Axis Scientific 22-Part Osteopathic Natural Bone Human Skull A-105940

Total Page:16

File Type:pdf, Size:1020Kb

Axis Scientific 22-Part Osteopathic Natural Bone Human Skull A-105940 Axis Scientific 22-Part Osteopathic Natural Bone Human Skull A-105940 Frontal Bone Nasal Bone Nasal Bone (Right) (Left) Frontal Bone Ethmoid Bone Parietal Bone Parietal Bone (Right) (Left) Parietal Bone Lacrimal (Right) Bone (Right) Temporal Bone Nasal Bone Temporal Bone (Left) (Right) (Right) Sphenoid Bone Lacrimal Bone (Right) Lacrimal Bone (Left) R L Zygomatic Bone Zygomatic Bone (Right) (Left) Maxilla & Teeth Maxilla & Teeth (Right Side) (Left Side) Inferior Nasal Sphenoid Bone Inferior Nasal Concha (Left) Concha (Right) Occipital Bone Temporal Bone Zygomatic Bone (Right) (Right) Maxilla & Teeth Mandible & Mandible & (Right Side) Vomer Teeth Teeth Anterior View Lateral View Parietal Bone Parietal Bone (Right) (Left) Maxilla & Teeth Maxilla & Teeth (Right Side) (Left Side) Palatine Palatine Bone (Right) Bone (Left) Zygomatic Zygomatic Bone (Left) Bone (Right) Sphenoid Bone R L L R Vomer Temporal Bone Temporal Bone Temporal Bone (Right) (Left) (Right) Temporal Bone (Left) Parietal Bone Parietal Bone (Left) (Right) Occipital Bone Occipital Bone Mandible & Teeth Inferior View Posterior View Parietal Bone Frontal Bone Parietal Bone (Right) (Left) Parietal Bone Parietal Bone (Right) (Left) Temporal Temporal Bone (Right) Bone (Left) Temporal Bone Temporal Bone (Right) (Left) A Frontal Bone R L C B Sphenoid Sphenoid Sphenoid Bone Bone Bone Occipital Bone D E F Zygomatic Bone (Right) Zygomatic G Bone (Left) Lacrimal Bone (Right) Mandible & Maxilla & Teeth Maxilla & Teeth Maxilla & Teeth Teeth (Right Side) (Left Side) Maxilla & Teeth (Left Side) (Right Side) A - Zygomatic Bones Nasal Bone Nasal Bone B - Nasal Bones (Left) (Right) C - Ethmoid Bone Mandible & D - Inferior Nasal Concha Bones Teeth E - Lacrimal Bones F - Palatine Bones Superior View G - Vomer Parietal Bone (Left) Inferior Nasal Concha (Left) Parietal Bone (Right) Inferior Nasal Concha (Right) Occipital Bone Maxilla & Teeth (Left Side) Temporal Bone (Right) Maxilla & Teeth (Right Side) Temporal Bone (Left) Lacrimal Bone (Left) Sphenoid Bone Lacrimal Bone (Right) Frontal Bone Mandible & Teeth Vomer Nasal Bone (Left) Palatine Bone (Right) Nasal Bone (Right) Palatine Bone (Left) Zygomatic Bone (Right) Ethmoid Bone Zygomatic Bone (Left) © 2018 AXIS SCIENTIFIC.
Recommended publications
  • Nasal Morphology and Its Correlation to Craniofacial Morphology in Lateral Cephalometric Analysis
    International Journal of Environmental Research and Public Health Article Nasal Morphology and Its Correlation to Craniofacial Morphology in Lateral Cephalometric Analysis Agnieszka Jankowska 1 , Joanna Janiszewska-Olszowska 2,* and Katarzyna Grocholewicz 2 1 Private Practice “Dental Clinic Jankowscy”, 68-200 Zary,˙ Poland; [email protected] 2 Department of Interdisciplinary Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-91-466-1690 Abstract: Nose shape, size, and inclination influence facial appearance, but few studies concern the relationship between the nasal profile and craniofacial structures. The objective of this study was to analyze association of nasal cephalometric variables with skeletal structures, age, and sex. Cephalometric and nasal analysis was performed in 386 Polish orthodontic patients (aged 9–25 years). Student t-test and Mann–Whitney test were used to compare quantitative variables and Pearson’s or Spearman’s correlation coefficients—to find correlations. Soft tissue facial convexity angle corre- lates to Holdaway ratio, ANB (A-Nasion-B), and Wits appraisal. Nasal dorsum axis, nose length, nose depth (1) and nose depth (2), nose hump, lower dorsum convexity, and columella convexity increase with age. Nasal base angle, nasolabial angle, nasomental angle, soft tissue facial convex- ity and nasal bone angle decrease with age. Nasal base angle and nasomental angle are smaller in females. Thus, a relationship exists between nasal morphology and sagittal jaw configuration. Nasal parameters significantly change with age. Sexual dimorphism characterizes nasal bone angle Citation: Jankowska, A.; and nasomental angle. Janiszewska-Olszowska, J.; Grocholewicz, K. Nasal Morphology Keywords: nose; nose profile; cephalometry; orthodontics and Its Correlation to Craniofacial Morphology in Lateral Cephalometric Analysis.
    [Show full text]
  • Results Description of the SKULLS. the Overall Size of Both Skulls Was Considered to Be Within Normal Limits for Their Ethnic
    Ossification Defects and Craniofacial Morphology In Incomplete Forms of Mandibulofacial Dysostosis A Description of Two Dry Skulls ERIK DAHL, D.D.S., DR. ODONT. ARNE BJORK, D.D.S., ODONT. DR. Copenhagen, Denmark The morphology of two East Indian dry skulls exhibiting anomalies which were suggested to represent incomplete forms of mandibulofacial dysostosis is described. Obvious although minor ossification anomalies were found localized to the temporal, sphenoid, the zygomatic, the maxillary and the mandibular bones. The observations substantiate the concept of the regional and bilateral nature of this malformation syndrome. Bilateral orbital deviations, hypoplasia of the malar bones, and incomplete zygomatic arches appear to be hard tissue aberrations which may be helpful in exami- nation for subclinical carrier status. Changes in mandibular morphology seem to be less distinguishing features in incomplete or abortive types of mandibulofacial dysostosis. KEY WORDS craniofacial problems, mandible, mandibulofacial dysostosis, maxilla, sphenoid bone, temporal bone, zygomatic bone Mandibulofacial dysostosis (MFD) often roentgencephalometric examinations were results in the development of a characteristic made of the skulls, and tomograms were ob- facial disfigurement with considerable simi- tained of the internal and middle ear. Com- larity between affected individuals. However, parisons were made with normal adult skulls the symptoms may vary highly in respect to and with an adult skull exhibiting the char- type and degree, and both incomplete and acteristics of MFD. All of the skulls were from abortive forms of the syndrome have been the same ethnic group. ' reported in the literature (Franceschetti and Klein, 1949; Moss et al., 1964; Rogers, 1964). Results In previous papers, we have shown the DEsCRIPTION OF THE SKULLS.
    [Show full text]
  • Analysis of Facial Skeletal Morphology: Nasal Bone, Maxilla, and Mandible
    Hindawi BioMed Research International Volume 2021, Article ID 5599949, 9 pages https://doi.org/10.1155/2021/5599949 Research Article Analysis of Facial Skeletal Morphology: Nasal Bone, Maxilla, and Mandible Han-Sheng Chen ,1 Szu-Yu Hsiao ,2,3 and Kun-Tsung Lee 4,5 1Dental Department, Kaohsiung Municipal Siao-gang Hospital, Kaohsiung, Taiwan 2School of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan 3Department of Dentistry for Child and Special Needs, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 4Division of Clinical Dentistry, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 5Department of Oral Hygiene, College of Dental Science, Kaohsiung Medical University, Kaohsiung, Taiwan Correspondence should be addressed to Kun-Tsung Lee; [email protected] Received 12 February 2021; Revised 29 March 2021; Accepted 4 May 2021; Published 25 May 2021 Academic Editor: Michael YC Chen Copyright © 2021 Han-Sheng Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The growth and development of facial bones are closely related to each other. The present study investigated the differences in the nasomaxillary and mandibular morphology among different skeletal patterns. Cephalograms of 240 participants were divided into 3 groups based on the skeletal pattern (Class I, Class II, and Class III). The dimensions of nasomaxilla (nasal bone length, nasal ridge length, nasal depth, palatal length, and maxillary height) and mandible (condylar length, ramus length, body length, symphysis length, and entire mandibular length) were measured. One-way analysis of variance and Pearson’s correlation test were used for statistical analysis.
    [Show full text]
  • The All-On-Four Treatment Concept: Systematic Review
    J Clin Exp Dent. 2017;9(3):e474-88. All-on-four: Systematic review Journal section: Prosthetic Dentistry doi:10.4317/jced.53613 Publication Types: Review http://dx.doi.org/10.4317/jced.53613 The all-on-four treatment concept: Systematic review David Soto-Peñaloza 1, Regino Zaragozí-Alonso 2, María Peñarrocha-Diago 3, Miguel Peñarrocha-Diago 4 1 Collaborating Lecturer, Master in Oral Surgery and Implant Dentistry, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Spain Peruvian Army Officer, Stomatology Department, Luis Arias Schreiber-Central Military Hospital, Lima-Perú 2 Dentist, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Spain 3 Assistant Professor of Oral Surgery, Stomatology Department, Faculty of Medicine and Dentistry, University of Valencia, Spain 4 Professor and Chairman of Oral Surgery, Stomatology Department, Faculty of Medicine and Dentistry, University of Valencia, Spain Correspondence: Unidad de Cirugía Bucal Facultat de Medicina i Odontologìa Universitat de València Gascó Oliag 1 46010 - Valencia, Spain [email protected] Soto-Peñaloza D, Zaragozí-Alonso R, Peñarrocha-Diago MA, Peñarro- cha-Diago M. The all-on-four treatment concept: Systematic review. J Clin Exp Dent. 2017;9(3):e474-88. http://www.medicinaoral.com/odo/volumenes/v9i3/jcedv9i3p474.pdf Received: 17/11/2016 Accepted: 16/12/2016 Article Number: 53613 http://www.medicinaoral.com/odo/indice.htm © Medicina Oral S. L. C.I.F. B 96689336 - eISSN: 1989-5488 eMail: [email protected] Indexed in: Pubmed Pubmed Central® (PMC) Scopus DOI® System Abstract Objectives: To systematically review the literature on the “all-on-four” treatment concept regarding its indications, surgical procedures, prosthetic protocols and technical and biological complications after at least three years in function.
    [Show full text]
  • MBB: Head & Neck Anatomy
    MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina
    [Show full text]
  • Dissertation on an OBSERVATIONAL STUDY COMPARING the EFFECT of SPHENOPALATINE ARTERY BLOCK on BLEEDING in ENDOSCOPIC SINUS SURGE
    Dissertation On AN OBSERVATIONAL STUDY COMPARING THE EFFECT OF SPHENOPALATINE ARTERY BLOCK ON BLEEDING IN ENDOSCOPIC SINUS SURGERY Dissertation submitted to TAMIL NADU DR. M.G.R. MEDICAL UNIVERSITY CHENNAI For M.S.BRANCH IV (OTORHINOLARYNGOLOGY) Under the guidance of DR. F ANTHONY IRUDHAYARAJAN, M.S., D.L.O Professor & HOD, Department of ENT & Head and Neck Surgery, Govt. Stanley Medical College, Chennai. GOVERNMENT STANLEY MEDICAL COLLEGE THE TAMILNADU DR. M.G.R. MEDICAL UNIVERSITY, CHENNAI-32, TAMILNADU APRIL 2017 CERTIFICATE This is to certify that this dissertation titled AN OBSERVATIONAL STUDY COMPARING THE EFFECT OF SPHENOPALATINE ARTERY BLOCK ON BLEEDING IN ENDOSCOPIC SINUS SURGERY is the original and bonafide work done by Dr. NIGIL SREEDHARAN under the guidance of Prof Dr F ANTHONY IRUDHAYARAJAN, M.S., DLO Professor & HOD, Department of ENT & Head and Neck Surgery at the Government Stanley Medical College & Hospital, Chennai – 600 001, during the tenure of his course in M.S. ENT from July-2014 to April- 2017 held under the regulation of the Tamilnadu Dr. M.G.R Medical University, Guindy, Chennai – 600 032. Prof Dr F Anthony Irudhayarajan, M.S., DLO Place : Chennai Professor & HOD, Date : .10.2016 Department of ENT & Head and Neck Surgery Government Stanley Medical College & Hospital, Chennai – 600 001. Dr. Isaac Christian Moses M.D, FICP, FACP Place: Chennai Dean, Date : .10.2016 Govt.Stanley Medical College, Chennai – 600 001. CERTIFICATE BY THE GUIDE This is to certify that this dissertation titled “AN OBSERVATIONAL STUDY COMPARING THE EFFECT OF SPHENOPALATINE ARTERY BLOCK ON BLEEDING IN ENDOSCOPIC SINUS SURGERY” is the original and bonafide work done by Dr NIGIL SREEDHARAN under my guidance and supervision at the Government Stanley Medical College & Hospital, Chennai – 600001, during the tenure of his course in M.S.
    [Show full text]
  • Three-Dimensional Radiographic Evaluation of the Malar Bone Engagement Available for Ideal Zygomatic Implant Placement
    Article Three-Dimensional Radiographic Evaluation of the Malar Bone Engagement Available for Ideal Zygomatic Implant Placement Gerardo Pellegrino 1,* , Francesco Grande 2 , Agnese Ferri 1, Paolo Pisi 3, Maria Giovanna Gandolfi 4 and Claudio Marchetti 1 1 Oral and Maxillofacial Surgery Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; [email protected] (A.F.); [email protected] (C.M.) 2 Oral Surgery Unit, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; [email protected] 3 Dental Radiology Unit, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; [email protected] 4 Medical-technical Science, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; mgiovanna.gandolfi@unibo.it * Correspondence: [email protected]; Tel.: +39-051-208-8157 Received: 11 June 2020; Accepted: 21 July 2020; Published: 22 July 2020 Abstract: Zygomatic implant rehabilitation is a challenging procedure that requires an accurate prosthetic and implant plan. The aim of this study was to evaluate the malar bone available for three-dimensional zygomatic implant placement on the possible trajectories exhibiting optimal occlusal emergence. After a preliminary analysis on 30 computed tomography (CT) scans of dentate patients to identify the ideal implant emergencies, we used 80 CT scans of edentulous patients to create two sagittal planes representing the possible trajectories of the anterior and posterior zygomatic implants. These planes were rotated clockwise on the ideal emergence points and three different hypothetical implant trajectories per zygoma were drawn for each slice.
    [Show full text]
  • The Ratio of Biparietal Diameter to Nasal Bone Length
    Perinatal Journal • Vol: 18, Issue: 3/December 2010 79 e-Address: http://www.perinataljournal.com/20100183003 The Ratio of Biparietal Diameter to Nasal Bone Length Resul Ar›soy1, Nida Ergin2, Murat Yayla2, Gökhan Göynümer3 1Sa¤l›k Bakanl›¤› Okmeydan› E¤itim Araflt›rma Hastanesi, Kad›n Hastal›klar› ve Do¤um Klini¤i, ‹stanbul, TR 2‹nternational Hospital, Kad›n Hastal›klar› ve Do¤um Klini¤i, ‹stanbul, TR 3Sa¤l›k Bakanl›¤› Göztepe E¤itim Araflt›rma Hastanesi, Kad›n Hastal›klar› ve Do¤um Klini¤i, ‹stanbul, TR Abstract Objective: The aim of this study was to determine the relationship between the ratio of biparietal diameter to nasal bone length and gestational weeks at the second trimester of pregnancy. Methods: We evaluated consecutively fetuses referred to our facility between 15 and 22 weeks’ gestation for perinatal sonography and amniocentesis because of an increased risk of aneuploidy. Anatomically normal and euploid 505 fetuses were included in the study. A detailed structural survey, biometric measurements, and measurement of the nasal bone were obtained before the amnio- centesis procedure. The distribution of fetal nasal bone length between 15-22 gestational weeks was established and their percentiles were calculated. The ratio of biparietal diameter to nasal bone length was calculated for each case. Results: The mean nasal bone length for 15 to 22 week`s gestation was 3.21±0.41, 3.45±0.52, 3.81±0.58, 4.17±0.68, 4.42±0.66, 4.89±0.89, 5.35±0.90 and 5.84±1.02 mm respectively.
    [Show full text]
  • NASAL ANATOMY Elena Rizzo Riera R1 ORL HUSE NASAL ANATOMY
    NASAL ANATOMY Elena Rizzo Riera R1 ORL HUSE NASAL ANATOMY The nose is a highly contoured pyramidal structure situated centrally in the face and it is composed by: ü Skin ü Mucosa ü Bone ü Cartilage ü Supporting tissue Topographic analysis 1. EXTERNAL NASAL ANATOMY § Skin § Soft tissue § Muscles § Blood vessels § Nerves ² Understanding variations in skin thickness is an essential aspect of reconstructive nasal surgery. ² Familiarity with blood supplyà local flaps. Individuality SKIN Aesthetic regions Thinner Thicker Ø Dorsum Ø Radix Ø Nostril margins Ø Nasal tip Ø Columella Ø Alae Surgical implications Surgical elevation of the nasal skin should be done in the plane just superficial to the underlying bony and cartilaginous nasal skeleton to prevent injury to the blood supply and to the nasal muscles. Excessive damage to the nasal muscles causes unwanted immobility of the nose during facial expression, so called mummified nose. SUBCUTANEOUS LAYER § Superficial fatty panniculus Adipose tissue and vertical fibres between deep dermis and fibromuscular layer. § Fibromuscular layer Nasal musculature and nasal SMAS § Deep fatty layer Contains the major superficial blood vessels and nerves. No fibrous fibres. § Periosteum/ perichondrium Provide nutrient blood flow to the nasal bones and cartilage MUSCLES § Greatest concentration of musclesàjunction of upper lateral and alar cartilages (muscular dilation and stenting of nasal valve). § Innervation: zygomaticotemporal branch of the facial nerve § Elevator muscles § Depressor muscles § Compressor
    [Show full text]
  • Splanchnocranium
    splanchnocranium - Consists of part of skull that is derived from branchial arches - The facial bones are the bones of the anterior and lower human skull Bones Ethmoid bone Inferior nasal concha Lacrimal bone Maxilla Nasal bone Palatine bone Vomer Zygomatic bone Mandible Ethmoid bone The ethmoid is a single bone, which makes a significant contribution to the middle third of the face. It is located between the lateral wall of the nose and the medial wall of the orbit and forms parts of the nasal septum, roof and lateral wall of the nose, and a considerable part of the medial wall of the orbital cavity. In addition, the ethmoid makes a small contribution to the floor of the anterior cranial fossa. The ethmoid bone can be divided into four parts, the perpendicular plate, the cribriform plate and two ethmoidal labyrinths. Important landmarks include: • Perpendicular plate • Cribriform plate • Crista galli. • Ala. • Ethmoid labyrinths • Medial (nasal) surface. • Orbital plate. • Superior nasal concha. • Middle nasal concha. • Anterior ethmoidal air cells. • Middle ethmoidal air cells. • Posterior ethmoidal air cells. Attachments The falx cerebri (slide) attaches to the posterior border of the crista galli. lamina cribrosa 1 crista galli 2 lamina perpendicularis 3 labyrinthi ethmoidales 4 cellulae ethmoidales anteriores et posteriores 5 lamina orbitalis 6 concha nasalis media 7 processus uncinatus 8 Inferior nasal concha Each inferior nasal concha consists of a curved plate of bone attached to the lateral wall of the nasal cavity. Each consists of inferior and superior borders, medial and lateral surfaces, and anterior and posterior ends. The superior border serves to attach the bone to the lateral wall of the nose, articulating with four different bones.
    [Show full text]
  • Computed Tomographic Assessment of the Lacrimal Sac Fossa in the ଝ
    Annals of Anatomy 224 (2019) 23–27 Contents lists available at ScienceDirect Annals of Anatomy jou rnal homepage: www.elsevier.com/locate/aanat RESEARCH ARTICLE Computed tomographic assessment of the lacrimal sac fossa in the ଝ Japanese population a a,∗ a b Tushar Sarbajna , Yasuhiro Takahashi , Ma. Regina Paula Valencia , Makoto Ito , c a Kunihiro Nishimura , Hirohiko Kakizaki a Department of Oculoplastic, Orbital, and Lacrimal Surgery, Aichi Medical University Hospital, Aichi, Japan b Department of Radiology, Aichi Medical University, Aichi, Japan c Department of Otorhinolaryngology, Aichi Medical University, Aichi, Japan a r t i c l e i n f o a b s t r a c t Article history: Purpose: To analyze the morphology of the lacrimal sac fossa in the Japanese population using computed Received 11 February 2019 tomographic images. Received in revised form 25 February 2019 Materials and methods: One-hundred-fifty-five Japanese patients diagnosed with unilateral orbital frac- Accepted 11 March 2019 ture were retrospectively reviewed. Measurements of the dimensions of the lacrimal sac fossa were taken on three anatomical planes (upper, middle, and lower planes) using a digital caliper/protractor tool. Keywords: Results: The mean maximum thickness of the maxillary bone at the upper, middle, and lower planes Lacrimal sac fossa of the lacrimal sac fossa were 4.60 mm, 5.07 mm, and 6.30 mm, respectively. The midpoint thickness of Lacrimal bone the maxillary bone at each plane were 3.04 mm, 3.00 mm, and 2.17 mm, respectively. The lacrimal bone Maxillary bone Japanese thickness at each plane were 1.13 mm, 1.13 mm, and 1.08 mm, respectively.
    [Show full text]
  • The Vomer Bone Analysis in Relation to Class Iii Malocclusion Using Three Dimenssional Images Analysis
    International Journal of Dental and Health Sciences Original Article Volume 04,Issue 05 THE VOMER BONE ANALYSIS IN RELATION TO CLASS III MALOCCLUSION USING THREE DIMENSSIONAL IMAGES ANALYSIS Ammar Mohi 1, Kadir Beycan2, Şebnem Erçalik Yalçinkaya3 1Postgraduate PhD researcher, Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Marmara University, Istanbul, Turkey. 2Assistant professor , Department of Orthodontics, Faculty of Dentistry, Marmara University, Istanbul, Turkey. 3Professor, Chairman and Head of Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Marmara University, Istanbul, Turkey. ABSTRACT: Objective: To evaluate the vomer bone dimenssional outline changes in relation to the midface hypoplasia of a Class III malocclusion by comparing with normal controls using a three dimenssional CBCT images analysis of Mimics 19.0 software. Material and Method: In total of 96 patients images were both Class III malocclusion as study cases and normal occlusion as controls with age between 15 to 30 years old. All patients were classified into three group based on ANB angular value of Steiner’s analysis. The study group were : normal, mild and sever malocclusion type groups. Linear and angular planes were determined by using 13 skeletal points and analysed by using Mimics 19.0 software. All study groups parameters statistically analysed for significant differences and correlation. Results: A high significant differences between the vomer bone anterior variables (P<0.01) followed by vomer posterior variables (P<0.05) in relation to cranial and midfacial measurements with positive correlation. The pattern of vomer bone was shown highly anterior impaction and backward inclination in sever type malocclusion group and male higher than female.
    [Show full text]