University Microfilms, Inc., Ann Arbor, Michigan TERPENOID NMR STUDIES: NMR PARAMETERS FOR

Total Page:16

File Type:pdf, Size:1020Kb

University Microfilms, Inc., Ann Arbor, Michigan TERPENOID NMR STUDIES: NMR PARAMETERS FOR TERPENOID NMR STUDIES: NMR PARAMETERS FOR BICYCLO(3.1.1)HEPTANES AND REVISED STRUCTURES FOR ARCHANGELIN AND PEREZONE Item Type text; Dissertation-Reproduction (electronic) Authors Thalacker, Victor Paul, 1941- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/09/2021 07:42:31 Link to Item http://hdl.handle.net/10150/290208 This dissertation has been microfilmed exactly as received THALACKER, Victor Paul, 1941- TERPENOID NMR STUDIES: NMR PARAMETERS FOR BICYCLO[3.1.1]HEPTANES AND REVISED STRUCTURES FOR ARCHANGELIN AND PEREZONE. University of Arizona, Ph.D., 1968 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan TERPENOID NMR STUDIES: NMR PARAMETERS FOR BICYCLo[3.1.1]HEPTANES AND REVISED STRUCTURES FOR ARCHANGELIN AND PEREZONE by Victor Paul Thalacker A Dissertation Submitted to the Faculty of the DEPARTMENT OF CHEMISTRY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 19 68 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by Victor Paul Thalacker entitled Terpenoid MR Studies': NMR Parameters for 6107010" [jS. 1. i] heptanes and Revised Structures for Archangelin and Perezone be accepted as fulfilling the dissertation requirement of the degree of Doctor of Philosophy 7C Dissertation Director Date After inspection of the dissertation, the following members of the Final Examination Committee concur in its approval and recommend its acceptance:* Aut.. 1.IW7 2 2 7. JU7 l?C7 *This approval and acceptance is contingent on the candidate's adequate performance and defense of this dissertation at the final oral examination. The inclusion of this sheet bound into the library copy of the dissertation is evidence of satisfactory performance at the final examination. STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to bor­ rowers under rules of the Library. Brief quotations from this dissertation are allowable without special permlssiont provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or re­ production of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the in­ terests of scholarship. In all other instances, however, permission must be obtained from the author. SlGNEDt ACKNOWLEDGMENTS The author wishes 4to express his gratitude to Dr. Robert B. Bates for his counsel and aid throughout the course of this research and to Dr. S. K. Paknikar for his contributions to the synthesis prob­ lem. Thanks are also given to Mr. H. S. Craig for writing the plotter program. Support for this research was provided by Public Health Service Grant No. GM-11721. iii TABLE OF CONTENTS } Page LIST OF ILLUSTRATIONS vi LIST OF TABLES viil ABSTRACT ix INTRODUCTION 1 Nuclear Magnetic Resonance Spectra of Terpenoids I Archangel in 4 PsoraLens 6 Peiezone ........ 7 DISCUSSION 9 NMR Spectral Parameters in Bicyclo^3.1.llheptanes: Ot-Pinene, Myrtenal, and Verbenone •••••• 9 Chemical Shifts 10 Coupling Constants 12 Terpenoid NMR Spectral Compilation ..... 17 Archangelin 17 Psoralens 25 Perezone 27 EXPERIMENTAL 28 General Methods ..•• 28 NMR Spectral Parameters in Bicyclo^3.1.lJheptanes 28 Terpenoid NMR Spectral Compilation 29 iv V TABLE OF CONTENTS--Continued Page Synthesis of Archangelln ......... 29 2,6-Dimethyl-5-heptene-2-ol (XVII) 29 Ot-Cyclogeraniolene (XVIII) ••••«•••• 30 Acetylcyclogeranioiene (XX) , . .. 31 Regeneration of XX From Its Semicarbazone 32 ^-Cyclolavandulic Acid (XXI) . .. 32 Methyl 0-Cyclolavandulate •••••••«••• ... 33 ^Cyclolavandulol (XV) 34 0-Cyclolavandulyl Acetate .. 34 P-Cyclolavandulyl Bromide . 35 Sodium Salt of Umbelliferone (XXIV) 35 {9-Cyclolavandulyl Umbelliferonyl Ether (XXV) 36 Acetic Acid Cleavage 37 Cleavage of Archangel in ••.••••••••••••• 37 Reduction of Psoralen Mixture 38 Reduction of Linalool-ff)f-Dimethylallyl Alcohol ••••»• 39 APPENDIX A . 40 APPENDIX B 45 APPENDIX Cl NMR AND IR SPECTRA 53 LIST OF REFERENCES 68 LIST OF ILLUSTRATIONS Page Figure I. Preparation of j£»cyclolavandulyl umbelliferonyl ether .. 21 2a. Verbenone (IX) experimental spectrum (100 Mc) 54 2b. Verbenone (IX) simulated spectrum (100 Mc) 54 3a. Myrtenal (X) experimental spectrum (100 Mc) 55 3b. Myrtenal (X) simulated spectrum (100 Mc) 55 4a. 01-Pinene (XI) experimental spectrum (100 Mc) 56 4b. 0(-Pinene (XI) simulated spectrum (100 Mc), system 1 (Insert) 56 4c. 01-Pinene (XI) simulated spectrum (100 Mc), system 2.. 56 5. Myrtenal (X) experimental and simulated spectra (60 Mc; upper negative, middle J^ positive) ..... 57 6. Commercial methylheptenone (XVI) 57 7. 2,6-Dimethyl-5-heptene-2-ol (XVII) . ••• 58 8. 0t+ ^-Cyclogeraniolene (XVIII + XIX) 58 9. Commercial methylheptenone (XVI} neat) 59 10. 2,6-Dimethyl-5-heptene-2-ol (XVII; neat) . .. 59 11. <X + ^-Cyclogeraniolene (XVIII + XIX; neat) 60 12. Acetylcyclogeraniolene (XX; neat) 60 13* Acetylcyclogeraniolene (XX) ...... « .. 61 14. ^-Cyclolavandulic acid (XXI) .. 61 15. ^-Cyclolavandulic acid (XXI; KBr) .. 62 16. f-Cyclolavandulol (XV; CC14) 62 vi vil LIST OF ILLUSTRATIONS—Continued Page Figure 17. ^Cyclolavandulol (XV) . .. 63 18. f?-Cyclolavandulyl bromide (XXIII) ............ 63 19. Natural archangelln (XXVI; 60 Mc) ••...••••... 64 20. Natural archangelln (XXVI; 100 Mc) ...... 64 21. ^-Cyclolavandulyl umbelliferonyl ether (XXV; 60 Mc) ... 65 22. ^-Cyclolavandulyl umbelliferonyl ether (XXV; 100 Mc) .. 65 23. Natural archangelln (XXVI; CCl^) .. ... 66 24. ^-Cyclolavandulyl umbelliferonyl ether (XXV; CCl^) ... 66 25. Compound B 67 26. Perezone (VIII) 67 LIST OF TABLES Page Table 1. NMR ABSORPTIONS REPORTED FOR ARCHANGELIN 6 2. CHEMICAL SHIFTS (T) AT 100 Mc 11 3. COUPLING CONSTANTS IN CPS 14 4A. RESULTS OF ITERATION ON VERBENONE (IX, 60 Mc) 40 5A. ERROR VECTORS AND PROBABLE ERRORS 42 6A. TABLE OF ORDERED LINES 43 7B. LIST OF TERPENOIDS Cj-C^ 45 8B. LIST OF TERPENOIDS C15»C19 47 9B. LIST OF TERPENOIDS C. -C. 50 200 40n 10B. TERPENOIDS OVER C^ AND STEROIDS 51 vlii ABSTRACT NMR spectral parameters were derived, by computer analysis, for three bicyclo^3.1.ljheptane derivatives. As expected, the coupling constants vary little among the three compounds. A 4-bond coupling con­ stant of +5.9 to +6.5 cps was observed between bridgehead protons, and two 5-bond couplings of 1.8 cps were found in cf-pinene. The structure of archangelin, a natural furocoumarin, was re­ vised by NMR analysis and synthesis of the alkyl portion, y?-cyclolav- andulol. A new ether, ^-cyclolavandulyl umbelliferonyl ether, was synthesized and its NMR spectrum compared with that of archangelin. This is the first reported occurrence of the ^-cyclolavandulyl carbon skeleton in nature. A furocoumarin recently isolated from Hercleum candicans was shown to be a mixture of the known compounds, imperatorin and 8-geran- oxypsoralen, by stereospecific Birch reduction and NMR analysis* The structure of perezone, a natural terpenoid, was revised by inspection of its NMR spectrum. ix INTRODUCTION Nuclear Magnetic Resonance Spectra of Terpenoids In addition to charge and mass, which all nuclei have, some iso­ topes possess spin or angular momentum. Since a spinning charge gener­ ates a magnetic field, there is associated with this angular momentum a magnetic moment (fJI). Nuclei which possess spin when placed in a mag­ netic field will precess about the direction of the field. An increase in the field strength causes the nuclei to precess faster. By applying a second, much weaker, magnetic field at right angles to the first magnetic field and causing this second field to ro­ tate at exactly the precession frequency, the nuclei can be caused to align themselves with the strong magnetic.field. The frequency at which the nuclei flip can be observed by a receiver coil. Interactions of the electrons and nuclei in a molecule modify .the magnetic environment in which various nuclei are found and this leads to the observation of chemical shifts and spin coupling. The chemical shift is a result of the induced orbital motion of the elec­ trons when the molecule is placed in an external field and is propor­ 1 tional to the applied field, Hq. Ramsey' first developed a theory for the chemical shift. Nuclear spin-spin coupling, which causes the fine structure, is independent of the external field and arises from magnetic fields within 2 the molecule itself. Ramsey and Purcell developed the first successful theory to explain these interactions. 1 2 Resolution sufficient to distinguish chemical shifts of non- equivalent nuclei in the same molecule is referred to as "high resolu­ tion" nuclear magnetic resonance (NMR) spectra. By observing such spectra in liquids, where the direct magnetic dipole Interaction is averaged to zero by the rapid motion of the molecules, sufficient reso­ lution may be obtained to observe the fine structure due to nuclear spin-spin interaction. The chemical shift and spin-spin coupling parameters can com­ pletely describe high
Recommended publications
  • Picrotoxin-Like Channel Blockers of GABAA Receptors
    COMMENTARY Picrotoxin-like channel blockers of GABAA receptors Richard W. Olsen* Department of Molecular and Medical Pharmacology, Geffen School of Medicine, University of California, Los Angeles, CA 90095-1735 icrotoxin (PTX) is the prototypic vous system. Instead of an acetylcholine antagonist of GABAA receptors (ACh) target, the cage convulsants are (GABARs), the primary media- noncompetitive GABAR antagonists act- tors of inhibitory neurotransmis- ing at the PTX site: they inhibit GABAR Psion (rapid and tonic) in the nervous currents and synapses in mammalian neu- system. Picrotoxinin (Fig. 1A), the active rons and inhibit [3H]dihydropicrotoxinin ingredient in this plant convulsant, struc- binding to GABAR sites in brain mem- turally does not resemble GABA, a sim- branes (7, 9). A potent example, t-butyl ple, small amino acid, but it is a polycylic bicyclophosphorothionate, is a major re- compound with no nitrogen atom. The search tool used to assay GABARs by compound somehow prevents ion flow radio-ligand binding (10). through the chloride channel activated by This drug target appears to be the site GABA in the GABAR, a member of the of action of the experimental convulsant cys-loop, ligand-gated ion channel super- pentylenetetrazol (1, 4) and numerous family. Unlike the competitive GABAR polychlorinated hydrocarbon insecticides, antagonist bicuculline, PTX is clearly a including dieldrin, lindane, and fipronil, noncompetitive antagonist (NCA), acting compounds that have been applied in not at the GABA recognition site but per- huge amounts to the environment with haps within the ion channel. Thus PTX major agricultural economic impact (2). ͞ appears to be an excellent example of al- Some of the other potent toxicants insec- losteric modulation, which is extremely ticides were also radiolabeled and used to important in protein function in general characterize receptor action, allowing and especially for GABAR (1).
    [Show full text]
  • Qrno. 1 2 3 4 5 6 7 1 CP 2903 77 100 0 Cfcl3
    QRNo. General description of Type of Tariff line code(s) affected, based on Detailed Product Description WTO Justification (e.g. National legal basis and entry into Administration, modification of previously the restriction restriction HS(2012) Article XX(g) of the GATT, etc.) force (i.e. Law, regulation or notified measures, and other comments (Symbol in and Grounds for Restriction, administrative decision) Annex 2 of e.g., Other International the Decision) Commitments (e.g. Montreal Protocol, CITES, etc) 12 3 4 5 6 7 1 Prohibition to CP 2903 77 100 0 CFCl3 (CFC-11) Trichlorofluoromethane Article XX(h) GATT Board of Eurasian Economic Import/export of these ozone destroying import/export ozone CP-X Commission substances from/to the customs territory of the destroying substances 2903 77 200 0 CF2Cl2 (CFC-12) Dichlorodifluoromethane Article 46 of the EAEU Treaty DECISION on August 16, 2012 N Eurasian Economic Union is permitted only in (excluding goods in dated 29 may 2014 and paragraphs 134 the following cases: transit) (all EAEU 2903 77 300 0 C2F3Cl3 (CFC-113) 1,1,2- 4 and 37 of the Protocol on non- On legal acts in the field of non- _to be used solely as a raw material for the countries) Trichlorotrifluoroethane tariff regulation measures against tariff regulation (as last amended at 2 production of other chemicals; third countries Annex No. 7 to the June 2016) EAEU of 29 May 2014 Annex 1 to the Decision N 134 dated 16 August 2012 Unit list of goods subject to prohibitions or restrictions on import or export by countries- members of the
    [Show full text]
  • Fluorides in the Environment
    Color profile: Disabled Composite 150 lpi at 45 degrees Fluorides in the Environment A4662 - Weinstein - Vouchers - VP10 #K.prn 1 Z:\Customer\CABI\A4642 - Weinstein\A4662 - Weinstein - Vouchers - VP10 #K.vp Monday, November 10, 2003 3:35:50 PM Color profile: Disabled Composite 150 lpi at 45 degrees A4662 - Weinstein - Vouchers - VP10 #K.prn 2 Z:\Customer\CABI\A4642 - Weinstein\A4662 - Weinstein - Vouchers - VP10 #K.vp Monday, November 10, 2003 3:35:50 PM Color profile: Disabled Composite 150 lpi at 45 degrees Fluorides in the Environment Effects on Plants and Animals Professor L.H. Weinstein Boyce Thompson Institute for Plant Research Tower Road Ithaca NY 14853 USA and Professor A. Davison School of Biology Ridley Building University of Newcastle Newcastle upon Tyne NE1 7RU UK CABI Publishing A4662 - Weinstein - Vouchers - VP10 #K.prn 3 Z:\Customer\CABI\A4642 - Weinstein\A4662 - Weinstein - Vouchers - VP10 #K.vp Monday, November 10, 2003 3:35:51 PM Color profile: Disabled Composite 150 lpi at 45 degrees CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 875 Massachusetts Avenue Wallingford 7th Floor Oxon OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Web site: www.cabi-publishing.org ©L.H. Weinstein and A. Davison 2004. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners.
    [Show full text]
  • CAS Number Index
    2334 CAS Number Index CAS # Page Name CAS # Page Name CAS # Page Name 50-00-0 905 Formaldehyde 56-81-5 967 Glycerol 61-90-5 1135 Leucine 50-02-2 596 Dexamethasone 56-85-9 963 Glutamine 62-44-2 1640 Phenacetin 50-06-6 1654 Phenobarbital 57-00-1 514 Creatine 62-46-4 1166 α-Lipoic acid 50-11-3 1288 Metharbital 57-22-7 2229 Vincristine 62-53-3 131 Aniline 50-12-4 1245 Mephenytoin 57-24-9 1950 Strychnine 62-73-7 626 Dichlorvos 50-23-7 1017 Hydrocortisone 57-27-2 1428 Morphine 63-05-8 127 Androstenedione 50-24-8 1739 Prednisolone 57-41-0 1672 Phenytoin 63-25-2 335 Carbaryl 50-29-3 569 DDT 57-42-1 1239 Meperidine 63-75-2 142 Arecoline 50-33-9 1666 Phenylbutazone 57-43-2 108 Amobarbital 64-04-0 1648 Phenethylamine 50-34-0 1770 Propantheline bromide 57-44-3 191 Barbital 64-13-1 1308 p-Methoxyamphetamine 50-35-1 2054 Thalidomide 57-47-6 1683 Physostigmine 64-17-5 784 Ethanol 50-36-2 497 Cocaine 57-53-4 1249 Meprobamate 64-18-6 909 Formic acid 50-37-3 1197 Lysergic acid diethylamide 57-55-6 1782 Propylene glycol 64-77-7 2104 Tolbutamide 50-44-2 1253 6-Mercaptopurine 57-66-9 1751 Probenecid 64-86-8 506 Colchicine 50-47-5 589 Desipramine 57-74-9 398 Chlordane 65-23-6 1802 Pyridoxine 50-48-6 103 Amitriptyline 57-92-1 1947 Streptomycin 65-29-2 931 Gallamine 50-49-7 1053 Imipramine 57-94-3 2179 Tubocurarine chloride 65-45-2 1888 Salicylamide 50-52-2 2071 Thioridazine 57-96-5 1966 Sulfinpyrazone 65-49-6 98 p-Aminosalicylic acid 50-53-3 426 Chlorpromazine 58-00-4 138 Apomorphine 66-76-2 632 Dicumarol 50-55-5 1841 Reserpine 58-05-9 1136 Leucovorin 66-79-5
    [Show full text]
  • Altschul2018.Pdf (3.396Mb)
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Chimpanzee personality and its relations with cognition and health: a comparative perspective Drew Altschul Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Psychology to The University of Edinburgh July 2017 Declaration I hereby declare that this thesis is of my own composition, and that it contains no material previously submitted for the award of any other degree. The work reported in this thesis has been executed by myself, except where due acknowledgement is made in the text. Signed, Drew Altschul i Acknowledgements This research was funded in part by The University of Edinburgh’s Principal Career Development Scholarships, the Great Britain Sasakawa Foundation, and the Department of Psychology and many research support grants. There are many people to whom I owe thanks, for the completion of this thesis would not have been possible without them.
    [Show full text]
  • CHIMPANZEE (Pan Troglodytes ) CARE MANUAL
    CHIMPANZEE (Pan troglodytes) CARE MANUAL CREATED BY THE AZA Chimpanzee Species Survival Plan® IN ASSOCIATION WITH THE AZA Ape Taxon Advisory Group Chimpanzee (Pan Troglodytes) Care Manual Chimpanzee (Pan troglodytes) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Ape TAG 2010. Chimpanzee (Pan troglodytes) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: December 8, 2009 Authors and Significant Contributors: Steve Ross, Ph.D. Lincoln Park Zoo Jennie McNary, Los Angeles Zoo See Appendix F for a full list of contributors and reviewers from the AZA Chimpanzee SSP. Reviewers: Linda Brent, Ph.D., Chimp Haven, Inc. Maria Finnigan, Perth Zoo, ASMP Chimpanzee Coordinator Steve Ross, Ph.D., Lincoln Park Zoo Candice Dorsey, Ph.D., AZA Director, Animal Conservation Debborah Colbert, Ph.D., AZA VP, Animal Conservation Paul Boyle, Ph.D., AZA Sr. VP Conservation and Education See Appendix F for a full list of contributors and reviewers from the AZA Chimpanzee SSP. Chimpanzee Care Manual Project Consultant: Joseph C.E. Barber, Ph.D. AZA Staff Editors: Candice Dorsey, Ph.D., Director, Animal Conservation Cover Photo Credits: Steve Ross Disclaimer: This manual presents a compilation of knowledge provided by recognized animal experts based on the current science, practice, and technology of animal management. The manual assembles basic requirements, best practices, and animal care recommendations to maximize capacity for excellence in animal care and welfare. The manual should be considered a work in progress, since practices continue to evolve through advances in scientific knowledge. The use of information within this manual should be in accordance with all local, state, and federal laws and regulations concerning the care of animals.
    [Show full text]
  • Human Pharmacokinetic Study of Tutin in Honey; a Plant-Derived Neurotoxin ⇑ Barry A
    Food and Chemical Toxicology 72 (2014) 234–241 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox Human pharmacokinetic study of tutin in honey; a plant-derived neurotoxin ⇑ Barry A. Fields a, , John Reeve b, Andrew Bartholomaeus c,d, Utz Mueller a a Food Standards Australia New Zealand, 55 Blackall St., Barton, ACT 2600, Australia b New Zealand Ministry for Primary Industries, Pastoral House, 25 The Terrace, Wellington, New Zealand c Therapeutics Research Centre, School of Medicine, University of Queensland, Queensland, Australia d School of Pharmacy, Faculty of Health, University of Canberra, Australia article info abstract Article history: Over the last 150 years a number of people in New Zealand have been incapacitated, hospitalised, or died Received 26 March 2014 from eating honey contaminated with tutin, a plant-derived neurotoxin. A feature of the most recent poi- Accepted 16 July 2014 soning incident in 2008 was the large variability in the onset time of clinical signs and symptoms of tox- Available online 30 July 2014 icity (0.5–17 h). To investigate the basis of this variability a pharmacokinetic study was undertaken in which 6 healthy males received a single oral dose of tutin-containing honey giving a tutin dose of Keywords: 1.8 lg/kg body weight. The serum concentration–time curve for all volunteers exhibited two discrete Tutin peaks with the second and higher level occurring at approximately 15 h post-dose. Two subjects reported Neurotoxin mild, transient headache at a time post-dose corresponding to maximum tutin concentrations. There Glycosides Honey were no other signs or symptoms typical of tutin intoxication such as nausea, vomiting, dizziness or sei- Coriaria arborea zures.
    [Show full text]
  • Accepted Version
    Article Metabolomics identifies a biomarker revealing in vivo loss of functional ß-cell mass before diabetes onset LI, Lingzi, et al. Abstract Identification of pre-diabetic individuals with decreased functional ß-cell mass is essential for the prevention of diabetes. However, in vivo detection of early asymptomatic ß-cell defect remains unsuccessful. Metabolomics emerged as a powerful tool in providing read-outs of early disease states before clinical manifestation. We aimed at identifying novel plasma biomarkers for loss of functional ß-cell mass in the asymptomatic pre-diabetic stage. Non-targeted and targeted metabolomics were applied on both lean ß-Phb2-/- mice (ß-cell-specific prohibitin-2 knockout) and obese db/db mice (leptin receptor mutant), two distinct mouse models requiring neither chemical nor diet treatments to induce spontaneous decline of functional ß-cell mass promoting progressive diabetes development. Non-targeted metabolomics on ß-Phb2-/- mice identified 48 and 82 significantly affected metabolites in liver and plasma, respectively. Machine learning analysis pointed to deoxyhexose sugars consistently reduced at the asymptomatic pre-diabetic stage, including in db/db mice, showing strong correlation with the gradual loss of ß-cells. [...] Reference LI, Lingzi, et al. Metabolomics identifies a biomarker revealing in vivo loss of functional ß-cell mass before diabetes onset. Diabetes, 2019, vol. 68, no. 12, p. 2272-2286 PMID : 31537525 DOI : 10.2337/db19-0131 Available at: http://archive-ouverte.unige.ch/unige:126176
    [Show full text]
  • Biology, Medicine, and Surgery of Elephants
    BIOLOGY, MEDICINE, AND SURGERY OF ELEPHANTS BIOLOGY, MEDICINE, AND SURGERY OF ELEPHANTS Murray E. Fowler Susan K. Mikota Murray E. Fowler is the editor and author of the bestseller Zoo Authorization to photocopy items for internal or personal use, or and Wild Animal Medicine, Fifth Edition (Saunders). He has written the internal or personal use of specific clients, is granted by Medicine and Surgery of South American Camelids; Restraint and Blackwell Publishing, provided that the base fee is paid directly to Handling of Wild and Domestic Animals and Biology; and Medicine the Copyright Clearance Center, 222 Rosewood Drive, Danvers, and Surgery of South American Wild Animals for Blackwell. He is cur- MA 01923. For those organizations that have been granted a pho- rently Professor Emeritus of Zoological Medicine, University of tocopy license by CCC, a separate system of payments has been California-Davis. For the past four years he has been a part-time arranged. The fee codes for users of the Transactional Reporting employee of Ringling Brothers, Barnum and Bailey’s Circus. Service are ISBN-13: 978-0-8138-0676-1; ISBN-10: 0-8138-0676- 3/2006 $.10. Susan K. Mikota is a co-founder of Elephant Care International and the Director of Veterinary Programs and Research. She is an First edition, 2006 author of Medical Management of the Elephants and numerous arti- cles and book chapters on elephant healthcare and conservation. Library of Congress Cataloging-in-Publication Data © 2006 Blackwell Publishing Elephant biology, medicine, and surgery / edited by Murray E. All rights reserved Fowler, Susan K. Mikota.—1st ed.
    [Show full text]
  • Assessment of Neuronal Activity Using Microelectrode Array
    In vitro Toxicology eCiphr®Neuro: Assessment of Neuronal Activity Using Microelectrode Array Background Information Protocol • The eCiphr®Neuro assay uses primary Cell Type cultures of rat cortical neurons. Primary rat cortical neurons • Cyprotex’s neuronal assay uses Analysis Platform high throughput microelectrode Maestro 48-well MEA system (Axion BioSystems) array (MEA) technology to monitor electrophysiological activity. Test Article Concentrations 4 concentrations in triplicate (dependent on customer requirements) • Neurons grown on microelectrode arrays recapitulate many features of Quality Controls neurons in vivo, including spontaneous Negative control: 0.2% DMSO (vehicle) activity (spiking and bursting), plasticity, ‘The unique capabilities of Positive controls: picrotoxin and domoic organisation and responsiveness to a MEAs to provide functional acid (at single concentration) wide range of neurotransmitters and measurements of network pharmacological agonists/antagonists1. activity, including spontaneous Data Delivery Firing rate (spikes/second) activity, evoked activity, and • This technology provides a unique Burst rate (spikes/second) responses to pharmacological in vitro system for preclinical drug Number of spikes in burst challenges, therefore offers an discovery, neurotoxicity assessment and Percent of isolated spikes advantage over other potential disease modelling. Coefficient of variation (CV) of the inter-spike screening approaches that rely intervals (ISI) on biochemical or structural Burst duration endpoints.’ Normalised IQR (inter-quartile range) burst duration 1Robinette BL et al., (2011) Front Interburst interval Neuroeng 4; 1-9 Mean ISI-distance (measure of synchrony) Normalised Median Absolute Deviation (MAD) burst spike number Median ISI/Mean ISI To find out more [email protected] In vitro networks of neurons are spontaneously active and express patterns of electrical activity as part of their normal function2.
    [Show full text]
  • Modeling the Health of Free-Living Illinois Herptiles: an Integrated Approach Incorporating Environmental, Physiologic, Spatiotemporal, and Pathogen Factors
    MODELING THE HEALTH OF FREE-LIVING ILLINOIS HERPTILES: AN INTEGRATED APPROACH INCORPORATING ENVIRONMENTAL, PHYSIOLOGIC, SPATIOTEMPORAL, AND PATHOGEN FACTORS BY LAURA ADAMOVICZ DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in VMS-Comparative Biosciences in the Graduate College of the University of Illinois at Urbana-Champaign, 2019 Urbana, Illinois Doctoral Committee: Assistant Professor Matthew Allender, Chair and Research Director Professor CheMyong Jay Ko Associate Professor Megan Mahoney Assistant Professor Rebecca Smith Professor Mark Mitchell, Louisiana State University Sharon Deem, Saint Louis Zoo Institute for Conservation Medicine ABSTRACT Human expansion has contributed to an unprecedented global environmental crisis and significantly impacted the stability of many wildlife populations. The health of wildlife populations influences their ability to recover from a complex array of anthropogenic and natural stressors. Promotion of positive health status may improve conservation outcomes in wild animals. However, wildlife health status is dynamic and determined by a variety of factors. Studying such a complex system requires a comprehensive approach with careful consideration of multiple determinants simultaneously. The purpose of this dissertation is to holistically characterize health in three herptile species of conservation concern in Illinois by combining traditional veterinary health assessments with environmental and spatio-temporal data within a modeling framework. The main objective is to identify the best means of assessing wellness in wild herptiles to inform management strategies which support robust population health. Health was investigated in three species of conservation concern in Illinois: the eastern box turtle (Terrapene carolina carolina), the ornate box turtle (Terrapene ornata ornata), and the silvery salamander (Ambystoma platineum) over the course of three years using a combination of physical examination, qPCR pathogen screening, and clinical pathology (box turtles).
    [Show full text]
  • P1029 Tutin Risk Assessment
    Supporting document 1 Risk assessment – Proposal P1029 Maximum Level for Tutin in Honey Executive summary Tutin is a plant-derived neurotoxin which is sometimes detected in New Zealand honey. Tutin contamination of honey occurs when bees gather honeydew from an insect that feeds on sap of the shrub Coriaria arborea (“tutu”). Consumption of tutu honeydew honey can result in serious acute adverse health effects. Temporary maximum levels (MLs) for tutin in honey and comb honey of 2 mg/kg and 0.1 mg/kg, respectively, currently exist in the Australia New Zealand Food Standards Code (Standard 1.4.1 – Contaminants and Natural Toxicants). For acute neurotoxins, such as tutin, severe symptoms of poisoning (e.g. tonic-clonic convulsions) usually correspond to the time taken to achieve their maximal concentration in serum (typically less than 3-4 hours after ingestion). However, the large variability in the onset time of clinical signs and symptoms of toxicity (0.5 to 17 h with a median of 7.5 h) following tutu honeydew honey ingestion in the 2008 human poisoning incident was difficult to explain. To investigate this variability, which was considered to have potential implications for the existing MLs for tutin, a human pharmacokinetic study was conducted in which 6 healthy adult males each received a single oral dose of tutu honeydew honey. The tutin dose received by the volunteers was equivalent to that received by a high consumer of honey (97.5th percentile) that contains tutin at the ML of 2 mg/kg. The serum tutin concentration profile for all volunteers exhibited two discrete peaks, with the first at 0.5 to 1.5 hours post-dose, and the second and higher serum level occurring at 8 to 16 hours post-dose.
    [Show full text]