Chapter 7: the Axial Skeleton

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 7: the Axial Skeleton Chapter 7: The Axial Skeleton I. The Axial Division of the Skeletal System, p. 206 Objective 1. Identify the bones of the axial skeleton and their functions. • In studying individual bones, we are concerned with their functions, including which bones they connect or articulate with, and their structures and marks, including muscle and ligament attachments, and openings for nerves and blood vessels (foramina). Figure 7-1 • The axial skeleton: - forms the longitudinal axis of the body - has 80 bones • The axial skeleton includes: - the skull (8 cranial bones and 14 facial bones) - bones associated with the skull (6 auditory ossicles and the hyoid bone) - the vertebral column (24 vertebrae, the sacrum and the coccyx) - the thoracic cage (24 ribs and the sternum) • Functions of the axial skeleton include: - support and protect organs in the body cavities - attach to muscles that support head, neck and trunk - attach to breathing muscles - attach to muscles of the appendicular skeleton • Axial bones are strong, with many ligaments, but are restricted in motion. II. The Skull, p. 206 Objectives 1. Identify the bones of the cranium and face, and the significance of their markings. 2. Describe the structures and functions of the nasal complex. 3. Explain the functions of paranasal sinuses. 4. Describe the differences between the skulls of infants, children and adults. • The skull protects the brain and entrances to respiratory and digestive systems. Figure 7-2 • The skull has 22 bones: - 8 cranial bones form the braincase or cranium. The cranial bones enclose the cranial cavity, which contains the brain and associated fluids, blood vessels, nerves and membranes. - 14 facial bones protect and support the entrances to the digestive and respiratory tracts. Superficial facial bones are for muscle attachment (including the maxillary, lacrimal, nasal, zygomatic and maxillary bones, and the mandible). The deep facial bones separate the oral and nasal cavities, and form the nasal septum (including the palatine bones, inferior nasal conchae, and the vomer). • The bones of the skull also contain the sinuses, cavities which decrease the weight of the skull and are lined with mucus membranes that help protect the entrances of the respiratory system. Figure 7-3 • The immovable joints of the skull are called sutures. The 4 major sutures are: 1. The lambdoid suture separates the occipital bone from the parietal bones and may contain sutural bones. 2. The coronal suture attaches the frontal bone to the parietal bones. The calvaria is made up of the occipital, parietal and frontal bones. 3. The sagittal suture, between the parietal bones, extends from the lambdoid suture to the coronal suture. 4. The squamous sutures form the boundaries between temporal bones and parietal bones. Figure 7-4 Cranial Bones, p. 212 • The 8 cranial bones include the occipital bone, frontal bone, sphenoid, ethmoid, parietal bones and temporal bones. Figure 7-5 1. The Occipital Bone Functions: - forms the posterior and inferior surfaces of the cranium. Articulations: - parietal bones - temporal bones - sphenoid - first cervical vertebra (atlas) Marks: - external occipital protuberance - external occipital crest (attach ligaments) - occipital condyles (articulate with neck) - inferior and superior nuchal lines (attach ligaments) Foramina: - foramen magnum (connects cranial and spinal cavities) - jugular foramen (jugular vein) - hypoglossal canals (hypoglossal nerves) Figure 7-5b 2. The Parietal Bones Functions: - forms part of the superior and lateral surfaces of the cranium Articulations: - parietal bone - occipital bone - temporal bone - frontal bone - sphenoid bone Marks: - superior and inferior temporal lines (temporalis muscle) - grooves for cranial blood vessels Figure 7-6 3. The Frontal Bone Functions: - forms the anterior cranium and upper eyesockets - contains frontal sinuses Articulations: - parietal bone - sphenoid bone - ethmoid bone - nasal bone - lacrimal bone - maxillary bone - zygomatic bone - metopic suture (fusion of 2 frontal bones, disappears about age 8) Marks: - frontal squama (forehead) - supraorbital margin (protects eye) - lacrimal fossa (tear ducts) - frontal sinuses Foramina: - supraorbital foramen (blood vessels of eyebrows, eyelids and frontal sinuses) - supraorbital notch (an incomplete supraorbital foramen) Figure 7-7 4. The Temporal Bones Functions: - form part of the lateral walls of the cranium and zygomatic arches - articulate with the mandible - surround and protect the inner ear - attach muscles of jaws and head Articulations: - zygomatic bone - sphenoid bone - parietal bone - occipital bone - mandible Marks: - squamous part (borders the squamous suture) - zygomatic process (articulates with the temporal process of the zygomatic bone to form the zygomatic arch or cheekbone) - zygomatic process (inferior to the squamous portion) - mandibular fossa (articulates with the mandible) - mastoid process (muscle attachment) contains mastoid air cells connected to the middle ear cavity - styloid process (attach tendons and ligaments of the hyoid, tongue and pharynx) - petrous part (encloses structures of the inner ear) - auditory ossicles (3 tiny bones in the tympanic cavity, or middle ear, transfer sound from the tympanic membrane or eardrum, to the inner ear) Foramina: - carotid canal (internal carotid artery) - foramen lacerum (carotid and small arteries, hyaline cartilage, auditory tube) - external acoustic canal (ends at the tympanic membrane) - stylomastoid foramen (facial nerve) - internal acoustic canal (blood vessels and nerves of the inner ear, facial nerve) Figure 7-8 5. The Sphenoid Functions: - forms part of the floor of the cranium - unites cranial and facial bones - strengthens the sides of the skull - contains the sphenoidal sinuses Articulations: - ethmoid - frontal bone - occipital bone - parietal bone - temporal bone - palatine bones - zygomatic bones - maxillary bones - vomer Marks: - sphenoid body (central axis of the sphenoid) - sella turcica (saddle-shaped enclosure on the superior surface of the body) - hypophyseal fossa (depression within the sella turcica, holds the pituitary gland) - sphenoidal sinuses (either side of the body, inferior to the sella turcica) - lesser wings (anterior to the sella turcica) - greater wings (form part of the cranial floor, sphenoidal spine and posterior wall of the orbit) - pterygoid processes (form pterygoid plates which attach muscles of the lower jaw and soft palate) Foramina: - optic canals (optic nerves) - superior orbital fissure (blood vessels and nerves of the orbit) - foramen rotundum (blood vessels and nerves of the face) - foramen ovale (blood vessels and nerves of the face) - foramen spinosum (blood vessels and nerves of the jaws) Figure 7-9 6. The Ethmoid Functions: - forms the anteromedial floor of the cranium - forms the roof of the nasal cavity - forms part of the nasal septum and medial orbital wall - contains ethmoidal air cells (sinuses) Articulations: - frontal bone - sphenoid - nasal bone - lacrimal bone - palatine bone - maxillary bones - inferior nasal conchae - vomer Marks: 1. The cribriform plate (floor of the cranium and roof of the nasal cavity): - contains the crista galli (bony ridge attached to the falx cerebri, a membrane that stabilizes the brain) 2. The 2 lateral masses: - contain the ethmoidal labyrinth (interconnected ethmoidal air cells open to nasal cavities) - superior nasal conchae (projections) - middle nasal conchae (projections) 3. The perpendicular plate (part of the nasal septum) Foramina: - olfactory foramina in the cribriform plate (olfactory nerves) Facial Bones, p. 217 Figure 7-10 1. The Maxillary Bones, the largest facial bones Functions: - support the upper teeth - form the inferior orbital rim - form the lateral margins of the external nares - form the upper jaw and hard palate - contain maxillary sinuses (the largest sinuses) Articulations: - frontal bones - ethmoid - with other maxillary bone - with all other facial bones except the mandible Marks: - orbital rim (protects the eye and orbit) - anterior nasal spine (attaches the cartilaginous anterior nasal septum) - alveolar processes (border the mouth, support upper teeth) - palatine processes (form the hard palate or roof of mouth) - contain maxillary sinuses (to lighten bone) - nasolacrimal canal (protects the lacrimal sac and nasolacrimal duct) Foramina: - infraorbital foramen (a major sensory nerve reaches the brain via the foramen rotundum of the sphenoid) - inferior orbital fissure (cranial nerves and blood vessels) 2. The Palatine Bones Functions: - form the posterior portion of the hard palate - contribute to the floors of the orbits Articulations: - with one another - maxillary bones - sphenoid - ethmoid - inferior nasal conchae - vomer Marks: The palatine bones have 2 parts in an L shape: - the horizontal plate (posterior part of the hard palate) - the perpendicular plate (from the horizontal plate to the orbital process of the orbit floor, which contains a small sinus open to the sphenoidal sinus) Foramina: - many in the lateral portion of the horizontal plate (small blood vessels and nerves of the roof of the mouth) Figure 7-11 3. The Nasal Bones Functions: - support the bridge of the nose (superior) - connect to cartilages that support the distal part of the nose (cartilages extend to the external nares or entrances to the nasal cavity) Articulations: - with one another - the ethmoid - frontal bones - maxillary bones 4. The Vomer Functions: - forms the inferior portion
Recommended publications
  • Nasal Morphology and Its Correlation to Craniofacial Morphology in Lateral Cephalometric Analysis
    International Journal of Environmental Research and Public Health Article Nasal Morphology and Its Correlation to Craniofacial Morphology in Lateral Cephalometric Analysis Agnieszka Jankowska 1 , Joanna Janiszewska-Olszowska 2,* and Katarzyna Grocholewicz 2 1 Private Practice “Dental Clinic Jankowscy”, 68-200 Zary,˙ Poland; [email protected] 2 Department of Interdisciplinary Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-91-466-1690 Abstract: Nose shape, size, and inclination influence facial appearance, but few studies concern the relationship between the nasal profile and craniofacial structures. The objective of this study was to analyze association of nasal cephalometric variables with skeletal structures, age, and sex. Cephalometric and nasal analysis was performed in 386 Polish orthodontic patients (aged 9–25 years). Student t-test and Mann–Whitney test were used to compare quantitative variables and Pearson’s or Spearman’s correlation coefficients—to find correlations. Soft tissue facial convexity angle corre- lates to Holdaway ratio, ANB (A-Nasion-B), and Wits appraisal. Nasal dorsum axis, nose length, nose depth (1) and nose depth (2), nose hump, lower dorsum convexity, and columella convexity increase with age. Nasal base angle, nasolabial angle, nasomental angle, soft tissue facial convex- ity and nasal bone angle decrease with age. Nasal base angle and nasomental angle are smaller in females. Thus, a relationship exists between nasal morphology and sagittal jaw configuration. Nasal parameters significantly change with age. Sexual dimorphism characterizes nasal bone angle Citation: Jankowska, A.; and nasomental angle. Janiszewska-Olszowska, J.; Grocholewicz, K. Nasal Morphology Keywords: nose; nose profile; cephalometry; orthodontics and Its Correlation to Craniofacial Morphology in Lateral Cephalometric Analysis.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • Analysis of Facial Skeletal Morphology: Nasal Bone, Maxilla, and Mandible
    Hindawi BioMed Research International Volume 2021, Article ID 5599949, 9 pages https://doi.org/10.1155/2021/5599949 Research Article Analysis of Facial Skeletal Morphology: Nasal Bone, Maxilla, and Mandible Han-Sheng Chen ,1 Szu-Yu Hsiao ,2,3 and Kun-Tsung Lee 4,5 1Dental Department, Kaohsiung Municipal Siao-gang Hospital, Kaohsiung, Taiwan 2School of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan 3Department of Dentistry for Child and Special Needs, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 4Division of Clinical Dentistry, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 5Department of Oral Hygiene, College of Dental Science, Kaohsiung Medical University, Kaohsiung, Taiwan Correspondence should be addressed to Kun-Tsung Lee; [email protected] Received 12 February 2021; Revised 29 March 2021; Accepted 4 May 2021; Published 25 May 2021 Academic Editor: Michael YC Chen Copyright © 2021 Han-Sheng Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The growth and development of facial bones are closely related to each other. The present study investigated the differences in the nasomaxillary and mandibular morphology among different skeletal patterns. Cephalograms of 240 participants were divided into 3 groups based on the skeletal pattern (Class I, Class II, and Class III). The dimensions of nasomaxilla (nasal bone length, nasal ridge length, nasal depth, palatal length, and maxillary height) and mandible (condylar length, ramus length, body length, symphysis length, and entire mandibular length) were measured. One-way analysis of variance and Pearson’s correlation test were used for statistical analysis.
    [Show full text]
  • The Neurocranium Forms the Cranial Cavity That Surrounds and Protects the Brain and Brainstem. the Neurocranium Is Formed from T
    Name: Wokoma Olobo Benebo Department: Medical Laboratory Science Course: ANA 208 Matric Number: 18/MHS06/055 Assignment 1. Discuss the differences between viscerocranium and neurocranium The neurocranium forms the cranial cavity that surrounds and protects the brain and brainstem. The neurocranium is formed from the occipital bone, two temporal bones, two parietal bones, the sphenoid, ethmoid and frontal bones; they are all joined together with sutures. The viscerocranium bones form the anterior and lower regions of the skull and include the mandible, which attaches through the only truly motile joint found in the skull. The facial skeleton contains the vomer, two nasal conchae, two nasal bones, two maxilla, the mandible, two palatine bones, two zygomatic bones, and two lacrimal bones. 2. Femoral triangle is a special area of the thigh, Discuss Answers: The femoral triangle is a wedge-shaped area formed by a depression between the muscles of the thigh. It is located on the medial aspect of the proximal thigh. It is the region of the passage of the main blood vessels between the pelvis and the lower limb, as well as a large nerve supplying the thigh. It has several Borders and Contents. BORDERS: a. Lateral Border b. Medial Border c. Superior Border CONTENTS: a. Femoral Artery b. Femoral Vein c. Femoral Nerve d. Femoral Canal e. Lymphatics 3. Describe all the muscles of the lower limb that participates during 1/metre social distancing at the period of Covid 19. Answers: a. Rectus Femoris b. Vastus Medialis c. Vastus Lateralis d. Sartorius e. Gracilis f. The Hamstrings g.The Iliopsoas in the hips h.
    [Show full text]
  • WHO Manual of Diagnostic Imaging Radiographic Anatomy and Interpretation of the Musculoskeletal System
    The WHO manual of diagnostic imaging Radiographic Anatomy and Interpretation of the Musculoskeletal System Editors Harald Ostensen M.D. Holger Pettersson M.D. Authors A. Mark Davies M.D. Holger Pettersson M.D. In collaboration with F. Arredondo M.D., M.R. El Meligi M.D., R. Guenther M.D., G.K. Ikundu M.D., L. Leong M.D., P. Palmer M.D., P. Scally M.D. Published by the World Health Organization in collaboration with the International Society of Radiology WHO Library Cataloguing-in-Publication Data Davies, A. Mark Radiography of the musculoskeletal system / authors : A. Mark Davies, Holger Pettersson; in collaboration with F. Arredondo . [et al.] WHO manuals of diagnostic imaging / editors : Harald Ostensen, Holger Pettersson; vol. 2 Published by the World Health Organization in collaboration with the International Society of Radiology 1.Musculoskeletal system – radiography 2.Musculoskeletal diseases – radiography 3.Musculoskeletal abnormalities – radiography 4.Manuals I.Pettersson, Holger II.Arredondo, F. III.Series editor: Ostensen, Harald ISBN 92 4 154555 0 (NLM Classification: WE 141) The World Health Organization welcomes requests for permission to reproduce or translate its publications, in part or in full. Applications and enquiries should be addressed to the Office of Publications, World Health Organization, CH-1211 Geneva 27, Switzerland, which will be glad to provide the latest information on any changes made to the text, plans for new editions, and reprints and translations already available. © World Health Organization 2002 Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved.
    [Show full text]
  • Musculo-Skeletal System
    Musculo-Skeletal System (Trunk, Limbs, and Head) somite: ectoderm dermatome General Statements: myotome Bilaterally, paraxial mesoderm become sclerotome neural crest somites and somitomeres. (Somitomeres develop ros- intermediate tral to the notochord in the head. They are like somites, but mesoderm neural tube smaller and less distinctly organized.) The mesoderm somatic mesoderm comprising each somite differentiates into three notochord regions: endoderm aorta — dermatome (lateral) which migrates to form dermis of the skin coelom — sclerotome (medial) forms most of the splanchnic mesoderm axial skeleton (vertebrae, ribs, and base of the skull). Mesoderm Regions — myotome (middle) forms skeletal mus- culature. Individual adult muscles are produced by merger of adjacent myotomes. Note: Nerves make early connections with adjacent myotomes and dermatomes, establishing a segmental innervation pattern. As myotome/dermatome cells migrate to assume adult positions, the segmental nerve supply must follow along to maintain its connection to the innervation target. (Recurrent laryngeal & phrenic nerves travel long distances because their targets migrated far away.) Skin. Consists of dermis and epidermis. Epidermis, including hair follicles & glands, is derived from ectoderm. Neural crest cells migrate into epidermis and become melanocytes. (Other neural crest cells become tactile disc receptors.) Dermis arises from mesoderm (dermatomes of somites). Each dermatome forms a continu- ous area of skin innervated by one spinal nerve. Because adjacent dermatomes overlap, a locus of adult skin is formed by 2 or 3 dermatomes, and innervated by 2 or 3 spinal nerves. Muscle. Muscles develop from mesoderm, except for muscles of the iris which arise from optic cup ectoderm. Cardiac and smooth muscles originate from splanchnic mesoderm.
    [Show full text]
  • Lab Manual Axial Skeleton Atla
    1 PRE-LAB EXERCISES When studying the skeletal system, the bones are often sorted into two broad categories: the axial skeleton and the appendicular skeleton. This lab focuses on the axial skeleton, which consists of the bones that form the axis of the body. The axial skeleton includes bones in the skull, vertebrae, and thoracic cage, as well as the auditory ossicles and hyoid bone. In addition to learning about all the bones of the axial skeleton, it is also important to identify some significant bone markings. Bone markings can have many shapes, including holes, round or sharp projections, and shallow or deep valleys, among others. These markings on the bones serve many purposes, including forming attachments to other bones or muscles and allowing passage of a blood vessel or nerve. It is helpful to understand the meanings of some of the more common bone marking terms. Before we get started, look up the definitions of these common bone marking terms: Canal: Condyle: Facet: Fissure: Foramen: (see Module 10.18 Foramina of Skull) Fossa: Margin: Process: Throughout this exercise, you will notice bold terms. This is meant to focus your attention on these important words. Make sure you pay attention to any bold words and know how to explain their definitions and/or where they are located. Use the following modules to guide your exploration of the axial skeleton. As you explore these bones in Visible Body’s app, also locate the bones and bone markings on any available charts, models, or specimens. You may also find it helpful to palpate bones on yourself or make drawings of the bones with the bone markings labeled.
    [Show full text]
  • MBB: Head & Neck Anatomy
    MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina
    [Show full text]
  • Study on Asterion and Presence of Sutural Bones in South Indian Dry Skull
    Mohammed Ahad et al /J. Pharm. Sci. & Res. Vol. 7(6), 2015, 390-392 Study on Asterion and Presence of Sutural Bones in South Indian Dry Skull Mohammed Ahad(1),Thenmozhi M.S.(2) 1)BDS 1st year, 2) HOD of Anatomy, Saveetha dental college and hospitals Abstract: Aim: To study morphological features of asterion and presence of sutural bones in posterior side of the 25 human skull. Objective: To know the detailed anatomical knowledge of sutural morphology of asterion and formation of sutural bone. Background: Asterion is the point on Norma lateralis where parietal, temporal and occipital bones meet. It has many neurosurgical importance so any variation during surgery cause damage to dural venous sinuses. Presence of sutural bones will complicate surgical orientation, so it is important to study about the formation of sutural bones and its pattern. Materials and methods: The study will be performed on 25 south Indian dry skull of unknown age and sex taken from the department of anatomy at Saveetha dental college and hospital ,Chennai. Reason: A Research on this topic will lead to the outcome of asterion position from various anatomical landmarks and incidence of sutural bone at posterior side of the skull. Keywords: asterion, sutural bones, surgical importance. INTRODUCTION: The asterion is the junction of the parietal, temporal and occipital bone. It is the surgical landmark to the transverse sinus location, which is of great importance in the surgical approaches to the posterior cranial fossa[1].The sutural morphology was classified into two types: Type 1 where a sutural bone was present and Type 2 where sutural bone was absent.
    [Show full text]
  • Study of Craniometric Point As a Landmark in Performing Posterolateral Surgeries on Skull
    Recent Advances in Pathology & Laboratory Medicine Volume 5, Issue 3 - 2019, Pg. No. 17-19 Peer Reviewed & Open Access Journal Research Article Study of Craniometric Point as a Landmark in Performing Posterolateral Surgeries on Skull Sachin Patil1, Dharmendra Kumar2 1Assistant Professor, Department of Anatomy, ANIIMS, Port Blair, Andaman and Nicobar Islands, India. 2Associate Professor & Head, Department of Physical Medicine and Rehabilitation, ANIIMS, Port Blair, Andaman and Nicobar Islands, India. DOI: https://doi.org/10.24321/2454.8642.201917 INFO ABSTRACT Corresponding Author: Introduction: The asterion is craniometric point on the lateral side Dharmendra Kumar, Department of Anatomy, of skull. Importance of asterion lies in that it is primary landmark in ANIIMS, Port Blair, Andaman and Nicobar Islands, performing posterolateral surgeries on skull. India. Material and Methods: In 100 adult dry skulls measurements were E-mail Id: taken on right and left sides of the skull using digital Vernier callipers. [email protected] Two parameters were noted: Distance of the asterion to the root of Orcid Id: zygoma and to the tip of the mastoid process. https://orcid.org/0000-0001-9722-5107 How to cite this article: Result: The mean distance of the asterion to the root of zygoma on Patil S, Kumar D. Study of Craniometric Point as a right side was 56.15+2.40 mm and on left side was 57.48+2.68 mm. The Landmark in Performing Posterolateral Surgeries mean distance of the asterion to the tip of the mastoid process on the on Skull. Rec Adv Path Lab Med 2019; 5(3): 17-19.
    [Show full text]
  • Dissertation on an OBSERVATIONAL STUDY COMPARING the EFFECT of SPHENOPALATINE ARTERY BLOCK on BLEEDING in ENDOSCOPIC SINUS SURGE
    Dissertation On AN OBSERVATIONAL STUDY COMPARING THE EFFECT OF SPHENOPALATINE ARTERY BLOCK ON BLEEDING IN ENDOSCOPIC SINUS SURGERY Dissertation submitted to TAMIL NADU DR. M.G.R. MEDICAL UNIVERSITY CHENNAI For M.S.BRANCH IV (OTORHINOLARYNGOLOGY) Under the guidance of DR. F ANTHONY IRUDHAYARAJAN, M.S., D.L.O Professor & HOD, Department of ENT & Head and Neck Surgery, Govt. Stanley Medical College, Chennai. GOVERNMENT STANLEY MEDICAL COLLEGE THE TAMILNADU DR. M.G.R. MEDICAL UNIVERSITY, CHENNAI-32, TAMILNADU APRIL 2017 CERTIFICATE This is to certify that this dissertation titled AN OBSERVATIONAL STUDY COMPARING THE EFFECT OF SPHENOPALATINE ARTERY BLOCK ON BLEEDING IN ENDOSCOPIC SINUS SURGERY is the original and bonafide work done by Dr. NIGIL SREEDHARAN under the guidance of Prof Dr F ANTHONY IRUDHAYARAJAN, M.S., DLO Professor & HOD, Department of ENT & Head and Neck Surgery at the Government Stanley Medical College & Hospital, Chennai – 600 001, during the tenure of his course in M.S. ENT from July-2014 to April- 2017 held under the regulation of the Tamilnadu Dr. M.G.R Medical University, Guindy, Chennai – 600 032. Prof Dr F Anthony Irudhayarajan, M.S., DLO Place : Chennai Professor & HOD, Date : .10.2016 Department of ENT & Head and Neck Surgery Government Stanley Medical College & Hospital, Chennai – 600 001. Dr. Isaac Christian Moses M.D, FICP, FACP Place: Chennai Dean, Date : .10.2016 Govt.Stanley Medical College, Chennai – 600 001. CERTIFICATE BY THE GUIDE This is to certify that this dissertation titled “AN OBSERVATIONAL STUDY COMPARING THE EFFECT OF SPHENOPALATINE ARTERY BLOCK ON BLEEDING IN ENDOSCOPIC SINUS SURGERY” is the original and bonafide work done by Dr NIGIL SREEDHARAN under my guidance and supervision at the Government Stanley Medical College & Hospital, Chennai – 600001, during the tenure of his course in M.S.
    [Show full text]
  • The Axial Skeleton – Hyoid Bone
    Marieb’s Human Anatomy and Physiology Ninth Edition Marieb Hoehn Chapter 7 The Axial and Appendicular Skeleton Lecture 14 1 Lecture Overview • Axial Skeleton – Hyoid bone – Bones of the orbit – Paranasal sinuses – Infantile skull – Vertebral column • Curves • Intervertebral disks –Ribs 2 The Axial Skeleton – Hyoid Bone Figure from: Saladin, Anatomy & Physiology, McGraw Hill, 2007 Suspended from the styloid processes of the temporal bones by ligaments and muscles The hyoid bone supports the larynx and is the site of attachment for the muscles of the larynx, pharynx, and tongue 3 1 Axial Skeleton – the Orbit See Fig. 7.6.1 in Martini and Fig. 7.20 in Figure: Martini, Right Hole’s Textbook Anatomy & Physiology, Optic canal – Optic nerve; Prentice Hall, 2001 opthalmic artery Superior orbital fissure – Oculomotor nerve, trochlear nerve, opthalmic branch of trigeminal nerve, abducens nerve; opthalmic vein F Inferior orbital fissure – Maxillary branch of trigeminal nerve E Z S L Infraorbital groove – M N Infraorbital nerve, maxillary branch of trigeminal nerve, M infraorbital artery Lacrimal sulcus – Lacrimal sac and tearduct *Be able to label a diagram of the orbit for lecture exam 4 Nasal Cavities and Sinuses Paranasal sinuses are air-filled, Figure: Martini, mucous membrane-lined Anatomy & Physiology, chambers connected to the nasal Prentice Hall, 2001 cavity. Superior wall of nasal cavities is formed by frontal, ethmoid, and sphenoid bones Lateral wall of nasal cavities formed by maxillary and lacrimal bones and the conchae Functions of conchae are to create swirls, turbulence, and eddies that: - direct particles against mucus - slow air movement so it can be warmed and humidified - direct air to superior nasal cavity to olfactory receptors 5 Axial Skeleton - Sinuses Sinuses are lined with mucus membranes.
    [Show full text]