In vitro Toxicology eCiphr®Neuro: Assessment of Neuronal Activity Using Microelectrode Array Background Information Protocol • The eCiphr®Neuro assay uses primary Cell Type cultures of rat cortical neurons. Primary rat cortical neurons • Cyprotex’s neuronal assay uses Analysis Platform high throughput microelectrode Maestro 48-well MEA system (Axion BioSystems) array (MEA) technology to monitor electrophysiological activity. Test Article Concentrations 4 concentrations in triplicate (dependent on customer requirements) • Neurons grown on microelectrode arrays recapitulate many features of Quality Controls neurons in vivo, including spontaneous Negative control: 0.2% DMSO (vehicle) activity (spiking and bursting), plasticity, ‘The unique capabilities of Positive controls: picrotoxin and domoic organisation and responsiveness to a MEAs to provide functional acid (at single concentration) wide range of neurotransmitters and measurements of network pharmacological agonists/antagonists1. activity, including spontaneous Data Delivery Firing rate (spikes/second) activity, evoked activity, and • This technology provides a unique Burst rate (spikes/second) responses to pharmacological in vitro system for preclinical drug Number of spikes in burst challenges, therefore offers an discovery, neurotoxicity assessment and Percent of isolated spikes advantage over other potential disease modelling. Coefficient of variation (CV) of the inter-spike screening approaches that rely intervals (ISI) on biochemical or structural Burst duration endpoints.’ Normalised IQR (inter-quartile range) burst duration 1Robinette BL et al., (2011) Front Interburst interval Neuroeng 4; 1-9 Mean ISI-distance (measure of synchrony) Normalised Median Absolute Deviation (MAD) burst spike number Median ISI/Mean ISI To find out more
[email protected] In vitro networks of neurons are spontaneously active and express patterns of electrical activity as part of their normal function2.