DNA Polymerases Are Error-Prone at Reca-Mediated Recombination

Total Page:16

File Type:pdf, Size:1020Kb

DNA Polymerases Are Error-Prone at Reca-Mediated Recombination PAPER TYPE Cell Cycle 12:16, 2558–2563; August 15, 2013; © 2013 Landes Bioscience DNA polymerases are error-prone at RecA-mediated recombination intermediates Richard T Pomerantz1,*, Myron F Goodman2, and Michael E O’Donnell3 1Fels Institute for Cancer Research; Department of Biochemistry; Temple University School of Medicine; Philadelphia, PA USA; 2Department of Biological Sciences; University of Southern California; Los Angeles, CA USA; 3The Rockefeller University; Howard Hughes Medical Institute; New York, NY USA enetic studies have suggested that occur on both episomal and chromosomal GY-family translesion DNA poly- DNA and promote the survival of labora- merase IV (DinB) performs error-prone tory strains and natural isolates of bacteria distribute. recombination-directed replication under conditions of stress.6,7 Importantly, (RDR) under conditions of stress due stress-induced mutagenesis has many par- to its ability to promote mutations dur- allels to the adaptation of cancer cells to not ing double-strand break (DSB) repair growth-limiting conditions and stress and in growth-limited E. coli cells. In recent therefore may have implications for cancer Do studies we have demonstrated that pol progression and the ability of tumor cells IV is preferentially recruited to D-loop to develop resistance to therapy.3 recombination intermediates at stress- The central mechanism of adaptive induced concentrations and is highly mutagenesis in E. coli has been revealed mutagenic during RDR in vitro. These by several years of elegant genetic studies findings verify longstanding genetic data which have identified Y-family translesion that have implicated pol IV in promoting DNA polymerase IV (pol IV), also known stress-induced mutagenesis at D-loops. as DinB, as the major driver of stress- 1,2,8 In this Extra View, we demonstrate the induced mutations. Pol IV is highly Bioscience. surprising finding that A-family pol I, upregulated to ~2500 molecules/cell which normally exhibits high-fidelity during the SOS response and is further DNA synthesis, is highly error-prone at induced by an additional ~2-fold to ~5000 Keywords: DNA replication, D-loops like pol IV. These findings indi- molecules/cell during stationary phase by homologous recombination, double- cate that DNA polymerases are intrin- the RpoS general stress response.8,9 This strand break repair, stress-induced sically error-prone at RecA-mediated makes pol IV by far the most abundant Landes mutagenesis, adaptive mutagen- D-loops and suggest that auxiliary DNA polymerase in growth-limited cells. esis, break-induced replication factors are necessary for suppressing Considering that pol IV is an error-prone mutations during RDR in non-stressed Y-family DNA polymerase, it is there- Abbreviations: HR, homologous recom- proliferating cells. fore not surprising that it promotes most bination; RDR, recombination directed (~85%) adaptive mutations under growth- replication; DSB, double-strand break; Introduction limiting conditions8. ©2013 pol, DNA polymerase; D-loop, displace- Where pol IV elicits its mutagenic ment loop; BIR, break-induced replica- Adaptive mutagenesis, also known as activity during stress has also been revealed tion; ALT, alternative lengthening of stress-induced mutagenesis, is a major by genetic studies. For example, pol IV- telomeres evolutionary process that allows bacteria induced adaptive mutations have been Submitted: 06/24/2013 to overcome adverse environmental condi- shown to require DSB repair proteins such tions, such as nutrient starvation and expo- as RecA, RecBCD and RuvABC, and such Accepted: 07/09/2013 sure to antibiotics.1-3 For example, adaptive mutations are mostly targeted to regions http://dx.doi.org/10.4161/cc.25691 mutagenesis has been shown to promote near DSBs.10 Hence, previous genetics antibiotic resistance, which is becoming a indicate that pol IV promotes adaptive *Correspondence to: Richard T Pomerantz; major threat to modern medicine.4,5 It is mutations at or near displacement loop Email: [email protected] now evident that stress-induced mutations (D-loop) recombination intermediates, 2558 Cell Cycle Volume 12 Issue 16 PAPER TYPE EXTRA VIEW which are necessary for DSB repair. A requires upregulation of the polymerase exposure to antibiotics.18 This activity of general model of pol IV involvement by the SOS response and induction of the pol IV appears to potentiate cell death in stress-induced mutagenesis during RpoS stress response, which occurs in sta- during antibiotic treatment, presumably DSB repair is illustrated in Figure 1. tionary-phase cells (Fig. 1).9,12 Altogether, due to a high frequency of DSBs caused DSBs are first processed by the RecBCD genetic studies have provided compelling by incomplete repair of closely spaced nuclease/helicase complex that resects the evidence that pol IV mutagenic RDR 8-oxo-dGMP lesions.18 Considering that DNA and promotes RecA filament forma- activity in growth-limited cells is the the RpoS response upregulates pol IV by tion along the resulting 3′ single-strand central mechanism of adaptive mutagen- ~100% and promotes resistance to oxi- DNA tails. RecA filaments then promote esis. Considering bacteria spend extended dation, the ability of pol IV to incorpo- strand invasion within a homologous periods in growth-limiting conditions in rate 8-oxo-dGTP may also be beneficial donor duplex, resulting in a D-loop. Pol IV nature, pol IV involvement in RDR is for survival.19,20 Although the mode of is then recruited to the D-loop, presum- likely a major activity for this enzyme. replication in which pol IV incorporates ably along with replication co-factors, and Although pol IV is strongly implicated 8-oxo-dGTP has yet to be elucidated, the copies the sequence information from the in RDR, it is important to point out that suggested high frequency of 8-oxo-dGTP undamaged DNA donor molecule, result- Y-family DNA polymerases are typically incorporation during antibiotic treatment ing in mutations in close proximity to known for their ability to promote replica- indicates that pol IV is actively engaged DSBs. This recombination-directed repli- tion past DNA lesions in a pathway called in replication during stress, which may cation (RDR) process is often referred to translesion synthesis (TLS).13,14 Since be accounted for by pol IV RDR activ- as D-loop extension or break-induced rep- high-fidelity replicative DNA polymerases ity.18 Taken together, pol IV was probably distribute. lication (BIR), which is also error-prone stall upon encountering lesions in DNA selected to perform multiple functions in in yeast.11 Pol IV involvement in error- due to their stringent active site struc- DNA damage tolerance in stressed cells, prone RDR (stress-induced mutagenesis) tures, replication forks become arrested including RDR, TLS, and 8-oxo-dGMP not or even collapse upon collision with DNA incorporation. lesions in the leading strand; lesions in the Do lagging strand do not arrest replication Pol IV Preferentially Extends forks. In contrast to high-fidelity DNA D-Loops during Stress polymerases, low-fidelity Y-family DNA polymerases possess relatively open active Although previous genetics data have sites, which allows them to accommodate strongly implicated pol IV in RDR in aberrant DNA structures due to damage stressed cells, direct biochemical evidence such as cyclobutane pyrimidine dimmers, for this activity has been lacking. In recent which are frequently caused by exposure studies, we directly examined the ability 13-16 to UV light. Other common DNA of pol IV to promote RDR by reconsti- Bioscience. lesions bypassed by translesion DNA poly- tuting D-loop extension in vitro.21 These merases include abasic sites and 8-oxo- studies show that pol IV is proficient in 7,8-dihydroguanine (8-oxoG), which RDR, whereas the related Y-family pol V occur regularly in normal unstressed cel- is unable to perform this activity under lular environments as result of hydrolysis identical conditions. Pol IV is there- and oxidation, respectively. fore readily recruited to RecA mediated Landes Interestingly, mounting evidence indi- D-loops and exhibits robust strand dis- cates that although Y-family DNA polymer- placement activity on supercoiled DNA. ases are mostly error-prone and inefficient Since pol IV is highly upregulated during on undamaged DNA, they are relatively the SOS response, we examined whether accurate and proficient when bypassing the β clamp, which confers processivity their respective lesions.14 For example, onto DNA polymerases, is needed for pol ©2013 pol IV is more proficient and accurate in IV RDR activity. Using concentrations of replication opposite deoxyguanosine-con- pol IV relative to those in SOS-induced Figure 1. Model of pol IV activity during error- taining adducts at the N2-position (i.e., cells, we found that the polymerase does prone recombination. DSBs are processed N2-furfuryl-dG) compared with undam- not require β for RDR.21 Hence, the by the RecBCD helicase-nuclease complex, 17 which resects the DNA and facilitates loading aged nucleotides. Pol κ, the mammalian abundant levels of pol IV in stressed cells of RecA onto ssDNA. The RecA filament pro- ortholog of pol IV, is also more efficient in may preclude the need for β. These recent motes strand invasion within a homologous replication of such adducts.17 findings verify the ability of pol IV to DNA donor resulting in D-loop formation. Intriguingly, pol IV has also been promote RDR, as suggested by previous Pol IV is preferentially
Recommended publications
  • Phosphatidylinositol-3-Kinase Related Kinases (Pikks) in Radiation-Induced Dna Damage
    Mil. Med. Sci. Lett. (Voj. Zdrav. Listy) 2012, vol. 81(4), p. 177-187 ISSN 0372-7025 DOI: 10.31482/mmsl.2012.025 REVIEW ARTICLE PHOSPHATIDYLINOSITOL-3-KINASE RELATED KINASES (PIKKS) IN RADIATION-INDUCED DNA DAMAGE Ales Tichy 1, Kamila Durisova 1, Eva Novotna 1, Lenka Zarybnicka 1, Jirina Vavrova 1, Jaroslav Pejchal 2, Zuzana Sinkorova 1 1 Department of Radiobiology, Faculty of Health Sciences in Hradec Králové, University of Defence in Brno, Czech Republic 2 Centrum of Advanced Studies, Faculty of Health Sciences in Hradec Králové, University of Defence in Brno, Czech Republic. Received 5 th September 2012. Revised 27 th November 2012. Published 7 th December 2012. Summary This review describes a drug target for cancer therapy, family of phosphatidylinositol-3 kinase related kinases (PIKKs), and it gives a comprehensive review of recent information. Besides general information about phosphatidylinositol-3 kinase superfamily, it characterizes a DNA-damage response pathway since it is monitored by PIKKs. Key words: PIKKs; ATM; ATR; DNA-PK; Ionising radiation; DNA-repair ABBREVIATIONS therapy and radiation play a pivotal role. Since cancer is one of the leading causes of death worldwide, it is DSB - double stand breaks, reasonable to invest time and resources in the enligh - IR - ionising radiation, tening of mechanisms, which underlie radio-resis - p53 - TP53 tumour suppressors, tance. PI - phosphatidylinositol. The aim of this review is to describe the family INTRODUCTION of phosphatidyinositol 3-kinases (PI3K) and its func - tional subgroup - phosphatidylinositol-3-kinase rela - An efficient cancer treatment means to restore ted kinases (PIKKs) and their relation to repairing of controlled tissue growth via interfering with cell sig - radiation-induced DNA damage.
    [Show full text]
  • Collision with Duplex DNA Renders Escherichia Coli DNA Polymerase III
    www.nature.com/scientificreports OPEN Collision with duplex DNA renders Escherichia coli DNA polymerase III holoenzyme susceptible to Received: 8 May 2017 Accepted: 18 September 2017 DNA polymerase IV-mediated Published: xx xx xxxx polymerase switching on the sliding clamp Thanh Thi Le, Asako Furukohri, Masahiro Tatsumi-Akiyama & Hisaji Maki Organisms possess multiple DNA polymerases (Pols) and use each for a different purpose. One of the five Pols inEscherichia coli, DNA polymerase IV (Pol IV), encoded by the dinB gene, is known to participate in lesion bypass at certain DNA adducts. To understand how cells choose Pols when the replication fork encounters an obstacle on template DNA, the process of polymerase exchange from the primary replicative enzyme DNA polymerase III (Pol III) to Pol IV was studied in vitro. Replicating Pol III forming a tight holoenzyme (Pol III HE) with the sliding clamp was challenged by Pol IV on a primed ssDNA template carrying a short inverted repeat. A rapid and lesion-independent switch from Pol III to Pol IV occurred when Pol III HE encountered a hairpin stem duplex, implying that the loss of Pol III-ssDNA contact induces switching to Pol IV. Supporting this idea, mutant Pol III with an increased affinity for ssDNA was more resistant to Pol IV than wild-type Pol III was. We observed that an exchange between Pol III and Pol IV also occurred when Pol III HE collided with primer/template duplex. Our data suggest that Pol III-ssDNA interaction may modulate the susceptibility of Pol III HE to Pol IV-mediated polymerase exchange.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]
  • Q 297 Suppl USE
    The following supplement accompanies the article Atlantic salmon raised with diets low in long-chain polyunsaturated n-3 fatty acids in freshwater have a Mycoplasma dominated gut microbiota at sea Yang Jin, Inga Leena Angell, Simen Rød Sandve, Lars Gustav Snipen, Yngvar Olsen, Knut Rudi* *Corresponding author: [email protected] Aquaculture Environment Interactions 11: 31–39 (2019) Table S1. Composition of high- and low LC-PUFA diets. Stage Fresh water Sea water Feed type High LC-PUFA Low LC-PUFA Fish oil Initial fish weight (g) 0.2 0.4 1 5 15 30 50 0.2 0.4 1 5 15 30 50 80 200 Feed size (mm) 0.6 0.9 1.3 1.7 2.2 2.8 3.5 0.6 0.9 1.3 1.7 2.2 2.8 3.5 3.5 4.9 North Atlantic fishmeal (%) 41 40 40 40 40 30 30 41 40 40 40 40 30 30 35 25 Plant meals (%) 46 45 45 42 40 49 48 46 45 45 42 40 49 48 39 46 Additives (%) 3.3 3.2 3.2 3.5 3.3 3.4 3.9 3.3 3.2 3.2 3.5 3.3 3.4 3.9 2.6 3.3 North Atlantic fish oil (%) 9.9 12 12 15 16 17 18 0 0 0 0 0 1.2 1.2 23 26 Linseed oil (%) 0 0 0 0 0 0 0 6.8 8.1 8.1 9.7 11 10 11 0 0 Palm oil (%) 0 0 0 0 0 0 0 3.2 3.8 3.8 5.4 5.9 5.8 5.9 0 0 Protein (%) 56 55 55 51 49 47 47 56 55 55 51 49 47 47 44 41 Fat (%) 16 18 18 21 22 22 22 16 18 18 21 22 22 22 28 31 EPA+DHA (% diet) 2.2 2.4 2.4 2.9 3.1 3.1 3.1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 4 4.2 Table S2.
    [Show full text]
  • Consolidated List of Up-Regulated Proteins Expressed at Different Cr (VI) Concentrations at Time Points
    Electronic Supplementary Material (ESI) for Metallomics.
    [Show full text]
  • Specificity of DNA Damage Inducible DNA Polymerase IV from Escherichia Coli
    Specificity of DNA Damage Inducible DNA Polymerase IV from Escherichia coli A thesis presented by Jason M. Walsh to The Department of Chemistry and Chemical Biology in partial fulfillment of the requirements for the degree of Master of Science in the field of Chemistry Northeastern University Boston, Massachusetts December 2009 1 © 2009, Jason M Walsh All rights reserved. 2 Specificity of DNA Damage Inducible DNA Polymerase IV from Escherichia coli by Jason M. Walsh ABSTRACT OF THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemistry and Chemical Biology in the Graduate School of Arts and Sciences of Northeastern University, December 2009 3 ABSTRACT DNA polymerases are responsible for DNA replication during cell division. There are multiple families of polymerases (A, B, C, D, X) responsible for copying DNA during replication and repair. There is also a class of polymerases conserved throughout evolution, known as the Y family polymerases, that have reduced replication fidelity on undamaged DNA (Tang et al. 2000). However Y family DNA polymerases have the specialized property of replicating DNA by copying damaged DNA, a process known as translesion synthesis (TLS). Structural differences between Y family and replicative polymerases may account for the difference in enzymatic activity. However we demonstrate that the Klenow fragment (A family) can bypass a fluorescent cytosine analog known as 1, 3-diaza-2-oxophenothiazine (tC), that DinB, a Y family polymerase, cannot bypass. We show that DinB inserts dGTP faithfully, but cannot extend the DNA primer beyond that. Verifying which amino acid residues are responsible for both function and specificity of the Y family polymerases is accomplished by assessing the kinetic data of nucleotide incorporation events of DinB variants as compared to wild-type DinB.
    [Show full text]
  • Supplementary Figure S1 Fluorescent Substrate Digestion in the Droplet
    α-amylase Schematic image of the BODIPY-Starch Fig.1A Droplet with a better α- Droplet with a α-amylase Droplet with non-α- amylase producing cell producing cell amylase producing cell Supplementary Figure S1 Fluorescent substrate digestion in the droplet. Droplet with a better α-amylase producing cell will have higher α-amylase concentration inside the droplet and thus more BODIPY-starch can be degraded in the same unit of time. This will give rise to a stronger fluorescent signal that will be emitted upon excitation. A B Treshold: Treshold: 0.4 0.4 Sorted fraction: Sorted fraction: 0.24% 0.76% C D Threshold: Thresholds: 0.35‐0.37 0.5‐0.55 Sorted fraction: Sorted fraction 1% ≈3% Supplementary Figure S2 Histogram showing droplet fluorescence of yeast libraries in the second round of screening. (A) The Library MH34-11. (B) The Library MH34-14. (C) The Library MH34-8. (D) The Library MH23-11. Starting cells Sorted Waste cells cells MH34-11 MH34-14 MH34-8 MH23-11 Supplementary Figure S3 Fermentation of mixed colonies for evaluation of the titer and yield of α-amylase produced by different yeast populations before and after sorting. 50 colonies were randomly picked up from different populations of the library and mixed together for fermentation. A I I+IV:38% II III:60% III IV B Sorted Waste Sorted Waste All I Supplementary Figure S4 (A) 50 waste colonies from the library MH34-11 were tested in tube fermentation. (B) Average α-amylase titer and yield of sorted cells and waste cells from the library MH34-11.
    [Show full text]
  • Involvement of Escherichia Coli DNA Polymerase IV in Tolerance of Cytotoxic Alkylating DNA Lesions in Vivo
    Copyright Ó 2007 by the Genetics Society of America DOI: 10.1534/genetics.107.072405 Involvement of Escherichia coli DNA Polymerase IV in Tolerance of Cytotoxic Alkylating DNA Lesions in Vivo Ivana Bjedov,1 Chitralekha Nag Dasgupta,1 Dea Slade, Sophie Le Blastier, Marjorie Selva and Ivan Matic2 INSERM U571, Faculte´ de Me´decine, Universite´ Paris 5, 75730 Paris Cedex 15, France Manuscript received February 20, 2007 Accepted for publication May 3, 2007 ABSTRACT Escherichia coli PolIV, a DNA polymerase capable of catalyzing synthesis past replication-blocking DNA lesions, belongs to the most ubiquitous branch of Y-family DNA polymerases. The goal of this study is to identify spontaneous DNA damage that is bypassed specifically and accurately by PolIV in vivo. We in- creased the amount of spontaneous DNA lesions using mutants deficient for different DNA repair path- ways and measured mutation frequency in PolIV-proficient and -deficient backgrounds. We found that PolIV performs an error-free bypass of DNA damage that accumulates in the alkA tag genetic background. This result indicates that PolIV is involved in the error-free bypass of cytotoxic alkylating DNA lesions. When the amount of cytotoxic alkylating DNA lesions is increased by the treatment with chemical alkyl- ating agents, PolIV is required for survival in an alkA tag-proficient genetic background as well. Our study, together with the reported involvement of the mammalian PolIV homolog, Polk, in similar activity, indicates that Y-family DNA polymerases from the DinB branch can be added to the list of evolutionarily conserved molecular mechanisms that counteract cytotoxic effects of DNA alkylation.
    [Show full text]
  • The Yeast Saccharomyces Cerevisiae DNA Polymerase IV: Possible Involvement in Double Strand Break DNA Repair
    Q-DI 1994 Oxford University Press Nucleic Acids Research, 1994, Vol. 22, No. 15 3011 -3017 The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair Sun-Hee Leem, Philip A.Ropp1 and Akio Sugino* Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka 565, Japan and 'Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709, USA Received May 13, 1994; Revised and Accepted July 13, 1994 ABSTRACT We identified and purified a new DNA polymerase (DNA division-cycle (cdc) mutants, among which were alleles of the polymerase IV), which is similar to mammalian DNA genes now known to encode DNA polymerase a and 6 catalytic polymerase (, from Saccharomyces cerevisiae and polypeptides (7-10). DNA polymerase e is the DNA polymerase suggested that it is encoded by YCR14C (POLX) on that was last identified and purified in eukaryotes (1, 2). But, chromosome Ill. Here, we provided a direct evidence its yeast homolog, DNA polymerase II, was detected that the purified DNA polymerase IV is indeed encoded enzymatically in yeast cell extracts in early 1970 (11, 12). Its by POLX. Strains harboring a poI4 deletion mutation gene, POL2, was not found in any genetic screen, nor was its exhibit neither mitotic growth defect nor a meiosis mammalian counterpart identified in the SV40 in vitro system. defect, suggesting that DNA polymerase IV participates POL2 was eventually cloned by reverse genetics and has been in nonessential functions in DNA metabolism.
    [Show full text]
  • New Insights Into Marine Group III Euryarchaeota, from Dark to Light
    The ISME Journal (2017), 1–16 © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE New insights into marine group III Euryarchaeota, from dark to light Jose M Haro-Moreno1,3, Francisco Rodriguez-Valera1, Purificación López-García2, David Moreira2 and Ana-Belen Martin-Cuadrado1,3 1Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain and 2Unité d’Ecologie, Systématique et Evolution, UMR CNRS 8079, Université Paris-Sud, Orsay Cedex, France Marine Euryarchaeota remain among the least understood major components of marine microbial communities. Marine group II Euryarchaeota (MG-II) are more abundant in surface waters (4–20% of the total prokaryotic community), whereas marine group III Euryarchaeota (MG-III) are generally considered low-abundance members of deep mesopelagic and bathypelagic communities. Using genome assembly from direct metagenome reads and metagenomic fosmid clones, we have identified six novel MG-III genome sequence bins from the photic zone (Epi1–6) and two novel bins from deep-sea samples (Bathy1–2). Genome completeness in those genome bins varies from 44% to 85%. Photic-zone MG-III bins corresponded to novel groups with no similarity, and significantly lower GC content, when compared with previously described deep-MG-III genome bins. As found in many other epipelagic microorganisms, photic-zone MG-III bins contained numerous photolyase and rhodopsin genes, as well as genes for peptide and lipid uptake and degradation, suggesting a photoheterotrophic lifestyle. Phylogenetic analysis of these photolyases and rhodopsins as well as their genomic context suggests that these genes are of bacterial origin, supporting the hypothesis of an MG-III ancestor that lived in the dark ocean.
    [Show full text]
  • Eukaryotic DNA Polymerases in Homologous Recombination Mitch Mcvey, Varandt Y
    GE50CH18-Heyer ARI 28 October 2016 10:25 ANNUAL REVIEWS Further Click here to view this article's online features: • Download figures as PPT slides • Navigate linked references • Download citations Eukaryotic DNA Polymerases • Explore related articles • Search keywords in Homologous Recombination Mitch McVey,1 Varandt Y. Khodaverdian,1 Damon Meyer,2,4 Paula Gonc¸alves Cerqueira,2 and Wolf-Dietrich Heyer2,3 1Department of Biology, Tufts University, Medford, Massachusetts 02155; email: [email protected] 2Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616; email: [email protected] 3Department of Molecular and Cellular Biology, University of California, Davis, California 95616 4College of Health Sciences, California Northstate University, Rancho Cordova, California 95670 Annu. Rev. Genet. 2016. 50:393–421 Keywords The Annual Review of Genetics is online at DNA synthesis, genome stability, mutagenesis, template switching genet.annualreviews.org This article’s doi: Abstract 10.1146/annurev-genet-120215-035243 Homologous recombination (HR) is a central process to ensure genomic Copyright c 2016 by Annual Reviews. stability in somatic cells and during meiosis. HR-associated DNA synthe- All rights reserved Annu. Rev. Genet. 2016.50:393-421. Downloaded from www.annualreviews.org sis determines in large part the fidelity of the process. A number of recent Access provided by University of California - Davis on 11/30/16. For personal use only. studies have demonstrated that DNA synthesis during HR is conservative, less processive, and more mutagenic than replicative DNA synthesis. In this review, we describe mechanistic features of DNA synthesis during different types of HR-mediated DNA repair, including synthesis-dependent strand annealing, break-induced replication, and meiotic recombination.
    [Show full text]