Modeling the Health of Free-Living Illinois Herptiles: an Integrated Approach Incorporating Environmental, Physiologic, Spatiotemporal, and Pathogen Factors

Total Page:16

File Type:pdf, Size:1020Kb

Modeling the Health of Free-Living Illinois Herptiles: an Integrated Approach Incorporating Environmental, Physiologic, Spatiotemporal, and Pathogen Factors MODELING THE HEALTH OF FREE-LIVING ILLINOIS HERPTILES: AN INTEGRATED APPROACH INCORPORATING ENVIRONMENTAL, PHYSIOLOGIC, SPATIOTEMPORAL, AND PATHOGEN FACTORS BY LAURA ADAMOVICZ DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in VMS-Comparative Biosciences in the Graduate College of the University of Illinois at Urbana-Champaign, 2019 Urbana, Illinois Doctoral Committee: Assistant Professor Matthew Allender, Chair and Research Director Professor CheMyong Jay Ko Associate Professor Megan Mahoney Assistant Professor Rebecca Smith Professor Mark Mitchell, Louisiana State University Sharon Deem, Saint Louis Zoo Institute for Conservation Medicine ABSTRACT Human expansion has contributed to an unprecedented global environmental crisis and significantly impacted the stability of many wildlife populations. The health of wildlife populations influences their ability to recover from a complex array of anthropogenic and natural stressors. Promotion of positive health status may improve conservation outcomes in wild animals. However, wildlife health status is dynamic and determined by a variety of factors. Studying such a complex system requires a comprehensive approach with careful consideration of multiple determinants simultaneously. The purpose of this dissertation is to holistically characterize health in three herptile species of conservation concern in Illinois by combining traditional veterinary health assessments with environmental and spatio-temporal data within a modeling framework. The main objective is to identify the best means of assessing wellness in wild herptiles to inform management strategies which support robust population health. Health was investigated in three species of conservation concern in Illinois: the eastern box turtle (Terrapene carolina carolina), the ornate box turtle (Terrapene ornata ornata), and the silvery salamander (Ambystoma platineum) over the course of three years using a combination of physical examination, qPCR pathogen screening, and clinical pathology (box turtles). Mortality events were characterized as they occurred and spatiotemporal data were used to screen for locations and times associated with pathogen presence or poor health outcomes. Diagnostic tests including hematology, plasma biochemistry, protein electrophoresis, venous blood gas, hemoglobin-binding protein, and erythrocyte sedimentation rate were investigated for clinical utility in box turtles, and a novel qPCR assay for detection of Mycoplasma sp. in box turtles was developed and validated. Health models were generated for each study species and used to identify drivers of poor health, determine the most clinically useful diagnostic tests for ii each species, and generate management recommendations supporting good individual and population health. Health assessment in silvery salamanders (N = 770) identified a parasite (Amphibiocystidium sp.) that has never been previously detected in the Midwest and characterized significant larval mortality due to ranavirus (FV3). Poor health was best predicted by the additive effects of year, location, FV3 detection, and the presence of fresh traumatic injuries. FV3 is considered to represent a threat to silvery salamanders in Illinois, and recommendations for future research include characterization of silvery salamander biology and ecology, continued health monitoring to identify emerging threats, and focused study on ranavirus to identify potential management interventions. Ornate box turtle (N = 168) health assessment revealed a high prevalence of shell lesions associated with predator trauma (51-59% annually). There was no association between pathogen detection (Terrapene herpesvirus 1, Terrapene adenovirus), clinical signs of illness, and clinical pathology alterations. Poor health was best predicted by the presence of active or inactive shell lesions and deviations from population median values for total leukocyte count, eosinophils, basophils, and heterophil:lymphocyte (H:L) ratios. Population viability analysis revealed that annual removal of two adult female turtles above background mortality rates dramatically increased the probability of population extinction within the next century (54-97%). Continued health assessment (including hematology), mesopredator control, and disease screening of newly introduced turtles to prevent novel pathogen ingress was recommended to support individual and population wellness for ornate box turtles. Eastern box turtle (N = 507) health assessment uncovered mortality events due to FV3 and a suspected necrotizing soft tissue infection. Detection of other pathogens (Terrapene adenovirus, Terrapene herpesvirus 1, Mycoplasma sp., Salmonella iii typhimurium) was not related to health status. Poor health was best predicted by the presence of active shell lesions, clinical signs of upper respiratory disease (URD), and deviations from population median values for total leukocyte count and H:L. PVA revealed that annual removal of 1 - 5 adult female turtles above background mortality rates dramatically increased the probability of population extinction within the next century for all populations, but the effects were especially pronounced in small populations from fragmented and degraded habitats. FV3 is considered a conservation threat for eastern box turtles, especially in smaller populations like the one at Kickapoo State Park which experience recurrent ranavirus outbreaks in both amphibians and turtles. Forest management to promote habitat quality, consideration of box turtle activity patterns when planning burn schedules, road signage to decrease vehicular strikes, additional research into ranavirus dynamics in natural systems, and continued health assessment to monitor trends and identify new threats were recommended to support individual and population wellness. This dissertation demonstrates the feasibility of modeling health in wildlife and illustrates its use for determining drivers of poor health, identifying clinically useful diagnostic tests, and generating management recommendations which support overall individual and population wellness, improve conservation outcomes, and promote herptile and ecosystem health. iv ACKNOWLEDGEMENTS This dissertation has been made possible by many people, and I feel that I should start at the beginning in acknowledging them. First, I would like to thank my parents for encouraging my love of animals – especially creepy-crawly insects, reptiles, and amphibians, which are not the typical favorite taxa of young girls. I also thank Maryanne and Richard Hahn for taking me under their wing as a teenager at the Catoctin Zoo and instilling my passion for conservation, especially of herptile species. I would also not be here today without some excellent veterinary mentors that have helped shape my professional trajectory, including (in no particular order) Sharon Deem, Greg Lewbart, Ellen Bronson, Vanessa Grunkemeyer, and many others. The adage “it takes a village” doesn’t even come close to covering the number of people it took to make this dissertation happen. I am incredibly grateful to John Rucker and the turtle dogs, all the student members of the Turtle Team that helped collect my data, and especially to the student leaders of this project including Kayla Boers, Megan Britton, Marta Kelly, Samantha Johnson, and John Winter. The passion and dedication of this group is inspiring, and their good attitudes are infectious. My population-level data would also be woefully incomplete without the contributions of several ecologists, post-docs, and grad students affiliated with the Illinois Natural History Survey including Chris Phillips, Michael Dreslik, Sarah Baker, Ethan Kessler, and Kelsey Low. The hard work, knowledge, and good humor of this group made all the long, hot (and cold!) fieldwork days much more enjoyable. I have also received a huge amount of help from my lab mates Jeremy Rayl and Ellen Haynes and our laboratory technician Emilie Ospina. Thanks for being a sounding board for ideas and sharing food, laughs, and caffeine these last few years! v I thank my committee members, Sharon Deem, Mark Mitchell, Rebecca Smith, Megan Mahoney, and Jay Ko for their advice and guidance during this project. I also thank my major advisor, Matt Allender, for his continual support throughout this process, and the Comparative Biosciences Department for their generous scholarship funding. Additional funding for this project was provided by the Friends of Nachusa and a State Wildlife Grant (T-104-R-1). Last, but not least, I thank my husband Nick for his help, flexibility, and love through all the moving and stress of vet school, internships, and grad school. This has been an amazing learning experience, and I am proud to present my dissertation and contribute to existing scientific knowledge about health and disease in free-living herptiles. vi TABLE OF CONTENTS CHAPTER 1: INTRODUCTION ........................................................................................1 CHAPTER 2: LITERATURE REVIEW .............................................................................6 PART I: DIAGNOSTIC TECHNIQUES ..........................................................................41 CHAPTER 3: TISSUE ENZYME ACTIVITIES IN FREE-LIVING EASTERN BOX TURTLES (TERRAPENE CAROLINA CAROLINA) ....................................42 CHAPTER 4: VENOUS BLOOD GAS IN FREE-LIVING EASTERN BOX TURTLES (TERRAPENE CAROLINA CAROLINA) AND EFFECTS OF PHYSIOLOGIC, DEMOGRAPHIC, AND ENVIRONMENTAL
Recommended publications
  • Picrotoxin-Like Channel Blockers of GABAA Receptors
    COMMENTARY Picrotoxin-like channel blockers of GABAA receptors Richard W. Olsen* Department of Molecular and Medical Pharmacology, Geffen School of Medicine, University of California, Los Angeles, CA 90095-1735 icrotoxin (PTX) is the prototypic vous system. Instead of an acetylcholine antagonist of GABAA receptors (ACh) target, the cage convulsants are (GABARs), the primary media- noncompetitive GABAR antagonists act- tors of inhibitory neurotransmis- ing at the PTX site: they inhibit GABAR Psion (rapid and tonic) in the nervous currents and synapses in mammalian neu- system. Picrotoxinin (Fig. 1A), the active rons and inhibit [3H]dihydropicrotoxinin ingredient in this plant convulsant, struc- binding to GABAR sites in brain mem- turally does not resemble GABA, a sim- branes (7, 9). A potent example, t-butyl ple, small amino acid, but it is a polycylic bicyclophosphorothionate, is a major re- compound with no nitrogen atom. The search tool used to assay GABARs by compound somehow prevents ion flow radio-ligand binding (10). through the chloride channel activated by This drug target appears to be the site GABA in the GABAR, a member of the of action of the experimental convulsant cys-loop, ligand-gated ion channel super- pentylenetetrazol (1, 4) and numerous family. Unlike the competitive GABAR polychlorinated hydrocarbon insecticides, antagonist bicuculline, PTX is clearly a including dieldrin, lindane, and fipronil, noncompetitive antagonist (NCA), acting compounds that have been applied in not at the GABA recognition site but per- huge amounts to the environment with haps within the ion channel. Thus PTX major agricultural economic impact (2). ͞ appears to be an excellent example of al- Some of the other potent toxicants insec- losteric modulation, which is extremely ticides were also radiolabeled and used to important in protein function in general characterize receptor action, allowing and especially for GABAR (1).
    [Show full text]
  • Qrno. 1 2 3 4 5 6 7 1 CP 2903 77 100 0 Cfcl3
    QRNo. General description of Type of Tariff line code(s) affected, based on Detailed Product Description WTO Justification (e.g. National legal basis and entry into Administration, modification of previously the restriction restriction HS(2012) Article XX(g) of the GATT, etc.) force (i.e. Law, regulation or notified measures, and other comments (Symbol in and Grounds for Restriction, administrative decision) Annex 2 of e.g., Other International the Decision) Commitments (e.g. Montreal Protocol, CITES, etc) 12 3 4 5 6 7 1 Prohibition to CP 2903 77 100 0 CFCl3 (CFC-11) Trichlorofluoromethane Article XX(h) GATT Board of Eurasian Economic Import/export of these ozone destroying import/export ozone CP-X Commission substances from/to the customs territory of the destroying substances 2903 77 200 0 CF2Cl2 (CFC-12) Dichlorodifluoromethane Article 46 of the EAEU Treaty DECISION on August 16, 2012 N Eurasian Economic Union is permitted only in (excluding goods in dated 29 may 2014 and paragraphs 134 the following cases: transit) (all EAEU 2903 77 300 0 C2F3Cl3 (CFC-113) 1,1,2- 4 and 37 of the Protocol on non- On legal acts in the field of non- _to be used solely as a raw material for the countries) Trichlorotrifluoroethane tariff regulation measures against tariff regulation (as last amended at 2 production of other chemicals; third countries Annex No. 7 to the June 2016) EAEU of 29 May 2014 Annex 1 to the Decision N 134 dated 16 August 2012 Unit list of goods subject to prohibitions or restrictions on import or export by countries- members of the
    [Show full text]
  • Fluorides in the Environment
    Color profile: Disabled Composite 150 lpi at 45 degrees Fluorides in the Environment A4662 - Weinstein - Vouchers - VP10 #K.prn 1 Z:\Customer\CABI\A4642 - Weinstein\A4662 - Weinstein - Vouchers - VP10 #K.vp Monday, November 10, 2003 3:35:50 PM Color profile: Disabled Composite 150 lpi at 45 degrees A4662 - Weinstein - Vouchers - VP10 #K.prn 2 Z:\Customer\CABI\A4642 - Weinstein\A4662 - Weinstein - Vouchers - VP10 #K.vp Monday, November 10, 2003 3:35:50 PM Color profile: Disabled Composite 150 lpi at 45 degrees Fluorides in the Environment Effects on Plants and Animals Professor L.H. Weinstein Boyce Thompson Institute for Plant Research Tower Road Ithaca NY 14853 USA and Professor A. Davison School of Biology Ridley Building University of Newcastle Newcastle upon Tyne NE1 7RU UK CABI Publishing A4662 - Weinstein - Vouchers - VP10 #K.prn 3 Z:\Customer\CABI\A4642 - Weinstein\A4662 - Weinstein - Vouchers - VP10 #K.vp Monday, November 10, 2003 3:35:51 PM Color profile: Disabled Composite 150 lpi at 45 degrees CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 875 Massachusetts Avenue Wallingford 7th Floor Oxon OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Web site: www.cabi-publishing.org ©L.H. Weinstein and A. Davison 2004. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners.
    [Show full text]
  • CAS Number Index
    2334 CAS Number Index CAS # Page Name CAS # Page Name CAS # Page Name 50-00-0 905 Formaldehyde 56-81-5 967 Glycerol 61-90-5 1135 Leucine 50-02-2 596 Dexamethasone 56-85-9 963 Glutamine 62-44-2 1640 Phenacetin 50-06-6 1654 Phenobarbital 57-00-1 514 Creatine 62-46-4 1166 α-Lipoic acid 50-11-3 1288 Metharbital 57-22-7 2229 Vincristine 62-53-3 131 Aniline 50-12-4 1245 Mephenytoin 57-24-9 1950 Strychnine 62-73-7 626 Dichlorvos 50-23-7 1017 Hydrocortisone 57-27-2 1428 Morphine 63-05-8 127 Androstenedione 50-24-8 1739 Prednisolone 57-41-0 1672 Phenytoin 63-25-2 335 Carbaryl 50-29-3 569 DDT 57-42-1 1239 Meperidine 63-75-2 142 Arecoline 50-33-9 1666 Phenylbutazone 57-43-2 108 Amobarbital 64-04-0 1648 Phenethylamine 50-34-0 1770 Propantheline bromide 57-44-3 191 Barbital 64-13-1 1308 p-Methoxyamphetamine 50-35-1 2054 Thalidomide 57-47-6 1683 Physostigmine 64-17-5 784 Ethanol 50-36-2 497 Cocaine 57-53-4 1249 Meprobamate 64-18-6 909 Formic acid 50-37-3 1197 Lysergic acid diethylamide 57-55-6 1782 Propylene glycol 64-77-7 2104 Tolbutamide 50-44-2 1253 6-Mercaptopurine 57-66-9 1751 Probenecid 64-86-8 506 Colchicine 50-47-5 589 Desipramine 57-74-9 398 Chlordane 65-23-6 1802 Pyridoxine 50-48-6 103 Amitriptyline 57-92-1 1947 Streptomycin 65-29-2 931 Gallamine 50-49-7 1053 Imipramine 57-94-3 2179 Tubocurarine chloride 65-45-2 1888 Salicylamide 50-52-2 2071 Thioridazine 57-96-5 1966 Sulfinpyrazone 65-49-6 98 p-Aminosalicylic acid 50-53-3 426 Chlorpromazine 58-00-4 138 Apomorphine 66-76-2 632 Dicumarol 50-55-5 1841 Reserpine 58-05-9 1136 Leucovorin 66-79-5
    [Show full text]
  • Blue-Spotted Salamander
    Species Status Assessment Class: Amphibia Family: Ambystomatidae Scientific Name: Ambystoma laterale Common Name: Blue-spotted salamander Species synopsis: The blue-spotted salamander has the northernmost distribution of any Ambystoma species, occurring in east-central North America as far north as Labrador, with its distribution dipping southward into the northeastern United States only as far as northern New Jersey. In New York, this salamander occurs in a patchy distribution outside of high elevation areas; its occurrence on Long Island is only in the farthest eastern reaches. Blue-spotted salamander habitat is the moist forest floor of deciduous or mixed woodlands near ephemeral bodies of water. Reliable population trends are not available for this salamander. Hybridization occurs between blue-spotted salamander and Jefferson salamander (A. jeffersonianum). Broadly referred to as the Jefferson complex, the variety of hybrids includes up to five different chromosomal combinations. Some of the hybrids have been called Tremblay’s salamander or silvery salamander, but most references are to “Jefferson complex.” This unusual situation has lead to difficulty in defining the distribution of blue-spotted salamander and Jefferson salamander, the hybrids of which are very difficult to distinguish, typically, without genetic testing in conjunction with their appearance. In Connecticut, the blue-spotted diploid and the blue-spotted complex have been listed individually, as Threatened and Special Concern respectively but no other state or province has made this distinction in listing status. 1 I. Status a. Current and Legal Protected Status i. Federal ___Not Listed_______________________ Candidate? ___No____ ii. New York ___Special Concern; SGCN_____________________________________ b. Natural Heritage Program Rank i. Global _____G5__________________________________________________________ ii.
    [Show full text]
  • Species Assessment for Jefferson Salamander
    Species Status Assessment Class: Amphibia Family: Ambystomidae Scientific Name: Ambystoma jeffersonianum Common Name: Jefferson salamander Species synopsis: The distribution of the Jefferson salamander is restricted to the northeastern quarter of the United States extending as far to the southwest as Illinois and Kentucky; the species is represented in Canada only in a small area of southern Ontario. The habitat includes upland deciduous or mixed woodlands as well as bottomland forests adjacent to disturbed and agricultural lands. Breeding occurs in temporary ponds or semi-permanent wetlands (Gibbs et al. 2007). Hybridization occurs between the Jefferson salamander and the blue-spotted salamander (A. laterale). Broadly referred to as the Jefferson complex, the variety of hybrids includes up to five different chromosomal combinations. Some of the hybrids have been called Tremblay’s salamander or silvery salamander, but most references are to “Jefferson complex.” This unusual situation has lead to difficulty in defining the distribution of blue-spotted salamander and Jefferson salamander, the hybrids of which are very difficult to distinguish, typically, without genetic testing in conjunction with their appearance. I. Status a. Current and Legal Protected Status i. Federal ____ Not Listed_____________________ Candidate? __No_____ ii. New York ____Special Concern; SGCN___________________________________ b. Natural Heritage Program Rank i. Global ____G4____________________________________________________________ ii. New York ____S4_____________________ Tracked by NYNHP? ___No____ Other Rank: Species of Northeast Regional Conservation Concern (Therres 1999) Species of Severe Concern and High Responsibility (NEPARC 2010) 1 Status Discussion: Jefferson salamander is considered to be locally abundant in suitable habitat across New York. It has been designated as a Species of Regional Conservation in the Northeast due to its unknown population status and taxonomic uncertainty (Therres 1999).
    [Show full text]
  • Blue-Spotted Salamander Ambystoma Laterale
    Blue-spotted Salamander Ambystoma laterale Massachusetts Division of Fisheries & Wildlife State Status: Species of Special Concern Route 135, Westborough, MA 01581 Federal Status: None tel: (508) 389-6360; fax: (508) 389-7891 www.nhesp.org Description: The blue-spotted salamander is a slender salamander with short limbs, long digits, and a narrow, rounded snout. A dark blue to black dorsum with brilliant sky-blue spots or specks on the lower sides of the body makes the coloration of this species quite distinct and reminiscent of antique blue enamel pots and dishware. The ventral surface is a paler grey with black pigmentation surrounding the vent. The tail is long and laterally compressed; averaging 44% of the total body length. Adults Photo by Bill Byrne range from 4.0 to 5.5 inches (10 to 14 cm) in total length. though, these two hybrid populations have been formally named as the Silvery salamander Determining the sex of this species is easiest done (Ambystoma platineum) and the Tremblay’s during the breeding season, when males are salamander (Ambystoma tremblayi), the hybrid identifiable by a swollen vent area caused by salamanders are simply referred to as the Jefferson / enlarged cloacal glands. Additionally, the larvae are Blue-spotted complex salamander. also difficult to differentiate from other Ambystoma species; larvae are olive green to black and have a When the Jefferson / Blue-spotted complex hybrids are long dorsal fin that extends from behind the head present in an area, they may outnumber the blue-spotted along the back and tail. or Jefferson salamanders by a 2:1 margin.
    [Show full text]
  • Altschul2018.Pdf (3.396Mb)
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Chimpanzee personality and its relations with cognition and health: a comparative perspective Drew Altschul Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Psychology to The University of Edinburgh July 2017 Declaration I hereby declare that this thesis is of my own composition, and that it contains no material previously submitted for the award of any other degree. The work reported in this thesis has been executed by myself, except where due acknowledgement is made in the text. Signed, Drew Altschul i Acknowledgements This research was funded in part by The University of Edinburgh’s Principal Career Development Scholarships, the Great Britain Sasakawa Foundation, and the Department of Psychology and many research support grants. There are many people to whom I owe thanks, for the completion of this thesis would not have been possible without them.
    [Show full text]
  • Unisexual Ambystoma Ambystoma Laterale
    COSEWIC Assessment and Status Report on the Unisexual Ambystoma Ambystoma laterale Small-mouthed Salamander−dependent population (Ambystoma laterale - texanum) Jefferson Salamander−dependent population (Ambystoma laterale - (2) jeffersonianum) Blue-spotted Salamander–dependent population (Ambystoma (2) laterale - jeffersonianum) in Canada Small-mouthed Salamander dependent population - ENDANGERED Jefferson Salamander dependent population - ENDANGERED Blue-spotted Salamander dependent population- NOT AT RISK 2016 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2016. COSEWIC assessment and status report on the unisexual Ambystoma, Ambystoma laterale, Small-mouthed Salamander–dependent population, Jefferson Salamander–dependent population and the Blue-spotted Salamander–dependent population, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xxii + 61 pp. (http://www.registrelep- sararegistry.gc.ca/default_e.cfm). Production note: COSEWIC would like to acknowledge Jim Bogart for writing the status report on the unisexual Ambystoma in Canada. This report was prepared under contract with Environment Canada and was overseen by Kristiina Ovaska, Co-chair of the COSEWIC Amphibian and Reptile Species Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-938-4125 Fax: 819-938-3984 E-mail: [email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur L’ambystoma unisexué (Ambystoma laterale), population dépendante de la salamandre à petite bouche, population dépendante de la salamandre de Jefferson et la population dépendante de la salamandre à points bleus, au Canada.
    [Show full text]
  • CHIMPANZEE (Pan Troglodytes ) CARE MANUAL
    CHIMPANZEE (Pan troglodytes) CARE MANUAL CREATED BY THE AZA Chimpanzee Species Survival Plan® IN ASSOCIATION WITH THE AZA Ape Taxon Advisory Group Chimpanzee (Pan Troglodytes) Care Manual Chimpanzee (Pan troglodytes) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Ape TAG 2010. Chimpanzee (Pan troglodytes) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: December 8, 2009 Authors and Significant Contributors: Steve Ross, Ph.D. Lincoln Park Zoo Jennie McNary, Los Angeles Zoo See Appendix F for a full list of contributors and reviewers from the AZA Chimpanzee SSP. Reviewers: Linda Brent, Ph.D., Chimp Haven, Inc. Maria Finnigan, Perth Zoo, ASMP Chimpanzee Coordinator Steve Ross, Ph.D., Lincoln Park Zoo Candice Dorsey, Ph.D., AZA Director, Animal Conservation Debborah Colbert, Ph.D., AZA VP, Animal Conservation Paul Boyle, Ph.D., AZA Sr. VP Conservation and Education See Appendix F for a full list of contributors and reviewers from the AZA Chimpanzee SSP. Chimpanzee Care Manual Project Consultant: Joseph C.E. Barber, Ph.D. AZA Staff Editors: Candice Dorsey, Ph.D., Director, Animal Conservation Cover Photo Credits: Steve Ross Disclaimer: This manual presents a compilation of knowledge provided by recognized animal experts based on the current science, practice, and technology of animal management. The manual assembles basic requirements, best practices, and animal care recommendations to maximize capacity for excellence in animal care and welfare. The manual should be considered a work in progress, since practices continue to evolve through advances in scientific knowledge. The use of information within this manual should be in accordance with all local, state, and federal laws and regulations concerning the care of animals.
    [Show full text]
  • The Illinois Comprehensive Wildlife Conservation Plan & Strategy
    State of Illinois Rod R. Blagojevich, Governor Department of Natural Resources Joel Brunsvold, Director THE ILLINOIS COMPREHENSIVE WILDLIFE CONSERVATION PLAN & STRATEGY VERSION 1.0 AS PRESCRIBED BY THE WILDLIFE CONSERVATION & RESTORATION PROGRAM AND STATE WILDLIFE GRANTS PROGRAM ILLINOIS COMPREHENSIVE WILDLIFE CONSERVATION PLAN & STRATEGY Version 1.0 i. Partners in Plan/Strategy Development The Illinois Comprehensive Wildlife Conservation Plan & Strategy was made possible with the help of these partners in conservation: ABATE of Illinois, Inc. Environmental Law & Policy Center Black Diamond Chapter Field Trial Clubs of Illinois American Bird Conservancy Fishing Buddies Association of Illinois Soil & Water Forest Preserve District of DuPage County Conservation Districts Forest Preserve District of Kane County Audubon Chicago Region Forest Preserve District of Will County Bird Conservation Network Friends of Johnson Park Boone County Conservation District Grand Prairie Friends Brookfield Zoo Henson Robinson Zoo Calhoun County Farm Bureau Illinois Association of Conservation Districts Central Hardwoods Joint Venture Illinois Association of REALTORS Central Illinois Musky Hunters Illinois Association of Regional Councils Champaign County Forest Preserve District Illinois Association of Resource Chicago Botanic Garden Conservation and Development Areas Chicago Wilderness Illinois Audubon Society Cook County Forest Preserve District Illinois Conservation Foundation Cosley Zoo Illinois Department of Agriculture D.J. Case & Associates Division
    [Show full text]
  • Human Pharmacokinetic Study of Tutin in Honey; a Plant-Derived Neurotoxin ⇑ Barry A
    Food and Chemical Toxicology 72 (2014) 234–241 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox Human pharmacokinetic study of tutin in honey; a plant-derived neurotoxin ⇑ Barry A. Fields a, , John Reeve b, Andrew Bartholomaeus c,d, Utz Mueller a a Food Standards Australia New Zealand, 55 Blackall St., Barton, ACT 2600, Australia b New Zealand Ministry for Primary Industries, Pastoral House, 25 The Terrace, Wellington, New Zealand c Therapeutics Research Centre, School of Medicine, University of Queensland, Queensland, Australia d School of Pharmacy, Faculty of Health, University of Canberra, Australia article info abstract Article history: Over the last 150 years a number of people in New Zealand have been incapacitated, hospitalised, or died Received 26 March 2014 from eating honey contaminated with tutin, a plant-derived neurotoxin. A feature of the most recent poi- Accepted 16 July 2014 soning incident in 2008 was the large variability in the onset time of clinical signs and symptoms of tox- Available online 30 July 2014 icity (0.5–17 h). To investigate the basis of this variability a pharmacokinetic study was undertaken in which 6 healthy males received a single oral dose of tutin-containing honey giving a tutin dose of Keywords: 1.8 lg/kg body weight. The serum concentration–time curve for all volunteers exhibited two discrete Tutin peaks with the second and higher level occurring at approximately 15 h post-dose. Two subjects reported Neurotoxin mild, transient headache at a time post-dose corresponding to maximum tutin concentrations. There Glycosides Honey were no other signs or symptoms typical of tutin intoxication such as nausea, vomiting, dizziness or sei- Coriaria arborea zures.
    [Show full text]