nasal septal deviation was observed in 77.5 %. The deviation angle was 13.28º (±4.68º) and the distance from the midline to the most deviated septum was 5.56 mm (±1.8 mm) with no statistical relation to the complexity of the facial deformity.
    [Show full text]
  • Fracture of the Anterior Nasal Spine: Report of a Case
    PEDIATRIC DENTISTRY/Copyright ® 1980 by The American Academy of Pedodontics/Vol. 2, No. 4 CASE Fracture of the Anterior Nasal Spine: Report of a Case M. M. Nazif, D.D.S., M.D.S. R. C. Ruffalo, D.M.D., M.A.T. W. A. Caudill, D.M.D. Abstract maxillary centrals to the vermilion border of the upper lip. Two small areas of abrasion were visible on Fractures of the an tenor nasal spine are very rare. A case the attached gingiva covering the unerupted maxillary is reported where a fracture involving the anterior nasal spine was the only significant sequela of a traumatic injury right and left cuspids (Figure 2). The dentition was to the face. Appropriate methods of diagnosing such a clinically and radiographically intact. The frenum fracture are discussed. area was tender to palpation. A lateral extraoral x-ray examination was completed using a standard occlusal film (Figure 3). The film showed a definite irregularity at the tip of the anterior nasal spine with overlying Introduction soft tissue swelling. Traumatic injuries to facial bones are quite com- A thorough clinical as well as radiographic exami- mon.1 However, injuries to the anterior nasal spine are nation of the facial bones confirmed the diagnosis of a quite rare. Only one such case has been reported.2 fracture of the anterior nasal spine. Only the lateral The purpose of this paper is to report a case of a skull film, however, was considered diagnostic (Figure fracture involving the anterior nasal spine. 4). There was no sign of significant displacement, therefore, no treatment was considered necessary.
    [Show full text]
  • Changes in Human Mandibular Shape During the Terminal Pleistocene
    www.nature.com/scientificreports OPEN Changes in human mandibular shape during the Terminal Pleistocene-Holocene Levant Received: 3 May 2018 Ariel Pokhojaev 1,2,3, Hadas Avni1,2, Tatiana Sella-Tunis1,2,3, Rachel Sarig2,3 & Hila May 1,2 Accepted: 4 June 2019 The transition to food production, exploitation of ‘secondary’ products (e.g., milk), and advances in Published: xx xx xxxx cookware technology have afected all aspects of human life. The aim of the present study was to follow changes in mandibular form and shape throughout the terminal Pleistocene-Holocene Levant. The hemimandibles of four populations were included in this study: Natufan hunter-gatherers (n = 10), Pre-pottery Neolithic early farmers (n = 6), Chalcolithic farmers (n = 9), Roman-Byzantine (n = 16), and modern (n = 63) populations. A surface mesh of each mandible was reconstructed from CT or surface scans. Changes in mandibular form and shape were studied using the Procrustes-based geometric morphometrics method. Univariate and multivariate analyses were carried out to examine diferences in size and shape between the studied populations. Our results reveal considerable temporal changes in mandibular shape throughout the Holocene Levant, mainly between the pre-agricultural population (the Natufan) and the succeeding ones, and between the post-industrial (the Modern) and the pre- industrial populations. A tendency for a reduction in mandibular size was identifed between the pre-agricultural population and the farmers. Most regions of the mandible underwent shape changes. In conclusion, substantial changes in mandibular shape occurred throughout the Holocene Levant, especially following the agricultural revolution. These changes can be explained by the “masticatory- functional hypothesis”.
    [Show full text]