A 3D Stereotactic Atlas of the Adult Human Skull Base Wieslaw L

Total Page:16

File Type:pdf, Size:1020Kb

A 3D Stereotactic Atlas of the Adult Human Skull Base Wieslaw L Nowinski and Thaung Brain Inf. (2018) 5:1 https://doi.org/10.1186/s40708-018-0082-1 Brain Informatics ORIGINAL RESEARCH Open Access A 3D stereotactic atlas of the adult human skull base Wieslaw L. Nowinski1,2* and Thant S. L. Thaung3 Abstract Background: The skull base region is anatomically complex and poses surgical challenges. Although many textbooks describe this region illustrated well with drawings, scans and photographs, a complete, 3D, electronic, interactive, real- istic, fully segmented and labeled, and stereotactic atlas of the skull base has not yet been built. Our goal is to create a 3D electronic atlas of the adult human skull base along with interactive tools for structure manipulation, exploration, and quantifcation. Methods: Multiple in vivo 3/7 T MRI and high-resolution CT scans of the same normal, male head specimen have been acquired. From the scans, by employing dedicated tools and modeling techniques, 3D digital virtual models of the skull, brain, cranial nerves, intra- and extracranial vasculature have earlier been constructed. Integrating these models and developing a browser with dedicated interaction, the skull base atlas has been built. Results: This is the frst, to our best knowledge, truly 3D atlas of the adult human skull base that has been created, which includes a fully parcellated and labeled brain, skull, cranial nerves, and intra- and extracranial vasculature. Conclusion: This atlas is a useful aid in understanding and teaching spatial relationships of the skull base anatomy, a helpful tool to generate teaching materials, and a component of any skull base surgical simulator. Keywords: Skull base, Electronic atlas, Digital models, Skull, Brain, Stereotactic atlas 1 Introduction carotid arteries, among others. Moreover, the skull base Te base of skull, or skull base, forms the foor of the provides access to hardly accessible intracranial lesions cranial cavity and separates the brain from other struc- located adjacent to the brainstem [1]. Terefore, knowl- tures of the face and neck. It is composed of fve bones: edge of the normal and variant anatomy of the skull base ethmoid, sphenoid, occipital, frontal, and paired tem- is essential for efective surgical treatment of disease in poral. Te skull base is subdivided into three distinct this region. regions called fossae: the anterior, middle, and posterior Te skull base has been comprehensively described in cranial fossae. Te base of skull not only separates the many textbooks [2–4], Gray’s anatomy [5–7], and print intracranial content and the facial compartment from the atlases [1, 8, 9]. Tis kind of material is illustrated with upper respiratory and digestive tracts, but it also enables drawings, tomographic scans and pictures of cadaveric the passage of vital neurovascular structures entering and specimens where the images are typically unlabeled. exiting the brain. Te skull base region is anatomically Te skull base region is also available in some electronic complex and poses surgical challenges for neurosurgeons atlases of the head and neck [10–14]. Tese applications and otolaryngologists because of proximity to important vary from medical illustrations to animations to lim- structures, such as the brain, cranial nerves, orbits, and ited three-dimensional (3D) models. Another approach enabling to study the skull base region is to generate 3D printed models [15]. Moreover, some applications *Correspondence: [email protected]; [email protected] 1 John Paull II Center for Virtual Anatomy and Surgical Simulation, Cardinal employ virtual reality systems for training and planning Stefan Wyszynski University, Woycickiego 1/3, Block 12, Room 1220, skull base surgery [15, 16]. 01‑938 Warsaw, Poland Full list of author information is available at the end of the article © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Nowinski and Thaung Brain Inf. (2018) 5:1 Page 2 of 9 Although many textbooks describe the skull base carefully processed to ft the blood vessels and cranial region well illustrated with drawings, scans, and photo- nerves that pass in and out of them. graphs of anatomical dissections as well as animations Te brain model was constructed from a 3 T and other electronic media have been developed for magnetization-prepared rapid gradient echo (MP- studying the skull base region, a complete, truly 3D, elec- RAGE) scan with a 224 300 320 resolution and a 3 × × tronic, interactive, realistic, fully segmented and labeled, 0.8 × 0.8 × 0.8 mm voxel size. Te brain was segmented decomposable, and stereotactic atlas of the skull base has by means of a dedicated contour editor, a 3D model con- not been created yet. Terefore, there is a great need for structed, and the cortex parcellated into lobes, gyri, and a 3D atlas covering the practical neuroanatomy of the sulci [18]. skull base region. Te goal of this work is to create a 3D In order to build a 3D model of the intracranial vascula- electronic atlas of the adult human skull base along with ture, multiple 3 and 7 T magnetic resonance angiography interactive tools for structure manipulation, exploration (MRA) scans were acquired, including 3D time of fight navigation, and quantifcation. (the main sequence with a 384 320 272 resolution 3 × × and a 0.52 × 0.52 × 0.5 mm voxel size), spoiled gradient 2 Materials and methods recovery, and susceptibility weighted imaging. Te ves- A 3D atlas of the adult human skull base region has been sels were extracted using a dedicated vascular editor [24] created from 3D digital virtual models of the skull, brain, and modeled as tubes as explained in [25]. Te vascular cranial nerves, intracranial vasculature, and extracranial editor provides functions for a rapid extraction of vessels vasculature. Tese models have been built earlier from on the orthogonal axial, coronal, and sagittal planes and in vivo multiple 3 and 7 Tesla (T) magnetic resonance constructing centerline and 3D polygonal tubular surface imaging (MRI) and high-resolution computed tomogra- models. phy (CT) scans of the same normal, male head specimen. Te extracranial vasculature was created in a simi- Te models have been incorporated into the 3D stereo- lar way from the same MRA scans as the intracranial tactic atlases of the skull [17], brain [18], cranial nerves vasculature and additionally from a 3D phase contrast [19], intracranial vasculature [20], and extracranial vas- MRA neck scan with a 352 352 261 matrix and a ×3 × culature [21]. 0.568182 × 0.568182 × 1.0 mm voxel size [21]. A process of anatomical model building was, generally, Te cranial nerves (CN) extracted initially by means of similar for each model, although varying in data acqui- the vascular editor from the MP-RAGE scan were also sition, modeling methods, building suitable tools, and modeled as tubes, and further extended and fne-tuned validation. Tis process included the following steps: as described in [19]. Te CN model contains all 12 pairs in vivo scan acquisition, scan segmentation, scan parcel- of CN I-XII (with over 600 segments) as listed in [19]. lation into individual structures, 3D surface modeling, In order to browse, explore, navigate, quantify, and 3D model simplifcation (decimation or compressing), 3D manipulate the skull base models, the atlas is equipped surface editing, 3D model color-coding, 3D object nam- with a user-friendly browser with dedicated interaction. ing based on Terminologia Anatomica [22], and model Browsing and exploration is facilitated by: (1) the assem- validation. Te anatomical models were placed in the bling (compositing) and disassembling (decompositing) Talairach stereotactic coordinate system [23], and a read- mechanism with an individual and group selection allow- out of distances and the stereotactic coordinates (pos- ing the investigator to build any region of interest or (sub) terior–anterior, inferior–superior, and right–left) were system and to present a local anatomy within its global provided. context; (2) virtual brain dissections in seven directions In order to build a 3D model of the skull, a high-resolu- to see through the brain; (3) real-time structure and scan tion spiral CT scan was acquired with 526 axial slices of manipulation; (4) 3D labeling of surface and sectional 0.75 mm thickness, 0.5 mm increment, 512 512 matrix MRI anatomy; (5) structure highlighting, (6) interaction 2 × and 0.46875 × 0.46875 mm pixel size. Te skull was orig- combined with animation; and (7) quantifcation with a inally parcellated into 29 individual bones, reconstructed readout of distances, vessel diameters, and the stereotac- in 3D, and validated as featured in [17]. Te skull was tic coordinates. also cut anterio-posteriorly with its superior part remov- able in order to enable exposure of the skull base region. 3 Results Te 3D skull base model comprises 5 bones: ethmoid, Te 3D, electronic and stereotactic atlas of the adult sphenoid, occipital, frontal, and paired temporal, as well human skull base has been designed and constructed as foramina and canals of the skull base and other bony and is illustrated in Figs. 1, 2, 3, 4, 5, 6, 7, 8, and 9. structures along with landmarks typical to this region. Te content of the atlas is listed in Appendix. Fig- Te size and shape of the foramina and canals were ure 1 shows the internal (superior view) and external Nowinski and Thaung Brain Inf. (2018) 5:1 Page 3 of 9 Fig. 2 Internal surface of the skull base labeled with: a anterior, middle and posterior fossa; b color-coded fve bones Fig.
Recommended publications
  • Subject Index
    431 Subject Index 3D CT AIDS 348 articular disc 16 – normal bone anatomy of the face alcohol 425 articular tubercle (eminence) 16 and skull 2 allergic sinusitis 270 artificial bone chips 194 alveolar process 186 astrocytes 371 alveolar recess of maxillary sinus 4 astrocytoma 371 A ameloblastoma asymmetric tongue 315 – desmoplastic type 47 atlantoaxial dislocation 365 abscess 119, 335, 339, 376 – desmoplastic, mandible 55, 56 atrophy 249 – and cellulitis in parotid region 337 – mandible 57 – with fatty replacement – epidural 390 – solid/multicystic type 47 of medial pterygoid muscle 313 – in cheek 141 – solid/multicystic – with fatty replacement of most – in masticator space – – mandible 48, 49, 50 of the lateral pterygoid muscle 313 with intracranial spread 310 – – maxilla 48 autopsy specimen 147 – in middle cranial fossa 310 – unicystic type 47 avascular necrosis 154 – in parotid gland 336 – unicystic, mandible 51, 53 – parapharyngeal 138, 139, 140 amorphous calcification 363 – parenchymal 390 aneurysmal bone cyst 62 B – subdural 390 angiofollicular hyperplasia 388 – submandibular 137 angle of mandible 321 bacterial – subperiosteal 390 ankyloses 164 – infection 335 – thyroid 377 ankylosing spondylitis 160, 363 – meningitis 303 absence of zygoma 251 ankylosis 164, 165, 263 – rhinosinusitis 267 absent anorexia 369 ballooning 418, 420, 421 – zygoma 250 antegonial notching 251 base of tongue 4, 322, 324 – zygomatic arch 263 anterior band of articular disc 16 basket retrieval 418 absolute alcohol 425 anterior belly of digastric muscle 4 benign
    [Show full text]
  • Septation of the Sphenoid Sinus and Its Clinical Significance
    1793 International Journal of Collaborative Research on Internal Medicine & Public Health Septation of the Sphenoid Sinus and its Clinical Significance Eldan Kapur 1* , Adnan Kapidžić 2, Amela Kulenović 1, Lana Sarajlić 2, Adis Šahinović 2, Maida Šahinović 3 1 Department of anatomy, Medical faculty, University of Sarajevo, Čekaluša 90, 71000 Sarajevo, Bosnia and Herzegovina 2 Clinic for otorhinolaryngology, Clinical centre University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina 3 Department of histology and embriology, Medical faculty, University of Sarajevo, Čekaluša 90, 71000 Sarajevo, Bosnia and Herzegovina * Corresponding Author: Eldan Kapur, MD, PhD Department of anatomy, Medical faculty, University of Sarajevo, Bosnia and Herzegovina Email: [email protected] Phone: 033 66 55 49; 033 22 64 78 (ext. 136) Abstract Introduction: Sphenoid sinus is located in the body of sphenoid, closed with a thin plate of bone tissue that separates it from the important structures such as the optic nerve, optic chiasm, cavernous sinus, pituitary gland, and internal carotid artery. It is divided by one or more vertical septa that are often asymmetric. Because of its location and the relationships with important neurovascular and glandular structures, sphenoid sinus represents a great diagnostic and therapeutic challenge. Aim: The aim of this study was to assess the septation of the sphenoid sinus and relationship between the number and position of septa and internal carotid artery in the adult BH population. Participants and Methods: A retrospective study of the CT analysis of the paranasal sinuses in 200 patients (104 male, 96 female) were performed using Siemens Somatom Art with the following parameters: 130 mAs: 120 kV, Slice: 3 mm.
    [Show full text]
  • Pocket Atlas of Human Anatomy 4Th Edition
    I Pocket Atlas of Human Anatomy 4th edition Feneis, Pocket Atlas of Human Anatomy © 2000 Thieme All rights reserved. Usage subject to terms and conditions of license. III Pocket Atlas of Human Anatomy Based on the International Nomenclature Heinz Feneis Wolfgang Dauber Professor Professor Formerly Institute of Anatomy Institute of Anatomy University of Tübingen University of Tübingen Tübingen, Germany Tübingen, Germany Fourth edition, fully revised 800 illustrations by Gerhard Spitzer Thieme Stuttgart · New York 2000 Feneis, Pocket Atlas of Human Anatomy © 2000 Thieme All rights reserved. Usage subject to terms and conditions of license. IV Library of Congress Cataloging-in-Publication Data is available from the publisher. 1st German edition 1967 2nd Japanese edition 1983 7th German edition 1993 2nd German edition 1970 1st Dutch edition 1984 2nd Dutch edition 1993 1st Italian edition 1970 2nd Swedish edition 1984 2nd Greek edition 1994 3rd German edition 1972 2nd English edition 1985 3rd English edition 1994 1st Polish edition 1973 2nd Polish edition 1986 3rd Spanish edition 1994 4th German edition 1974 1st French edition 1986 3rd Danish edition 1995 1st Spanish edition 1974 2nd Polish edition 1986 1st Russian edition 1996 1st Japanese edition 1974 6th German edition 1988 2nd Czech edition 1996 1st Portuguese edition 1976 2nd Italian edition 1989 3rd Swedish edition 1996 1st English edition 1976 2nd Spanish edition 1989 2nd Turkish edition 1997 1st Danish edition 1977 1st Turkish edition 1990 8th German edition 1998 1st Swedish edition 1979 1st Greek edition 1991 1st Indonesian edition 1998 1st Czech edition 1981 1st Chinese edition 1991 1st Basque edition 1998 5th German edition 1982 1st Icelandic edition 1992 3rd Dutch edtion 1999 2nd Danish edition 1983 3rd Polish edition 1992 4th Spanish edition 2000 This book is an authorized and revised translation of the 8th German edition published and copy- righted 1998 by Georg Thieme Verlag, Stuttgart, Germany.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • Assessment of Bone Channels Other Than the Nasopalatine Canal in the Anterior Maxilla Using Limited Cone Beam Computed Tomography
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) Surg Radiol Anat (2013) 35:783–790 DOI 10.1007/s00276-013-1110-8 ORIGINAL ARTICLE Assessment of bone channels other than the nasopalatine canal in the anterior maxilla using limited cone beam computed tomography Thomas von Arx • Scott Lozanoff • Pedram Sendi • Michael M. Bornstein Received: 16 January 2013 / Accepted: 12 March 2013 / Published online: 29 March 2013 Ó Springer-Verlag France 2013 Abstract 1.31 ± 0.26 mm (range 1.01–2.13 mm). Gender and age Purpose The anterior maxilla, sometimes also called did not significantly influence the diameter. Accessory premaxilla, is an area frequently requiring surgical inter- canals were found palatal to all anterior teeth, but most ventions. The objective of this observational study was to frequently palatal to the central incisors. In 56.7 %, the identify and assess accessory bone channels other than the accessory canals curved superolaterally and communicated nasopalatine canal in the anterior maxilla using limited with the ipsilateral alveolar extension of the canalis cone beam computed tomography (CBCT). sinuosus. Methods A total of 176 cases fulfilled the inclusion cri- Conclusions The study confirms the presence of bone teria comprising region of interest, quality of CBCT image, channels within the anterior maxilla other than the naso- and absence of pathologic lesions or retained teeth. Any palatine canal. More than half of these accessory bone bone canal with a minimum diameter of 1.00 mm other canals communicated with the canalis sinuosus.
    [Show full text]
  • The Neurocranium Forms the Cranial Cavity That Surrounds and Protects the Brain and Brainstem. the Neurocranium Is Formed from T
    Name: Wokoma Olobo Benebo Department: Medical Laboratory Science Course: ANA 208 Matric Number: 18/MHS06/055 Assignment 1. Discuss the differences between viscerocranium and neurocranium The neurocranium forms the cranial cavity that surrounds and protects the brain and brainstem. The neurocranium is formed from the occipital bone, two temporal bones, two parietal bones, the sphenoid, ethmoid and frontal bones; they are all joined together with sutures. The viscerocranium bones form the anterior and lower regions of the skull and include the mandible, which attaches through the only truly motile joint found in the skull. The facial skeleton contains the vomer, two nasal conchae, two nasal bones, two maxilla, the mandible, two palatine bones, two zygomatic bones, and two lacrimal bones. 2. Femoral triangle is a special area of the thigh, Discuss Answers: The femoral triangle is a wedge-shaped area formed by a depression between the muscles of the thigh. It is located on the medial aspect of the proximal thigh. It is the region of the passage of the main blood vessels between the pelvis and the lower limb, as well as a large nerve supplying the thigh. It has several Borders and Contents. BORDERS: a. Lateral Border b. Medial Border c. Superior Border CONTENTS: a. Femoral Artery b. Femoral Vein c. Femoral Nerve d. Femoral Canal e. Lymphatics 3. Describe all the muscles of the lower limb that participates during 1/metre social distancing at the period of Covid 19. Answers: a. Rectus Femoris b. Vastus Medialis c. Vastus Lateralis d. Sartorius e. Gracilis f. The Hamstrings g.The Iliopsoas in the hips h.
    [Show full text]
  • A New Classification of Zygomatic Fracture Featuring Zygomaticofrontal Suture: Injury Mechanism and a Guide to Treatment
    IBIMA Publishing Plastic Surgery: An International Journal http://www.ibimapublishing.com/journals/PSIJ/psij.html Vol. 2013 (2013), Article ID 383486, 6 pages DOI: 10.5171/2013.383486 Research Article A New Classification of Zygomatic Fracture Featuring Zygomaticofrontal Suture: Injury Mechanism and a Guide to Treatment Hisao Ogata, Yoshiaki Sakamoto and Kazuo Kishi Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Shinjuku-ward, Tokyo, Japan Received 21 November 2012; Accepted 10 December 2012; Published 26 January 2013 Academic Editor: Zubing Li ______________________________________________________________________________________________________________ Abstract The researchers establish a new classification system for zygomatic fractures based on computed tomography and mechanism of injury, which could be used to inform treatment options. Patients treated for isolated zygomatic fracture at the Keio University Hospital between 2004 and 2011 were recruited for this study. The cases were classified into 4 types based on the fracture pattern of the zygomaticofrontal suture and inferior orbital rim. In total, 113 patients aged 16 to 82 years (mean age (SD) = 39.8 (17.0) years), including 74 men and 39 women, were analyzed. Overall, 54 patients had shear fractures and 59 patients had greenstick type fractures. In both shear and greenstick fractures, the ratio of medial type fractures was significantly higher than that of lateral type fractures (p < 0.001). Furthermore, the number of shear type fractures in those <20 years old was lower than that in other age groups (p < 0.05). In conclusion, this classification is an epoch-making classification based on the mechanism of facial injury, and may be used to inform treatment options to achieve optimal biomechanical stability.
    [Show full text]
  • Comprehensive Examination of the University of Montana Forensic Case 141
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2005 Comprehensive examination of the University of Montana Forensic Case 141 Amanda Marie Mason The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Mason, Amanda Marie, "Comprehensive examination of the University of Montana Forensic Case 141" (2005). Graduate Student Theses, Dissertations, & Professional Papers. 9248. https://scholarworks.umt.edu/etd/9248 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD LIBRAJRY The University of Montana Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. **Please check "Yes" or "No" and provide signature** Yes, I grant permission No, I do not grant permission Author's Signature:(^ /^ "7 -^ Œ Æ v Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. 8/98 A Comprehensive Examination of The University of Montana Forensic Case 141 By Amanda Marie Mason B.A., the University of Evansville Presented in fulfillment of the requirements For the degree of Masters of Arts The University of Montana December 2005 Approved by: Committee Chairman Dean, Œ ^uate School I (if -()<r Date UMI Number: EP40050 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Incidence, Number and Topography of Wormian Bones in Greek Adult Dry Skulls K
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Via Medica Journals Folia Morphol. Vol. 78, No. 2, pp. 359–370 DOI: 10.5603/FM.a2018.0078 O R I G I N A L A R T I C L E Copyright © 2019 Via Medica ISSN 0015–5659 journals.viamedica.pl Incidence, number and topography of Wormian bones in Greek adult dry skulls K. Natsis1, M. Piagkou2, N. Lazaridis1, N. Anastasopoulos1, G. Nousios1, G. Piagkos2, M. Loukas3 1Department of Anatomy, Faculty of Health and Sciences, Medical School, Aristotle University of Thessaloniki, Greece 2Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Greece 3Department of Anatomical Sciences, School of Medicine, St. George’s University, Grenada, West Indies [Received: 19 January 2018; Accepted: 7 March 2018] Background: Wormian bones (WBs) are irregularly shaped bones formed from independent ossification centres found along cranial sutures and fontanelles. Their incidence varies among different populations and they constitute an anthropo- logical marker. Precise mechanism of formation is unknown and being under the control of genetic background and environmental factors. The aim of the current study is to investigate the incidence of WBs presence, number and topographical distribution according to gender and side in Greek adult dry skulls. Materials and methods: All sutures and fontanelles of 166 Greek adult dry skulls were examined for the presence, topography and number of WBs. One hundred and nineteen intact and 47 horizontally craniotomised skulls were examined for WBs presence on either side of the cranium, both exocranially and intracranially. Results: One hundred and twenty-four (74.7%) skulls had WBs.
    [Show full text]
  • Maxillary Incisive Canal Characteristics: a Radiographic Study Using Cone Beam Computerized Tomography
    Hindawi Radiology Research and Practice Volume 2019, Article ID 6151253, 5 pages https://doi.org/10.1155/2019/6151253 Research Article Maxillary Incisive Canal Characteristics: A Radiographic Study Using Cone Beam Computerized Tomography Penala Soumya ,1 Pradeep Koppolu ,2 Krishnajaneya Reddy Pathakota,3 and Vani Chappidi4 1 Department of Dentistry, Mahavir Institute of Medical Sciences, Vikarabad, Telangana, India 2Department of Preventive Dental Sciences, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia 3Department of Peroiodontics, Sri Sai College of Dental Surgery, Vikarabad, India 4Department of Oral Medicine and Radiology, Sri Sai College of Dental Surgery, Vikarabad, Telangana, India Correspondence should be addressed to Penala Soumya; [email protected] Received 1 November 2018; Accepted 5 March 2019; Published 27 March 2019 Academic Editor: Paul Sijens Copyright © 2019 Penala Soumya et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Te incisive canal located at the midline, posterior to the central incisor, is an important anatomic structure of this area to be considered while planning for immediate implant placement in maxillary central incisor region. Te purpose of the present study is to assess incisive canal characteristics using CBCT sections. Materials and Methods. CBCT scans of 79 systemically healthy patients, with intact maxillary incisors, were evaluated by two calibrated and independent examiners. Assessments included (1) mesiodistal diameter, (2) labiopalatal diameter, (3) length of the incisive canal, (4) shape of incisive canal, and (5) width of the bone anterior to the incisive foramen.
    [Show full text]
  • MBB: Head & Neck Anatomy
    MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina
    [Show full text]
  • Title Three-Dimensional Analysis of Incisive Canals in Human
    Three-dimensional analysis of incisive canals in Title human dentulous and edentulous maxillary bones Author(s) 福田, 真之 Journal , (): - URL http://hdl.handle.net/10130/3615 Right Posted at the Institutional Resources for Unique Collection and Academic Archives at Tokyo Dental College, Available from http://ir.tdc.ac.jp/ Three-dimensional analysis of incisive canals in human dentulous and edentulous maxillary bones Masayuki Fukuda Department of Anatomy, Tokyo Dental College 1 Abstract [Objectives] The purpose of this study was to reveal the structural properties that need to be considered in dental implant treatment, by investigating differences between dentulous and edentulous maxillae in three-dimensional (3D) microstructure of the incisive canals (IC) and their surrounding bone. [Materials and Methods] A total of 40 maxillary bones comprising 20 dentulous maxillae and 20 edentulous maxillae were imaged by micro-CT for 3D observation and measurement of the IC and alveolar bone in the anterior region of the IC. [Results] The Y-morphology canal was most frequently observed at 60% in dentulous maxilla and 55% in edentulous maxilla. There was a significant difference between dentulous and edentulous maxillae in IC diameter and volume, but no significant difference between the two in the major axis of the ICs. [Conclusions] The anatomic structure surrounding the IC has limited area for implant placement. Therefore, where esthetic and long-term maintenance requirements are taken into account, careful attention is needed when setting the placement position. Also, due to the resorption of bone, edentulous maxillae have a different IC morphology from dentulous maxillae, and therefore a cautious approach is required.
    [Show full text]